/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 233 by schoenebeck, Tue Sep 7 09:32:21 2004 UTC revision 1259 by schoenebeck, Tue Jun 26 21:41:09 2007 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 - 2007 Christian Schoenebeck                       *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     // TODO: no support for crossfades yet  
   
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          Active = false;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
39          pVCAManipulator  = NULL;          KeyGroup = 0;
40          pVCFCManipulator = NULL;          SynthesisMode = 0; // set all mode bits to 0 first
41          pVCOManipulator  = NULL;          // select synthesis implementation (asm core is not supported ATM)
42          pLFO1  = NULL;          #if 0 // CONFIG_ASM && ARCH_X86
43          pLFO2  = NULL;          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44          pLFO3  = NULL;          #else
45            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46            #endif
47            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49            finalSynthesisParameters.filterLeft.Reset();
50            finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 104  namespace LinuxSampler { namespace gig { Line 66  namespace LinuxSampler { namespace gig {
66       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
67       *  needed.       *  needed.
68       *       *
69       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
70       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
71       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
72       *  @param iLayer       - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
73       *  @returns            0 on success, a value < 0 if something failed       *  @param VoiceType      - type of this voice
74         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
75         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
76         *           (either due to an error or e.g. because no region is
77         *           defined for the given key)
78       */       */
79      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
81             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
82             exit(EXIT_FAILURE);          Orphan = false;
83          }  
84            #if CONFIG_DEVMODE
85          Active          = true;          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
86          MIDIKey         = pNoteOnEvent->Key;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
87          pRegion         = pInstrument->GetRegion(MIDIKey);          }
88          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          #endif // CONFIG_DEVMODE
89          Pos             = 0;  
90          Delay           = pNoteOnEvent->FragmentPos();          Type            = VoiceType;
91          pTriggerEvent   = pNoteOnEvent;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
92            PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
93          if (!pRegion) {          Delay           = itNoteOnEvent->FragmentPos();
94              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          itTriggerEvent  = itNoteOnEvent;
95              Kill();          itKillEvent     = Pool<Event>::Iterator();
96              return -1;          KeyGroup        = iKeyGroup;
97          }          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
98    
99          // get current dimension values to select the right dimension region          // calculate volume
100          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
101          uint DimValues[5] = {0,0,0,0,0};  
102          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          // For 16 bit samples, we downscale by 32768 to convert from
103              switch (pRegion->pDimensionDefinitions[i].dimension) {          // int16 value range to DSP value range (which is
104                  case ::gig::dimension_samplechannel:          // -1.0..1.0). For 24 bit, we downscale from int32.
105                      DimValues[i] = 0; //TODO: we currently ignore this dimension          float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
106                      break;  
107                  case ::gig::dimension_layer:          volume *= pDimRgn->SampleAttenuation * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;
108                      DimValues[i] = iLayer;  
109                      // if this is the 1st layer then spawn further voices for all the other layers          // the volume of release triggered samples depends on note length
110                      if (iLayer == 0)          if (Type == type_release_trigger) {
111                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)              float noteLength = float(pEngine->FrameTime + Delay -
112                              pEngine->LaunchVoice(pNoteOnEvent, iNewLayer);                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
113                      break;              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
114                  case ::gig::dimension_velocity:              if (attenuation <= 0) return -1;
115                      DimValues[i] = pNoteOnEvent->Velocity;              volume *= attenuation;
116                      break;          }
117                  case ::gig::dimension_channelaftertouch:  
118                      DimValues[i] = 0; //TODO: we currently ignore this dimension          // select channel mode (mono or stereo)
119                      break;          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
120                  case ::gig::dimension_releasetrigger:          // select bit depth (16 or 24)
121                      DimValues[i] = 0; //TODO: we currently ignore this dimension          SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
122                      break;  
123                  case ::gig::dimension_keyboard:          // get starting crossfade volume level
124                      DimValues[i] = (uint) pNoteOnEvent->Key;          float crossfadeVolume;
125                      break;          switch (pDimRgn->AttenuationController.type) {
126                  case ::gig::dimension_modwheel:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                      DimValues[i] = pEngine->ControllerTable[1];                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
128                      break;                  break;
129                  case ::gig::dimension_breath:              case ::gig::attenuation_ctrl_t::type_velocity:
130                      DimValues[i] = pEngine->ControllerTable[2];                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                      break;                  break;
132                  case ::gig::dimension_foot:              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                      DimValues[i] = pEngine->ControllerTable[4];                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                      break;                  break;
135                  case ::gig::dimension_portamentotime:              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136                      DimValues[i] = pEngine->ControllerTable[5];              default:
137                      break;                  crossfadeVolume = 1.0f;
138                  case ::gig::dimension_effect1:          }
139                      DimValues[i] = pEngine->ControllerTable[12];  
140                      break;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141                  case ::gig::dimension_effect2:          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142                      DimValues[i] = pEngine->ControllerTable[13];  
143                      break;          float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144                  case ::gig::dimension_genpurpose1:          CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145                      DimValues[i] = pEngine->ControllerTable[16];          VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);
146                      break;          PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147                  case ::gig::dimension_genpurpose2:          PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         ::gig::DimensionRegion* pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
148    
149          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
157    
158          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
159              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
160    
161              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
162              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
163    
164              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
165                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
166                  Kill();                  KillImmediately();
167                  return -1;                  return -1;
168              }              }
169              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
170          }          }
171          else { // RAM only voice          else { // RAM only voice
172              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
173              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
174              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
175          }          }
176            if (RAMLoop) {
177                loop.uiTotalCycles = pSample->LoopPlayCount;
178                loop.uiCyclesLeft  = pSample->LoopPlayCount;
179                loop.uiStart       = loopinfo.LoopStart;
180                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
181                loop.uiSize        = loopinfo.LoopLength;
182            }
183    
184          // calculate initial pitch value          // calculate initial pitch value
185          {          {
186              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
187              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
188              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
189              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
190          }          }
191    
192            // the length of the decay and release curves are dependent on the velocity
193          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
194    
195          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
196          {          {
# Line 290  namespace LinuxSampler { namespace gig { Line 201  namespace LinuxSampler { namespace gig {
201                      eg1controllervalue = 0;                      eg1controllervalue = 0;
202                      break;                      break;
203                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
204                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
205                      break;                      break;
206                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
207                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
208                      break;                      break;
209                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
210                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
211                      break;                      break;
212              }              }
213              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
214    
215              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
216              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
217              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
218              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
219                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
220              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
221                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
222                            pDimRgn->EG1Hold,  
223                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
224                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
225                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
226                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
227                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
228                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
229                            Delay);                          pDimRgn->EG1Sustain,
230                            pDimRgn->EG1Release * eg1release * velrelease,
231                            velocityAttenuation,
232                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
233            }
234    
235    #ifdef CONFIG_INTERPOLATE_VOLUME
236            // setup initial volume in synthesis parameters
237    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
238            if (pEngineChannel->GetMute()) {
239                finalSynthesisParameters.fFinalVolumeLeft  = 0;
240                finalSynthesisParameters.fFinalVolumeRight = 0;
241          }          }
242            else
243    #else
244            {
245                float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
246    
247                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
248                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
249            }
250    #endif
251    #endif
252    
     #if ENABLE_FILTER  
253          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
254          {          {
255              // get current value of EG2 controller              // get current value of EG2 controller
# Line 329  namespace LinuxSampler { namespace gig { Line 259  namespace LinuxSampler { namespace gig {
259                      eg2controllervalue = 0;                      eg2controllervalue = 0;
260                      break;                      break;
261                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
262                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
263                      break;                      break;
264                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
265                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
266                      break;                      break;
267                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
268                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
269                      break;                      break;
270              }              }
271              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
272    
273              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
274              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
275              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
276              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
277    
278              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
279                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
280                            false,                          false,
281                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
282                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
283                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
284                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
285                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
286                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
287                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
288          }          }
     #endif // ENABLE_FILTER  
289    
290    
291          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
292          {          {
293            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
294            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
295                float eg3depth = (bPortamento)
296                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
297                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
298                float eg3time = (bPortamento)
299                                    ? pEngineChannel->PortamentoTime
300                                    : pDimRgn->EG3Attack;
301                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
302                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
303          }          }
304    
305    
# Line 373  namespace LinuxSampler { namespace gig { Line 310  namespace LinuxSampler { namespace gig {
310                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
311                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
312                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
313                        bLFO1Enabled         = (lfo1_internal_depth > 0);
314                      break;                      break;
315                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
316                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
317                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
318                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
319                      break;                      break;
320                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
321                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
322                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
323                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
324                      break;                      break;
325                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
326                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
327                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
328                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
329                      break;                      break;
330                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
331                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
332                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
333                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
334                      break;                      break;
335                  default:                  default:
336                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
337                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
338                        bLFO1Enabled         = false;
339                }
340                if (bLFO1Enabled) {
341                    pLFO1->trigger(pDimRgn->LFO1Frequency,
342                                   start_level_min,
343                                   lfo1_internal_depth,
344                                   pDimRgn->LFO1ControlDepth,
345                                   pDimRgn->LFO1FlipPhase,
346                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
347                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
348              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngine->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
349          }          }
350    
351      #if ENABLE_FILTER  
352          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
353          {          {
354              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 411  namespace LinuxSampler { namespace gig { Line 356  namespace LinuxSampler { namespace gig {
356                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
357                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
358                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
359                        bLFO2Enabled         = (lfo2_internal_depth > 0);
360                      break;                      break;
361                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
362                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
363                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
364                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
365                      break;                      break;
366                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
367                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
368                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
369                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
370                      break;                      break;
371                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
374                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
375                      break;                      break;
376                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
377                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
378                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
379                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
380                      break;                      break;
381                  default:                  default:
382                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
383                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
384                        bLFO2Enabled         = false;
385                }
386                if (bLFO2Enabled) {
387                    pLFO2->trigger(pDimRgn->LFO2Frequency,
388                                   start_level_max,
389                                   lfo2_internal_depth,
390                                   pDimRgn->LFO2ControlDepth,
391                                   pDimRgn->LFO2FlipPhase,
392                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
393                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
394              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngine->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
395          }          }
396      #endif // ENABLE_FILTER  
397    
398          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
399          {          {
# Line 449  namespace LinuxSampler { namespace gig { Line 402  namespace LinuxSampler { namespace gig {
402                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
403                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
404                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
405                        bLFO3Enabled         = (lfo3_internal_depth > 0);
406                      break;                      break;
407                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
408                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
409                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
410                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
411                      break;                      break;
412                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
413                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
414                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
415                        bLFO3Enabled         = true;
416                      break;                      break;
417                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
418                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
419                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
420                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
421                      break;                      break;
422                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
423                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
424                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
425                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
426                      break;                      break;
427                  default:                  default:
428                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
429                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
430                        bLFO3Enabled         = false;
431                }
432                if (bLFO3Enabled) {
433                    pLFO3->trigger(pDimRgn->LFO3Frequency,
434                                   start_level_mid,
435                                   lfo3_internal_depth,
436                                   pDimRgn->LFO3ControlDepth,
437                                   false,
438                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
439                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
440              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngine->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
441          }          }
442    
443      #if ENABLE_FILTER  
444          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
445          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
446          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
447          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
448          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
449          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
450              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
451              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
452                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
453              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
454              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
455                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 517  namespace LinuxSampler { namespace gig { Line 479  namespace LinuxSampler { namespace gig {
479                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
480                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
481                      break;                      break;
482                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
483                        VCFCutoffCtrl.controller = 128;
484                        break;
485                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
486                  default:                  default:
487                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
488                      break;                      break;
489              }              }
490              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
491    
492              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
493              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
494              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
495              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
496                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 545  namespace LinuxSampler { namespace gig { Line 509  namespace LinuxSampler { namespace gig {
509                  default:                  default:
510                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
511              }              }
512              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
513    
514              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
515              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
516              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
517              #else // override filter type              #else // override filter type
518              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
519              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
520              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
521    
522              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
523              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
524    
525              // calculate cutoff frequency              // calculate cutoff frequency
526              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
527              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
528                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
529              }              }
530              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
531    
532              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
533              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
534                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
535                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
536                    // VCFVelocityScale in this case means Minimum cutoff
537                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
538                }
539                else {
540                    cvalue = pDimRgn->VCFCutoff;
541                }
542                cutoff *= float(cvalue);
543                if (cutoff > 127.0f) cutoff = 127.0f;
544    
545              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
546              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
547    
548              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
549                VCFResonanceCtrl.fvalue = resonance;
550          }          }
551          else {          else {
552              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
553              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
554          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
555    
556          return 0; // success          return 0; // success
557      }      }
# Line 604  namespace LinuxSampler { namespace gig { Line 569  namespace LinuxSampler { namespace gig {
569       */       */
570      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
571    
572          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
573          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
574    
575          switch (this->PlaybackState) {          switch (this->PlaybackState) {
576    
577                case playback_state_init:
578                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
579                    // no break - continue with playback_state_ram
580    
581              case playback_state_ram: {              case playback_state_ram: {
582                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
583                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
584                        // render current fragment
585                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
586    
587                      if (DiskVoice) {                      if (DiskVoice) {
588                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
589                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
590                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
591                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
592                          }                          }
593                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
594                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
595                      }                      }
596                  }                  }
# Line 659  namespace LinuxSampler { namespace gig { Line 602  namespace LinuxSampler { namespace gig {
602                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
603                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
604                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
605                              Kill();                              KillImmediately();
606                              return;                              return;
607                          }                          }
608                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
609                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
610                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
611                      }                      }
612    
613                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
614    
615                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
616                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
617                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
618                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
619                                // remember how many sample words there are before any silence has been added
620                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
621                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
622                            }
623                      }                      }
624    
625                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
626                      Interpolate(Samples, ptr, Delay);  
627                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
628                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
629    
630                        const int iPos = (int) finalSynthesisParameters.dPos;
631                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
632                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
633                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
634    
635                        // change state of voice to 'end' if we really reached the end of the sample data
636                        if (RealSampleWordsLeftToRead >= 0) {
637                            RealSampleWordsLeftToRead -= readSampleWords;
638                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
639                        }
640                  }                  }
641                  break;                  break;
642    
643              case playback_state_end:              case playback_state_end:
644                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
645                  break;                  break;
646          }          }
647    
   
     #if ENABLE_FILTER  
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
648          // Reset delay          // Reset delay
649          Delay = 0;          Delay = 0;
650    
651          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
652    
653          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
654          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
655      }      }
656    
657      /**      /**
# Line 705  namespace LinuxSampler { namespace gig { Line 659  namespace LinuxSampler { namespace gig {
659       *  suspended / not running.       *  suspended / not running.
660       */       */
661      void Voice::Reset() {      void Voice::Reset() {
662          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
663          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
664          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
665          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
666          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
667          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
668          Active = false;          PlaybackState = playback_state_end;
669            itTriggerEvent = Pool<Event>::Iterator();
670            itKillEvent    = Pool<Event>::Iterator();
671      }      }
672    
673      /**      /**
674       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
675       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
676       *       *
677       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
678         * @param End     - youngest time stamp where processing should be stopped
679       */       */
680      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
681            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
682                if (itEvent->Type == Event::type_release) {
683                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
684                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
685                } else if (itEvent->Type == Event::type_cancel_release) {
686                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
687                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
688                }
689            }
690        }
691    
692          // dispatch control change events      /**
693          Event* pCCEvent = pEngine->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
694          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
695              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();       *
696          }       * @param itEvent - iterator pointing to the next event to be processed
697          while (pCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
698              if (pCCEvent->Controller) { // if valid MIDI controller       */
699                  #if ENABLE_FILTER      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
700                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
701                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);              if (itEvent->Type == Event::type_control_change &&
702                    itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
703                    if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
704                        processCutoffEvent(itEvent);
705                  }                  }
706                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
707                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      processResonanceEvent(itEvent);
708                  }                  }
709                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
710                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(pCCEvent);  
711                  }                  }
712                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
713                  if (pCCEvent->Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(pCCEvent);  
714                  }                  }
715                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
716                  if (pCCEvent->Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(pCCEvent);  
717                  }                  }
718              }                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
719                        itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
720              pCCEvent = pEngine->pCCEvents->next();                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
         }  
   
   
         // process pitch events  
         {  
             RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];  
             Event* pVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
721                  }                  }
722              }                  if (itEvent->Param.CC.Controller == 7) { // volume
723              float pitch;                      VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
724              while (pVCOEvent) {                  } else if (itEvent->Param.CC.Controller == 10) { // panpot
725                  Event* pNextVCOEvent = pVCOEventList->next();                      PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
726                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
727                  }                  }
728                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
729                  pVCOEvent = pNextVCOEvent;                  processPitchEvent(itEvent);
730              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
731          }          }
732        }
733    
734        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
735            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
736            finalSynthesisParameters.fFinalPitch *= pitch;
737            PitchBend = pitch;
738        }
739    
740      #if ENABLE_FILTER      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
741          // process filter cutoff events          int ccvalue = itEvent->Param.CC.Value;
742          {          if (VCFCutoffCtrl.value == ccvalue) return;
743              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];          VCFCutoffCtrl.value == ccvalue;
744              Event* pCutoffEvent = pCutoffEventList->first();          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
745              if (Delay) { // skip events that happened before this voice was triggered          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
746                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();          float cutoff = CutoffBase * float(ccvalue);
747              }          if (cutoff > 127.0f) cutoff = 127.0f;
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 pCutoffEvent = pNextCutoffEvent;  
             }  
             if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
   
         // process filter resonance events  
         {  
             RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];  
             Event* pResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();  
             }  
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = pResonanceEvent->Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
748    
749                  pResonanceEvent = pNextResonanceEvent;          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
750              }          fFinalCutoff = cutoff;
             if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     #endif // ENABLE_FILTER  
751      }      }
752    
753      #if ENABLE_FILTER      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
754      /**          // convert absolute controller value to differential
755       * Calculate all necessary, final biquad filter parameters.          const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
756       *          VCFResonanceCtrl.value = itEvent->Param.CC.Value;
757       * @param Samples - number of samples to be rendered in this audio fragment cycle          const float resonancedelta = (float) ctrldelta;
758       */          fFinalResonance += resonancedelta;
759      void Voice::CalculateBiquadParameters(uint Samples) {          // needed for initialization of parameter
760          if (!FilterLeft.Enabled) return;          VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
   
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {  
                 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                 prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                 FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
             }  
   
             //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'  
             bq    = (float*) &pEngine->pBasicFilterParameters[i];  
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
761      }      }
     #endif // ENABLE_FILTER  
762    
763      /**      /**
764       *  Interpolates the input audio data (no loop).       *  Synthesizes the current audio fragment for this voice.
765       *       *
766       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
767       *                   fragment cycle       *                   fragment cycle
768       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
769       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
770       */       */
771      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
772          int i = Skip;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];
773            finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];
774            finalSynthesisParameters.pSrc      = pSrc;
775    
776          // FIXME: assuming either mono or stereo          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
777          if (this->pSample->Channels == 2) { // Stereo Sample          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
778              while (i < Samples) {  
779                  InterpolateOneStep_Stereo(pSrc, i,          if (Skip) { // skip events that happened before this voice was triggered
780                                            pEngine->pSynthesisParameters[Event::destination_vca][i],              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
781                                            pEngine->pSynthesisParameters[Event::destination_vco][i],              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
         }  
         else { // Mono Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
782          }          }
     }  
783    
784      /**          uint killPos;
785       *  Interpolates the input audio data, this method honors looping.          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
786    
787          // FIXME: assuming either mono or stereo          uint i = Skip;
788          if (pSample->Channels == 2) { // Stereo Sample          while (i < Samples) {
789              if (pSample->LoopPlayCount) {              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
790                  // render loop (loop count limited)  
791                  while (i < Samples && LoopCyclesLeft) {              // initialize all final synthesis parameters
792                      InterpolateOneStep_Stereo(pSrc, i,              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
793                                                pEngine->pSynthesisParameters[Event::destination_vca][i],              fFinalCutoff    = VCFCutoffCtrl.fvalue;
794                                                pEngine->pSynthesisParameters[Event::destination_vco][i],              fFinalResonance = VCFResonanceCtrl.fvalue;
795                                                pEngine->pBasicFilterParameters[i],  
796                                                pEngine->pMainFilterParameters[i]);              // process MIDI control change and pitchbend events for this subfragment
797                      if (Pos > pSample->LoopEnd) {              processCCEvents(itCCEvent, iSubFragmentEnd);
798                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
799                          LoopCyclesLeft--;              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
800                      }  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
801                  }              if (pEngineChannel->GetMute()) fFinalVolume = 0;
802                  // render on without loop  #endif
803                  while (i < Samples) {  
804                      InterpolateOneStep_Stereo(pSrc, i,              // process transition events (note on, note off & sustain pedal)
805                                                pEngine->pSynthesisParameters[Event::destination_vca][i],              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
806                                                pEngine->pSynthesisParameters[Event::destination_vco][i],  
807                                                pEngine->pBasicFilterParameters[i],              // if the voice was killed in this subfragment, or if the
808                                                pEngine->pMainFilterParameters[i]);              // filter EG is finished, switch EG1 to fade out stage
809                  }              if ((itKillEvent && killPos <= iSubFragmentEnd) ||
810                    (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
811                     EG2.getSegmentType() == EGADSR::segment_end)) {
812                    EG1.enterFadeOutStage();
813                    itKillEvent = Pool<Event>::Iterator();
814              }              }
815              else { // render loop (endless loop)  
816                  while (i < Samples) {              // process envelope generators
817                      InterpolateOneStep_Stereo(pSrc, i,              switch (EG1.getSegmentType()) {
818                                                pEngine->pSynthesisParameters[Event::destination_vca][i],                  case EGADSR::segment_lin:
819                                                pEngine->pSynthesisParameters[Event::destination_vco][i],                      fFinalVolume *= EG1.processLin();
820                                                pEngine->pBasicFilterParameters[i],                      break;
821                                                pEngine->pMainFilterParameters[i]);                  case EGADSR::segment_exp:
822                      if (Pos > pSample->LoopEnd) {                      fFinalVolume *= EG1.processExp();
823                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                      break;
824                      }                  case EGADSR::segment_end:
825                  }                      fFinalVolume *= EG1.getLevel();
826                        break; // noop
827              }              }
828          }              switch (EG2.getSegmentType()) {
829          else { // Mono Sample                  case EGADSR::segment_lin:
830              if (pSample->LoopPlayCount) {                      fFinalCutoff *= EG2.processLin();
831                  // render loop (loop count limited)                      break;
832                  while (i < Samples && LoopCyclesLeft) {                  case EGADSR::segment_exp:
833                      InterpolateOneStep_Mono(pSrc, i,                      fFinalCutoff *= EG2.processExp();
834                                              pEngine->pSynthesisParameters[Event::destination_vca][i],                      break;
835                                              pEngine->pSynthesisParameters[Event::destination_vco][i],                  case EGADSR::segment_end:
836                                              pEngine->pBasicFilterParameters[i],                      fFinalCutoff *= EG2.getLevel();
837                                              pEngine->pMainFilterParameters[i]);                      break; // noop
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
838              }              }
839              else { // render loop (endless loop)              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
840                  while (i < Samples) {  
841                      InterpolateOneStep_Mono(pSrc, i,              // process low frequency oscillators
842                                              pEngine->pSynthesisParameters[Event::destination_vca][i],              if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
843                                              pEngine->pSynthesisParameters[Event::destination_vco][i],              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
844                                              pEngine->pBasicFilterParameters[i],              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
845                                              pEngine->pMainFilterParameters[i]);  
846                      if (Pos > pSample->LoopEnd) {              // if filter enabled then update filter coefficients
847                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
848                      }                  finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
849                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
850                }
851    
852                // do we need resampling?
853                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
854                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
855                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
856                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
857                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
858    
859                // prepare final synthesis parameters structure
860                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
861    #ifdef CONFIG_INTERPOLATE_VOLUME
862                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
863                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
864                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
865                finalSynthesisParameters.fFinalVolumeDeltaRight =
866                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
867                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
868    #else
869                finalSynthesisParameters.fFinalVolumeLeft  =
870                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
871                finalSynthesisParameters.fFinalVolumeRight =
872                    fFinalVolume * VolumeRight * PanRightSmoother.render();
873    #endif
874                // render audio for one subfragment
875                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
876    
877                // stop the rendering if volume EG is finished
878                if (EG1.getSegmentType() == EGADSR::segment_end) break;
879    
880                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
881    
882                // increment envelopes' positions
883                if (EG1.active()) {
884    
885                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
886                    if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
887                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
888                  }                  }
889    
890                    EG1.increment(1);
891                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
892                }
893                if (EG2.active()) {
894                    EG2.increment(1);
895                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
896              }              }
897                EG3.increment(1);
898                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
899    
900                Pos = newPos;
901                i = iSubFragmentEnd;
902          }          }
903      }      }
904    
905        /** @brief Update current portamento position.
906         *
907         * Will be called when portamento mode is enabled to get the final
908         * portamento position of this active voice from where the next voice(s)
909         * might continue to slide on.
910         *
911         * @param itNoteOffEvent - event which causes this voice to die soon
912         */
913        void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
914            const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
915            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
916        }
917    
918      /**      /**
919       *  Immediately kill the voice.       *  Immediately kill the voice. This method should not be used to kill
920         *  a normal, active voice, because it doesn't take care of things like
921         *  fading down the volume level to avoid clicks and regular processing
922         *  until the kill event actually occured!
923         *
924         *  @see Kill()
925       */       */
926      void Voice::Kill() {      void Voice::KillImmediately() {
927          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
928              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
929          }          }
930          Reset();          Reset();
931      }      }
932    
933        /**
934         *  Kill the voice in regular sense. Let the voice render audio until
935         *  the kill event actually occured and then fade down the volume level
936         *  very quickly and let the voice die finally. Unlike a normal release
937         *  of a voice, a kill process cannot be cancalled and is therefore
938         *  usually used for voice stealing and key group conflicts.
939         *
940         *  @param itKillEvent - event which caused the voice to be killed
941         */
942        void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
943            #if CONFIG_DEVMODE
944            if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
945            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
946            #endif // CONFIG_DEVMODE
947    
948            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
949            this->itKillEvent = itKillEvent;
950        }
951    
952  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.233  
changed lines
  Added in v.1259

  ViewVC Help
Powered by ViewVC