/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 225 by schoenebeck, Sun Aug 22 14:46:47 2004 UTC revision 246 by schoenebeck, Sun Sep 19 14:12:55 2004 UTC
# Line 27  Line 27 
27    
28  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
29    
     // FIXME: no support for layers (nor crossfades) yet  
   
30      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
31    
32      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());
# Line 57  namespace LinuxSampler { namespace gig { Line 55  namespace LinuxSampler { namespace gig {
55          pLFO1  = NULL;          pLFO1  = NULL;
56          pLFO2  = NULL;          pLFO2  = NULL;
57          pLFO3  = NULL;          pLFO3  = NULL;
58            KeyGroup = 0;
59      }      }
60    
61      Voice::~Voice() {      Voice::~Voice() {
# Line 104  namespace LinuxSampler { namespace gig { Line 103  namespace LinuxSampler { namespace gig {
103       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
104       *  needed.       *  needed.
105       *       *
106       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pNoteOnEvent        - event that caused triggering of this voice
107       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)
108       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data
109       *  @returns            0 on success, a value < 0 if something failed       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)
110         *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)
111         *  @returns 0 on success, a value < 0 if something failed
112       */       */
113      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument) {      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice) {
114          if (!pInstrument) {          if (!pInstrument) {
115             dmsg(1,("voice::trigger: !pInstrument\n"));             dmsg(1,("voice::trigger: !pInstrument\n"));
116             exit(EXIT_FAILURE);             exit(EXIT_FAILURE);
117          }          }
118    
119            Type            = type_normal;
120          Active          = true;          Active          = true;
121          MIDIKey         = pNoteOnEvent->Key;          MIDIKey         = pNoteOnEvent->Param.Note.Key;
122          pRegion         = pInstrument->GetRegion(MIDIKey);          pRegion         = pInstrument->GetRegion(MIDIKey);
123          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
         Pos             = 0;  
124          Delay           = pNoteOnEvent->FragmentPos();          Delay           = pNoteOnEvent->FragmentPos();
125          pTriggerEvent   = pNoteOnEvent;          pTriggerEvent   = pNoteOnEvent;
126            pKillEvent      = NULL;
127    
128          if (!pRegion) {          if (!pRegion) {
129              std::cerr << "Audio Thread: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;
130              Kill();              KillImmediately();
131              return -1;              return -1;
132          }          }
133    
134          //TODO: current MIDI controller values are not taken into account yet          KeyGroup = pRegion->KeyGroup;
135          ::gig::DimensionRegion* pDimRgn = NULL;  
136          for (int i = pRegion->Dimensions - 1; i >= 0; i--) { // Check if instrument has a velocity split          // get current dimension values to select the right dimension region
137              if (pRegion->pDimensionDefinitions[i].dimension == ::gig::dimension_velocity) {          //FIXME: controller values for selecting the dimension region here are currently not sample accurate
138                  uint DimValues[5] = {0,0,0,0,0};          uint DimValues[5] = {0,0,0,0,0};
139                      DimValues[i] = pNoteOnEvent->Velocity;          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {
140                  pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);              switch (pRegion->pDimensionDefinitions[i].dimension) {
141                  break;                  case ::gig::dimension_samplechannel:
142                        DimValues[i] = 0; //TODO: we currently ignore this dimension
143                        break;
144                    case ::gig::dimension_layer:
145                        DimValues[i] = iLayer;
146                        // if this is the 1st layer then spawn further voices for all the other layers
147                        if (iLayer == 0)
148                            for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)
149                                pEngine->LaunchVoice(pNoteOnEvent, iNewLayer, ReleaseTriggerVoice);
150                        break;
151                    case ::gig::dimension_velocity:
152                        DimValues[i] = pNoteOnEvent->Param.Note.Velocity;
153                        break;
154                    case ::gig::dimension_channelaftertouch:
155                        DimValues[i] = 0; //TODO: we currently ignore this dimension
156                        break;
157                    case ::gig::dimension_releasetrigger:
158                        Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;
159                        DimValues[i] = (uint) ReleaseTriggerVoice;
160                        break;
161                    case ::gig::dimension_keyboard:
162                        DimValues[i] = (uint) pNoteOnEvent->Param.Note.Key;
163                        break;
164                    case ::gig::dimension_modwheel:
165                        DimValues[i] = pEngine->ControllerTable[1];
166                        break;
167                    case ::gig::dimension_breath:
168                        DimValues[i] = pEngine->ControllerTable[2];
169                        break;
170                    case ::gig::dimension_foot:
171                        DimValues[i] = pEngine->ControllerTable[4];
172                        break;
173                    case ::gig::dimension_portamentotime:
174                        DimValues[i] = pEngine->ControllerTable[5];
175                        break;
176                    case ::gig::dimension_effect1:
177                        DimValues[i] = pEngine->ControllerTable[12];
178                        break;
179                    case ::gig::dimension_effect2:
180                        DimValues[i] = pEngine->ControllerTable[13];
181                        break;
182                    case ::gig::dimension_genpurpose1:
183                        DimValues[i] = pEngine->ControllerTable[16];
184                        break;
185                    case ::gig::dimension_genpurpose2:
186                        DimValues[i] = pEngine->ControllerTable[17];
187                        break;
188                    case ::gig::dimension_genpurpose3:
189                        DimValues[i] = pEngine->ControllerTable[18];
190                        break;
191                    case ::gig::dimension_genpurpose4:
192                        DimValues[i] = pEngine->ControllerTable[19];
193                        break;
194                    case ::gig::dimension_sustainpedal:
195                        DimValues[i] = pEngine->ControllerTable[64];
196                        break;
197                    case ::gig::dimension_portamento:
198                        DimValues[i] = pEngine->ControllerTable[65];
199                        break;
200                    case ::gig::dimension_sostenutopedal:
201                        DimValues[i] = pEngine->ControllerTable[66];
202                        break;
203                    case ::gig::dimension_softpedal:
204                        DimValues[i] = pEngine->ControllerTable[67];
205                        break;
206                    case ::gig::dimension_genpurpose5:
207                        DimValues[i] = pEngine->ControllerTable[80];
208                        break;
209                    case ::gig::dimension_genpurpose6:
210                        DimValues[i] = pEngine->ControllerTable[81];
211                        break;
212                    case ::gig::dimension_genpurpose7:
213                        DimValues[i] = pEngine->ControllerTable[82];
214                        break;
215                    case ::gig::dimension_genpurpose8:
216                        DimValues[i] = pEngine->ControllerTable[83];
217                        break;
218                    case ::gig::dimension_effect1depth:
219                        DimValues[i] = pEngine->ControllerTable[91];
220                        break;
221                    case ::gig::dimension_effect2depth:
222                        DimValues[i] = pEngine->ControllerTable[92];
223                        break;
224                    case ::gig::dimension_effect3depth:
225                        DimValues[i] = pEngine->ControllerTable[93];
226                        break;
227                    case ::gig::dimension_effect4depth:
228                        DimValues[i] = pEngine->ControllerTable[94];
229                        break;
230                    case ::gig::dimension_effect5depth:
231                        DimValues[i] = pEngine->ControllerTable[95];
232                        break;
233                    case ::gig::dimension_none:
234                        std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;
235                        break;
236                    default:
237                        std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;
238              }              }
239          }          }
240          if (!pDimRgn) { // if there was no velocity split          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);
241              pDimRgn = pRegion->GetDimensionRegionByValue(0,0,0,0,0);  
242            // get starting crossfade volume level
243            switch (pDimRgn->AttenuationController.type) {
244                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
245                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
246                    break;
247                case ::gig::attenuation_ctrl_t::type_velocity:
248                    CrossfadeVolume = CrossfadeAttenuation(pNoteOnEvent->Param.Note.Velocity);
249                    break;
250                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
251                    CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);
252                    break;
253                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
254                default:
255                    CrossfadeVolume = 1.0f;
256          }          }
257    
258            PanLeft  = float(RTMath::Max(pDimRgn->Pan, 0)) / -64.0f;
259            PanRight = float(RTMath::Min(pDimRgn->Pan, 0)) /  63.0f;
260    
261          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          pSample = pDimRgn->pSample; // sample won't change until the voice is finished
262    
263            Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
264    
265          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
266          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
267          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
# Line 161  namespace LinuxSampler { namespace gig { Line 278  namespace LinuxSampler { namespace gig {
278    
279              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
280                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
281                  Kill();                  KillImmediately();
282                  return -1;                  return -1;
283              }              }
284              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
# Line 179  namespace LinuxSampler { namespace gig { Line 296  namespace LinuxSampler { namespace gig {
296    
297          // calculate initial pitch value          // calculate initial pitch value
298          {          {
299              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];
300              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
301              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents);              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));
302              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
303          }          }
304    
305    
306          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
307    
308    
309          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
# Line 201  namespace LinuxSampler { namespace gig { Line 318  namespace LinuxSampler { namespace gig {
318                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
319                      break;                      break;
320                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
321                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = pNoteOnEvent->Param.Note.Velocity;
322                      break;                      break;
323                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
324                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];
# Line 240  namespace LinuxSampler { namespace gig { Line 357  namespace LinuxSampler { namespace gig {
357                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
358                      break;                      break;
359                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
360                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = pNoteOnEvent->Param.Note.Velocity;
361                      break;                      break;
362                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
363                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];
# Line 468  namespace LinuxSampler { namespace gig { Line 585  namespace LinuxSampler { namespace gig {
585    
586              // calculate cutoff frequency              // calculate cutoff frequency
587              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = (!VCFCutoffCtrl.controller)
588                  ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX                  ? exp((float) (127 - pNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX
589                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;
590    
591              // calculate resonance              // calculate resonance
592              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
593              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
594                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (pNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
595              }              }
596              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
597    
# Line 492  namespace LinuxSampler { namespace gig { Line 609  namespace LinuxSampler { namespace gig {
609          }          }
610      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
611    
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
   
612          return 0; // success          return 0; // success
613      }      }
614    
# Line 513  namespace LinuxSampler { namespace gig { Line 626  namespace LinuxSampler { namespace gig {
626      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
627    
628          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
629          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);
630          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
631      #if ENABLE_FILTER      #if ENABLE_FILTER
632          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
# Line 526  namespace LinuxSampler { namespace gig { Line 639  namespace LinuxSampler { namespace gig {
639    
640    
641          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
642          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, pKillEvent);
643      #if ENABLE_FILTER      #if ENABLE_FILTER
644          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
645      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
# Line 547  namespace LinuxSampler { namespace gig { Line 660  namespace LinuxSampler { namespace gig {
660    
661              case playback_state_ram: {              case playback_state_ram: {
662                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
663                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
664                      if (DiskVoice) {                      if (DiskVoice) {
665                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
666                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 567  namespace LinuxSampler { namespace gig { Line 680  namespace LinuxSampler { namespace gig {
680                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
681                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
682                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
683                              Kill();                              KillImmediately();
684                              return;                              return;
685                          }                          }
686                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));
# Line 581  namespace LinuxSampler { namespace gig { Line 694  namespace LinuxSampler { namespace gig {
694                      }                      }
695    
696                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
697                      Interpolate(Samples, ptr, Delay);                      InterpolateNoLoop(Samples, ptr, Delay);
698                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);
699                      Pos -= RTMath::DoubleToInt(Pos);                      Pos -= RTMath::DoubleToInt(Pos);
700                  }                  }
701                  break;                  break;
702    
703              case playback_state_end:              case playback_state_end:
704                  Kill(); // free voice                  KillImmediately(); // free voice
705                  break;                  break;
706          }          }
707    
708    
     #if ENABLE_FILTER  
709          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
710            pEngine->pSynthesisEvents[Event::destination_vca]->clear();
711        #if ENABLE_FILTER
712          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();
713          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();
714      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
# Line 638  namespace LinuxSampler { namespace gig { Line 752  namespace LinuxSampler { namespace gig {
752              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();
753          }          }
754          while (pCCEvent) {          while (pCCEvent) {
755              if (pCCEvent->Controller) { // if valid MIDI controller              if (pCCEvent->Param.CC.Controller) { // if valid MIDI controller
756                  #if ENABLE_FILTER                  #if ENABLE_FILTER
757                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {                  if (pCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
758                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);
759                  }                  }
760                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (pCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
761                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);
762                  }                  }
763                  #endif // ENABLE_FILTER                  #endif // ENABLE_FILTER
764                  if (pCCEvent->Controller == pLFO1->ExtController) {                  if (pCCEvent->Param.CC.Controller == pLFO1->ExtController) {
765                      pLFO1->SendEvent(pCCEvent);                      pLFO1->SendEvent(pCCEvent);
766                  }                  }
767                  #if ENABLE_FILTER                  #if ENABLE_FILTER
768                  if (pCCEvent->Controller == pLFO2->ExtController) {                  if (pCCEvent->Param.CC.Controller == pLFO2->ExtController) {
769                      pLFO2->SendEvent(pCCEvent);                      pLFO2->SendEvent(pCCEvent);
770                  }                  }
771                  #endif // ENABLE_FILTER                  #endif // ENABLE_FILTER
772                  if (pCCEvent->Controller == pLFO3->ExtController) {                  if (pCCEvent->Param.CC.Controller == pLFO3->ExtController) {
773                      pLFO3->SendEvent(pCCEvent);                      pLFO3->SendEvent(pCCEvent);
774                  }                  }
775                    if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
776                        pCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
777                        pEngine->pSynthesisEvents[Event::destination_vca]->alloc_assign(*pCCEvent);
778                    }
779              }              }
780    
781              pCCEvent = pEngine->pCCEvents->next();              pCCEvent = pEngine->pCCEvents->next();
# Line 685  namespace LinuxSampler { namespace gig { Line 803  namespace LinuxSampler { namespace gig {
803                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
804                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;
805    
806                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
807    
808                  // apply pitch value to the pitch parameter sequence                  // apply pitch value to the pitch parameter sequence
809                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {
# Line 697  namespace LinuxSampler { namespace gig { Line 815  namespace LinuxSampler { namespace gig {
815              if (pVCOEventList->last()) this->PitchBend = pitch;              if (pVCOEventList->last()) this->PitchBend = pitch;
816          }          }
817    
818            // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
819            {
820                RTEList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];
821                Event* pVCAEvent = pVCAEventList->first();
822                if (Delay) { // skip events that happened before this voice was triggered
823                    while (pVCAEvent && pVCAEvent->FragmentPos() <= Delay) pVCAEvent = pVCAEventList->next();
824                }
825                float crossfadevolume;
826                while (pVCAEvent) {
827                    Event* pNextVCAEvent = pVCAEventList->next();
828    
829                    // calculate the influence length of this event (in sample points)
830                    uint end = (pNextVCAEvent) ? pNextVCAEvent->FragmentPos() : Samples;
831    
832                    crossfadevolume = CrossfadeAttenuation(pVCAEvent->Param.CC.Value);
833    
834                    float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;
835    
836                    // apply volume value to the volume parameter sequence
837                    for (uint i = pVCAEvent->FragmentPos(); i < end; i++) {
838                        pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;
839                    }
840    
841                    pVCAEvent = pNextVCAEvent;
842                }
843                if (pVCAEventList->last()) this->CrossfadeVolume = crossfadevolume;
844            }
845    
846      #if ENABLE_FILTER      #if ENABLE_FILTER
847          // process filter cutoff events          // process filter cutoff events
# Line 713  namespace LinuxSampler { namespace gig { Line 858  namespace LinuxSampler { namespace gig {
858                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
859                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;
860    
861                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  cutoff = exp((float) pCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;
862    
863                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
864                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {
# Line 739  namespace LinuxSampler { namespace gig { Line 884  namespace LinuxSampler { namespace gig {
884                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;
885    
886                  // convert absolute controller value to differential                  // convert absolute controller value to differential
887                  int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;                  int ctrldelta = pResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;
888                  VCFResonanceCtrl.value = pResonanceEvent->Value;                  VCFResonanceCtrl.value = pResonanceEvent->Param.CC.Value;
889    
890                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
891    
# Line 751  namespace LinuxSampler { namespace gig { Line 896  namespace LinuxSampler { namespace gig {
896    
897                  pResonanceEvent = pNextResonanceEvent;                  pResonanceEvent = pNextResonanceEvent;
898              }              }
899              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
900          }          }
901      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
902      }      }
# Line 803  namespace LinuxSampler { namespace gig { Line 948  namespace LinuxSampler { namespace gig {
948      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
949    
950      /**      /**
951       *  Interpolates the input audio data (no loop).       *  Interpolates the input audio data (without looping).
952       *       *
953       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
954       *                   fragment cycle       *                   fragment cycle
955       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
956       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
957       */       */
958      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {
959          int i = Skip;          int i = Skip;
960    
961          // FIXME: assuming either mono or stereo          // FIXME: assuming either mono or stereo
962          if (this->pSample->Channels == 2) { // Stereo Sample          if (this->pSample->Channels == 2) { // Stereo Sample
963              while (i < Samples) {              while (i < Samples) InterpolateStereo(pSrc, i);
                 InterpolateOneStep_Stereo(pSrc, i,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
964          }          }
965          else { // Mono Sample          else { // Mono Sample
966              while (i < Samples) {              while (i < Samples) InterpolateMono(pSrc, i);
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
967          }          }
968      }      }
969    
# Line 850  namespace LinuxSampler { namespace gig { Line 983  namespace LinuxSampler { namespace gig {
983              if (pSample->LoopPlayCount) {              if (pSample->LoopPlayCount) {
984                  // render loop (loop count limited)                  // render loop (loop count limited)
985                  while (i < Samples && LoopCyclesLeft) {                  while (i < Samples && LoopCyclesLeft) {
986                      InterpolateOneStep_Stereo(pSrc, i,                      InterpolateStereo(pSrc, i);
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
987                      if (Pos > pSample->LoopEnd) {                      if (Pos > pSample->LoopEnd) {
988                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;
989                          LoopCyclesLeft--;                          LoopCyclesLeft--;
990                      }                      }
991                  }                  }
992                  // render on without loop                  // render on without loop
993                  while (i < Samples) {                  while (i < Samples) InterpolateStereo(pSrc, i);
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                 }  
994              }              }
995              else { // render loop (endless loop)              else { // render loop (endless loop)
996                  while (i < Samples) {                  while (i < Samples) {
997                      InterpolateOneStep_Stereo(pSrc, i,                      InterpolateStereo(pSrc, i);
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
998                      if (Pos > pSample->LoopEnd) {                      if (Pos > pSample->LoopEnd) {
999                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);
1000                      }                      }
# Line 886  namespace LinuxSampler { namespace gig { Line 1005  namespace LinuxSampler { namespace gig {
1005              if (pSample->LoopPlayCount) {              if (pSample->LoopPlayCount) {
1006                  // render loop (loop count limited)                  // render loop (loop count limited)
1007                  while (i < Samples && LoopCyclesLeft) {                  while (i < Samples && LoopCyclesLeft) {
1008                      InterpolateOneStep_Mono(pSrc, i,                      InterpolateMono(pSrc, i);
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
1009                      if (Pos > pSample->LoopEnd) {                      if (Pos > pSample->LoopEnd) {
1010                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;
1011                          LoopCyclesLeft--;                          LoopCyclesLeft--;
1012                      }                      }
1013                  }                  }
1014                  // render on without loop                  // render on without loop
1015                  while (i < Samples) {                  while (i < Samples) InterpolateMono(pSrc, i);
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
1016              }              }
1017              else { // render loop (endless loop)              else { // render loop (endless loop)
1018                  while (i < Samples) {                  while (i < Samples) {
1019                      InterpolateOneStep_Mono(pSrc, i,                      InterpolateMono(pSrc, i);
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
1020                      if (Pos > pSample->LoopEnd) {                      if (Pos > pSample->LoopEnd) {
1021                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;
1022                      }                      }
# Line 921  namespace LinuxSampler { namespace gig { Line 1026  namespace LinuxSampler { namespace gig {
1026      }      }
1027    
1028      /**      /**
1029       *  Immediately kill the voice.       *  Immediately kill the voice. This method should not be used to kill
1030         *  a normal, active voice, because it doesn't take care of things like
1031         *  fading down the volume level to avoid clicks and regular processing
1032         *  until the kill event actually occured!
1033         *
1034         *  @see Kill()
1035       */       */
1036      void Voice::Kill() {      void Voice::KillImmediately() {
1037          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
1038              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
1039          }          }
1040          Reset();          Reset();
1041      }      }
1042    
1043        /**
1044         *  Kill the voice in regular sense. Let the voice render audio until
1045         *  the kill event actually occured and then fade down the volume level
1046         *  very quickly and let the voice die finally. Unlike a normal release
1047         *  of a voice, a kill process cannot be cancalled and is therefore
1048         *  usually used for voice stealing and key group conflicts.
1049         *
1050         *  @param pKillEvent - event which caused the voice to be killed
1051         */
1052        void Voice::Kill(Event* pKillEvent) {
1053            if (pTriggerEvent && pKillEvent->FragmentPos() <= pTriggerEvent->FragmentPos()) return;
1054            this->pKillEvent = pKillEvent;
1055        }
1056    
1057  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.225  
changed lines
  Added in v.246

  ViewVC Help
Powered by ViewVC