/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 233 by schoenebeck, Tue Sep 7 09:32:21 2004 UTC revision 1858 by persson, Sun Mar 8 09:57:19 2009 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 - 2009 Christian Schoenebeck                       *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     // TODO: no support for crossfades yet  
   
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          Active = false;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
39          pVCAManipulator  = NULL;          KeyGroup = 0;
40          pVCFCManipulator = NULL;          SynthesisMode = 0; // set all mode bits to 0 first
41          pVCOManipulator  = NULL;          // select synthesis implementation (asm core is not supported ATM)
42          pLFO1  = NULL;          #if 0 // CONFIG_ASM && ARCH_X86
43          pLFO2  = NULL;          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44          pLFO3  = NULL;          #else
45            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46            #endif
47            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49            finalSynthesisParameters.filterLeft.Reset();
50            finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 104  namespace LinuxSampler { namespace gig { Line 66  namespace LinuxSampler { namespace gig {
66       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
67       *  needed.       *  needed.
68       *       *
69       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
70       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
71       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
72       *  @param iLayer       - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
73       *  @returns            0 on success, a value < 0 if something failed       *  @param VoiceType      - type of this voice
74         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
75         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
76         *           (either due to an error or e.g. because no region is
77         *           defined for the given key)
78       */       */
79      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
81             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
82             exit(EXIT_FAILURE);          Orphan = false;
83          }  
84            #if CONFIG_DEVMODE
85          Active          = true;          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
86          MIDIKey         = pNoteOnEvent->Key;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
87          pRegion         = pInstrument->GetRegion(MIDIKey);          }
88          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          #endif // CONFIG_DEVMODE
89          Pos             = 0;  
90          Delay           = pNoteOnEvent->FragmentPos();          Type            = VoiceType;
91          pTriggerEvent   = pNoteOnEvent;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
92            PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
93          if (!pRegion) {          Delay           = itNoteOnEvent->FragmentPos();
94              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          itTriggerEvent  = itNoteOnEvent;
95              Kill();          itKillEvent     = Pool<Event>::Iterator();
96              return -1;          KeyGroup        = iKeyGroup;
97          }          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
98    
99          // get current dimension values to select the right dimension region          // calculate volume
100          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
101          uint DimValues[5] = {0,0,0,0,0};  
102          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          // For 16 bit samples, we downscale by 32768 to convert from
103              switch (pRegion->pDimensionDefinitions[i].dimension) {          // int16 value range to DSP value range (which is
104                  case ::gig::dimension_samplechannel:          // -1.0..1.0). For 24 bit, we downscale from int32.
105                      DimValues[i] = 0; //TODO: we currently ignore this dimension          float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
106                      break;  
107                  case ::gig::dimension_layer:          volume *= pDimRgn->SampleAttenuation * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;
108                      DimValues[i] = iLayer;  
109                      // if this is the 1st layer then spawn further voices for all the other layers          // the volume of release triggered samples depends on note length
110                      if (iLayer == 0)          if (Type == type_release_trigger) {
111                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)              float noteLength = float(pEngine->FrameTime + Delay -
112                              pEngine->LaunchVoice(pNoteOnEvent, iNewLayer);                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
113                      break;              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
114                  case ::gig::dimension_velocity:              if (attenuation <= 0) return -1;
115                      DimValues[i] = pNoteOnEvent->Velocity;              volume *= attenuation;
116                      break;          }
117                  case ::gig::dimension_channelaftertouch:  
118                      DimValues[i] = 0; //TODO: we currently ignore this dimension          // select channel mode (mono or stereo)
119                      break;          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
120                  case ::gig::dimension_releasetrigger:          // select bit depth (16 or 24)
121                      DimValues[i] = 0; //TODO: we currently ignore this dimension          SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
122                      break;  
123                  case ::gig::dimension_keyboard:          // get starting crossfade volume level
124                      DimValues[i] = (uint) pNoteOnEvent->Key;          float crossfadeVolume;
125                      break;          switch (pDimRgn->AttenuationController.type) {
126                  case ::gig::dimension_modwheel:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                      DimValues[i] = pEngine->ControllerTable[1];                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
128                      break;                  break;
129                  case ::gig::dimension_breath:              case ::gig::attenuation_ctrl_t::type_velocity:
130                      DimValues[i] = pEngine->ControllerTable[2];                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                      break;                  break;
132                  case ::gig::dimension_foot:              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                      DimValues[i] = pEngine->ControllerTable[4];                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                      break;                  break;
135                  case ::gig::dimension_portamentotime:              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136                      DimValues[i] = pEngine->ControllerTable[5];              default:
137                      break;                  crossfadeVolume = 1.0f;
138                  case ::gig::dimension_effect1:          }
139                      DimValues[i] = pEngine->ControllerTable[12];  
140                      break;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141                  case ::gig::dimension_effect2:          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142                      DimValues[i] = pEngine->ControllerTable[13];  
143                      break;          float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144                  case ::gig::dimension_genpurpose1:          CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145                      DimValues[i] = pEngine->ControllerTable[16];          VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);
146                      break;          PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147                  case ::gig::dimension_genpurpose2:          PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         ::gig::DimensionRegion* pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
148    
149          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
157    
158          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
159              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
160    
161              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
162              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
163    
164              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
165                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
166                  Kill();                  KillImmediately();
167                  return -1;                  return -1;
168              }              }
169              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
170          }          }
171          else { // RAM only voice          else { // RAM only voice
172              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
173              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
174              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
175          }          }
176            if (RAMLoop) {
177                loop.uiTotalCycles = pSample->LoopPlayCount;
178                loop.uiCyclesLeft  = pSample->LoopPlayCount;
179                loop.uiStart       = loopinfo.LoopStart;
180                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
181                loop.uiSize        = loopinfo.LoopLength;
182            }
183    
184          // calculate initial pitch value          // calculate initial pitch value
185          {          {
186              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pEngineChannel->pInstrument->FineTune + pDimRgn->FineTune + pEngine->ScaleTuning[MIDIKey % 12];
             if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;  
             this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));  
             this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents  
         }  
187    
188                // GSt behaviour: maximum transpose up is 40 semitones. If
189                // MIDI key is more than 40 semitones above unity note,
190                // the transpose is not done.
191                if (pDimRgn->PitchTrack && (MIDIKey - (int) pDimRgn->UnityNote) < 40) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
192    
193          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
194                this->PitchBend = RTMath::CentsToFreqRatio(PitchBend / 8192.0 * 100.0 * pEngineChannel->pInstrument->PitchbendRange);
195            }
196    
197            // the length of the decay and release curves are dependent on the velocity
198            const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
199    
200          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
201          {          {
# Line 290  namespace LinuxSampler { namespace gig { Line 206  namespace LinuxSampler { namespace gig {
206                      eg1controllervalue = 0;                      eg1controllervalue = 0;
207                      break;                      break;
208                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
209                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
210                      break;                      break;
211                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
212                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
213                      break;                      break;
214                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
215                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
216                      break;                      break;
217              }              }
218              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
219    
220              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
221              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
222              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
223              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
224                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
225              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
226                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
227                            pDimRgn->EG1Hold,  
228                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
229                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
230                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
231                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
232                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
233                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
234                            Delay);                          pDimRgn->EG1Sustain,
235                            pDimRgn->EG1Release * eg1release * velrelease,
236                            velocityAttenuation,
237                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
238            }
239    
240    #ifdef CONFIG_INTERPOLATE_VOLUME
241            // setup initial volume in synthesis parameters
242    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
243            if (pEngineChannel->GetMute()) {
244                finalSynthesisParameters.fFinalVolumeLeft  = 0;
245                finalSynthesisParameters.fFinalVolumeRight = 0;
246          }          }
247            else
248    #else
249            {
250                float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
251    
252                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
253                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
254            }
255    #endif
256    #endif
257    
     #if ENABLE_FILTER  
258          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
259          {          {
260              // get current value of EG2 controller              // get current value of EG2 controller
# Line 329  namespace LinuxSampler { namespace gig { Line 264  namespace LinuxSampler { namespace gig {
264                      eg2controllervalue = 0;                      eg2controllervalue = 0;
265                      break;                      break;
266                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
267                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
268                      break;                      break;
269                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
270                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
271                      break;                      break;
272                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
273                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
274                      break;                      break;
275              }              }
276              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
277    
278              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
279              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
280              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
281              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
282    
283              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
284                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
285                            false,                          false,
286                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
287                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
288                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
289                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
290                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
291                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
292                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
293          }          }
     #endif // ENABLE_FILTER  
294    
295    
296          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
297          {          {
298            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
299            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
300                float eg3depth = (bPortamento)
301                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
302                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
303                float eg3time = (bPortamento)
304                                    ? pEngineChannel->PortamentoTime
305                                    : pDimRgn->EG3Attack;
306                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
307                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
308          }          }
309    
310    
# Line 373  namespace LinuxSampler { namespace gig { Line 315  namespace LinuxSampler { namespace gig {
315                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
316                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
317                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
318                        bLFO1Enabled         = (lfo1_internal_depth > 0);
319                      break;                      break;
320                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
321                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
322                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
323                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
324                      break;                      break;
325                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
326                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
327                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
328                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
329                      break;                      break;
330                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
331                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
332                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
333                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
334                      break;                      break;
335                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
336                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
337                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
338                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
339                      break;                      break;
340                  default:                  default:
341                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
342                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
343                        bLFO1Enabled         = false;
344                }
345                if (bLFO1Enabled) {
346                    pLFO1->trigger(pDimRgn->LFO1Frequency,
347                                   start_level_min,
348                                   lfo1_internal_depth,
349                                   pDimRgn->LFO1ControlDepth,
350                                   pDimRgn->LFO1FlipPhase,
351                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
352                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
353              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngine->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
354          }          }
355    
356      #if ENABLE_FILTER  
357          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
358          {          {
359              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 411  namespace LinuxSampler { namespace gig { Line 361  namespace LinuxSampler { namespace gig {
361                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
362                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
363                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
364                        bLFO2Enabled         = (lfo2_internal_depth > 0);
365                      break;                      break;
366                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
367                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
368                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
369                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
370                      break;                      break;
371                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
372                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
373                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
374                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
375                      break;                      break;
376                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
377                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
378                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
379                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
380                      break;                      break;
381                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
382                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
383                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
384                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
385                      break;                      break;
386                  default:                  default:
387                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
388                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
389                        bLFO2Enabled         = false;
390                }
391                if (bLFO2Enabled) {
392                    pLFO2->trigger(pDimRgn->LFO2Frequency,
393                                   start_level_max,
394                                   lfo2_internal_depth,
395                                   pDimRgn->LFO2ControlDepth,
396                                   pDimRgn->LFO2FlipPhase,
397                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
398                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
399              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngine->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
400          }          }
401      #endif // ENABLE_FILTER  
402    
403          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
404          {          {
# Line 449  namespace LinuxSampler { namespace gig { Line 407  namespace LinuxSampler { namespace gig {
407                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
408                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
409                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
410                        bLFO3Enabled         = (lfo3_internal_depth > 0);
411                      break;                      break;
412                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
413                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
414                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
415                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
416                      break;                      break;
417                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
418                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
419                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
420                        bLFO3Enabled         = true;
421                      break;                      break;
422                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
423                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
424                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
425                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
426                      break;                      break;
427                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
428                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
429                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
430                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
431                      break;                      break;
432                  default:                  default:
433                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
434                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
435                        bLFO3Enabled         = false;
436                }
437                if (bLFO3Enabled) {
438                    pLFO3->trigger(pDimRgn->LFO3Frequency,
439                                   start_level_mid,
440                                   lfo3_internal_depth,
441                                   pDimRgn->LFO3ControlDepth,
442                                   false,
443                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
444                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
445              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngine->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
446          }          }
447    
448      #if ENABLE_FILTER  
449          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
450          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
451          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
452          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
453          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
454          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
455              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
456              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
457                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
458              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
459              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
460                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 517  namespace LinuxSampler { namespace gig { Line 484  namespace LinuxSampler { namespace gig {
484                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
485                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
486                      break;                      break;
487                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
488                        VCFCutoffCtrl.controller = 128;
489                        break;
490                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
491                  default:                  default:
492                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
493                      break;                      break;
494              }              }
495              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
496    
497              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
498              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
499              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
500              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
501                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 545  namespace LinuxSampler { namespace gig { Line 514  namespace LinuxSampler { namespace gig {
514                  default:                  default:
515                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
516              }              }
517              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
518    
519              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
520              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
521              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
522              #else // override filter type              #else // override filter type
523              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
524              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
525              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
526    
527              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
528              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
529    
530              // calculate cutoff frequency              // calculate cutoff frequency
531              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
532              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
533                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
534              }              }
535              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
536    
537              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
538              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
539                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
540                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
541                    // VCFVelocityScale in this case means Minimum cutoff
542                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
543                }
544                else {
545                    cvalue = pDimRgn->VCFCutoff;
546                }
547                cutoff *= float(cvalue);
548                if (cutoff > 127.0f) cutoff = 127.0f;
549    
550              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
551              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
552    
553              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
554                VCFResonanceCtrl.fvalue = resonance;
555          }          }
556          else {          else {
557              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
558              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
559          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
560    
561          return 0; // success          return 0; // success
562      }      }
# Line 604  namespace LinuxSampler { namespace gig { Line 574  namespace LinuxSampler { namespace gig {
574       */       */
575      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
576    
577          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
578          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
579    
580          switch (this->PlaybackState) {          switch (this->PlaybackState) {
581    
582                case playback_state_init:
583                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
584                    // no break - continue with playback_state_ram
585    
586              case playback_state_ram: {              case playback_state_ram: {
587                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
588                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
589                        // render current fragment
590                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
591    
592                      if (DiskVoice) {                      if (DiskVoice) {
593                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
594                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
595                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
596                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
597                          }                          }
598                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
599                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
600                      }                      }
601                  }                  }
# Line 659  namespace LinuxSampler { namespace gig { Line 607  namespace LinuxSampler { namespace gig {
607                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
608                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
609                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
610                              Kill();                              KillImmediately();
611                              return;                              return;
612                          }                          }
613                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
614                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
615                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
616                      }                      }
617    
618                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
619    
620                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
621                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
622                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
623                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
624                                // remember how many sample words there are before any silence has been added
625                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
626                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
627                            }
628                      }                      }
629    
630                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
631                      Interpolate(Samples, ptr, Delay);  
632                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
633                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
634    
635                        const int iPos = (int) finalSynthesisParameters.dPos;
636                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
637                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
638                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
639    
640                        // change state of voice to 'end' if we really reached the end of the sample data
641                        if (RealSampleWordsLeftToRead >= 0) {
642                            RealSampleWordsLeftToRead -= readSampleWords;
643                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
644                        }
645                  }                  }
646                  break;                  break;
647    
648              case playback_state_end:              case playback_state_end:
649                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
650                  break;                  break;
651          }          }
652    
   
     #if ENABLE_FILTER  
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
653          // Reset delay          // Reset delay
654          Delay = 0;          Delay = 0;
655    
656          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
657    
658          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
659          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
660      }      }
661    
662      /**      /**
# Line 705  namespace LinuxSampler { namespace gig { Line 664  namespace LinuxSampler { namespace gig {
664       *  suspended / not running.       *  suspended / not running.
665       */       */
666      void Voice::Reset() {      void Voice::Reset() {
667          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
668          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
669          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
670          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
671          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
672          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
673          Active = false;          PlaybackState = playback_state_end;
674            itTriggerEvent = Pool<Event>::Iterator();
675            itKillEvent    = Pool<Event>::Iterator();
676      }      }
677    
678      /**      /**
679       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
680       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
681       *       *
682       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
683         * @param End     - youngest time stamp where processing should be stopped
684       */       */
685      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
686            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
687          // dispatch control change events              if (itEvent->Type == Event::type_release) {
688          Event* pCCEvent = pEngine->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
689          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
690              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              } else if (itEvent->Type == Event::type_cancel_release) {
691                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
692                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
693                }
694          }          }
695          while (pCCEvent) {      }
696              if (pCCEvent->Controller) { // if valid MIDI controller  
697                  #if ENABLE_FILTER      /**
698                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {       * Process given list of MIDI control change and pitch bend events for
699                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);       * the given time.
700         *
701         * @param itEvent - iterator pointing to the next event to be processed
702         * @param End     - youngest time stamp where processing should be stopped
703         */
704        void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
705            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
706                if (itEvent->Type == Event::type_control_change &&
707                    itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
708                    if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
709                        processCutoffEvent(itEvent);
710                    }
711                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
712                        processResonanceEvent(itEvent);
713                    }
714                    if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
715                        pLFO1->update(itEvent->Param.CC.Value);
716                  }                  }
717                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
718                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
719                  }                  }
720                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
721                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(pCCEvent);  
722                  }                  }
723                  #if ENABLE_FILTER                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
724                  if (pCCEvent->Controller == pLFO2->ExtController) {                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
725                      pLFO2->SendEvent(pCCEvent);                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
726                  }                  }
727                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == 7) { // volume
728                  if (pCCEvent->Controller == pLFO3->ExtController) {                      VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
729                      pLFO3->SendEvent(pCCEvent);                  } else if (itEvent->Param.CC.Controller == 10) { // panpot
730                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
731                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
732                  }                  }
733                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
734                    processPitchEvent(itEvent);
735              }              }
   
             pCCEvent = pEngine->pCCEvents->next();  
736          }          }
737        }
738    
739        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
740            PitchBend = RTMath::CentsToFreqRatio(itEvent->Param.Pitch.Pitch / 8192.0 * 100.0 * pEngineChannel->pInstrument->PitchbendRange);
741        }
742    
743          // process pitch events      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
744          {          int ccvalue = itEvent->Param.CC.Value;
745              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];          if (VCFCutoffCtrl.value == ccvalue) return;
746              Event* pVCOEvent = pVCOEventList->first();          VCFCutoffCtrl.value == ccvalue;
747              if (Delay) { // skip events that happened before this voice was triggered          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
748                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
749              }          float cutoff = CutoffBase * float(ccvalue);
750              // apply old pitchbend value until first pitch event occurs          if (cutoff > 127.0f) cutoff = 127.0f;
751              if (this->PitchBend != 1.0) {  
752                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
753                  for (uint i = Delay; i < end; i++) {          fFinalCutoff = cutoff;
754                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;      }
                 }  
             }  
             float pitch;  
             while (pVCOEvent) {  
                 Event* pNextVCOEvent = pVCOEventList->next();  
755    
756                  // calculate the influence length of this event (in sample points)      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
757                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;          // convert absolute controller value to differential
758            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
759            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
760            const float resonancedelta = (float) ctrldelta;
761            fFinalResonance += resonancedelta;
762            // needed for initialization of parameter
763            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
764        }
765    
766                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents      /**
767         *  Synthesizes the current audio fragment for this voice.
768         *
769         *  @param Samples - number of sample points to be rendered in this audio
770         *                   fragment cycle
771         *  @param pSrc    - pointer to input sample data
772         *  @param Skip    - number of sample points to skip in output buffer
773         */
774        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
775            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];
776            finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];
777            finalSynthesisParameters.pSrc      = pSrc;
778    
779                  // apply pitch value to the pitch parameter sequence          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
780                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
781                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
782            if (itTriggerEvent) { // skip events that happened before this voice was triggered
783                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
784                // we can't simply compare the timestamp here, because note events
785                // might happen on the same time stamp, so we have to deal on the
786                // actual sequence the note events arrived instead (see bug #112)
787                for (; itNoteEvent; ++itNoteEvent) {
788                    if (itTriggerEvent == itNoteEvent) {
789                        ++itNoteEvent;
790                        break;
791                  }                  }
792                }
793            }
794    
795                  pVCOEvent = pNextVCOEvent;          uint killPos;
796            if (itKillEvent) {
797                int maxFadeOutPos = Samples - pEngine->MinFadeOutSamples;
798                if (maxFadeOutPos < 0) {
799                    // There's not enough space in buffer to do a fade out
800                    // from max volume (this can only happen for audio
801                    // drivers that use Samples < MaxSamplesPerCycle).
802                    // End the EG1 here, at pos 0, with a shorter max fade
803                    // out time.
804                    EG1.enterFadeOutStage(Samples / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
805                    itKillEvent = Pool<Event>::Iterator();
806                } else {
807                    killPos = RTMath::Min(itKillEvent->FragmentPos(), maxFadeOutPos);
808              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
809          }          }
810    
811            uint i = Skip;
812            while (i < Samples) {
813                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
814    
815      #if ENABLE_FILTER              // initialize all final synthesis parameters
816          // process filter cutoff events              fFinalCutoff    = VCFCutoffCtrl.fvalue;
817          {              fFinalResonance = VCFResonanceCtrl.fvalue;
             RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             Event* pCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();  
             }  
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
818    
819                  // calculate the influence length of this event (in sample points)              // process MIDI control change and pitchbend events for this subfragment
820                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;              processCCEvents(itCCEvent, iSubFragmentEnd);
821    
822                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
823                float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
824    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
825                if (pEngineChannel->GetMute()) fFinalVolume = 0;
826    #endif
827    
828                  // apply cutoff frequency to the cutoff parameter sequence              // process transition events (note on, note off & sustain pedal)
829                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
830    
831                  pCutoffEvent = pNextCutoffEvent;              // if the voice was killed in this subfragment, or if the
832                // filter EG is finished, switch EG1 to fade out stage
833                if ((itKillEvent && killPos <= iSubFragmentEnd) ||
834                    (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
835                     EG2.getSegmentType() == EGADSR::segment_end)) {
836                    EG1.enterFadeOutStage();
837                    itKillEvent = Pool<Event>::Iterator();
838              }              }
             if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
839    
840          // process filter resonance events              // process envelope generators
841          {              switch (EG1.getSegmentType()) {
842              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];                  case EGADSR::segment_lin:
843              Event* pResonanceEvent = pResonanceEventList->first();                      fFinalVolume *= EG1.processLin();
844              if (Delay) { // skip events that happened before this voice was triggered                      break;
845                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();                  case EGADSR::segment_exp:
846                        fFinalVolume *= EG1.processExp();
847                        break;
848                    case EGADSR::segment_end:
849                        fFinalVolume *= EG1.getLevel();
850                        break; // noop
851                }
852                switch (EG2.getSegmentType()) {
853                    case EGADSR::segment_lin:
854                        fFinalCutoff *= EG2.processLin();
855                        break;
856                    case EGADSR::segment_exp:
857                        fFinalCutoff *= EG2.processExp();
858                        break;
859                    case EGADSR::segment_end:
860                        fFinalCutoff *= EG2.getLevel();
861                        break; // noop
862                }
863                if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
864    
865                // process low frequency oscillators
866                if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
867                if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
868                if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
869    
870                // if filter enabled then update filter coefficients
871                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
872                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
873                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
874              }              }
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
875    
876                  // calculate the influence length of this event (in sample points)              // do we need resampling?
877                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
878                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
879                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
880                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
881                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
882    
883                // prepare final synthesis parameters structure
884                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
885    #ifdef CONFIG_INTERPOLATE_VOLUME
886                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
887                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
888                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
889                finalSynthesisParameters.fFinalVolumeDeltaRight =
890                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
891                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
892    #else
893                finalSynthesisParameters.fFinalVolumeLeft  =
894                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
895                finalSynthesisParameters.fFinalVolumeRight =
896                    fFinalVolume * VolumeRight * PanRightSmoother.render();
897    #endif
898                // render audio for one subfragment
899                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
900    
901                // stop the rendering if volume EG is finished
902                if (EG1.getSegmentType() == EGADSR::segment_end) break;
903    
904                  // convert absolute controller value to differential              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
                 int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = pResonanceEvent->Value;  
905    
906                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0              // increment envelopes' positions
907                if (EG1.active()) {
908    
909                  // apply cutoff frequency to the cutoff parameter sequence                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
910                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {                  if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
911                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
912                  }                  }
913    
914                  pResonanceEvent = pNextResonanceEvent;                  EG1.increment(1);
915                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
916              }              }
917              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time              if (EG2.active()) {
918                    EG2.increment(1);
919                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
920                }
921                EG3.increment(1);
922                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
923    
924                Pos = newPos;
925                i = iSubFragmentEnd;
926          }          }
     #endif // ENABLE_FILTER  
927      }      }
928    
929      #if ENABLE_FILTER      /** @brief Update current portamento position.
     /**  
      * Calculate all necessary, final biquad filter parameters.  
930       *       *
931       * @param Samples - number of samples to be rendered in this audio fragment cycle       * Will be called when portamento mode is enabled to get the final
932         * portamento position of this active voice from where the next voice(s)
933         * might continue to slide on.
934         *
935         * @param itNoteOffEvent - event which causes this voice to die soon
936       */       */
937      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
938          if (!FilterLeft.Enabled) return;          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
939            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {  
                 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                 prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                 FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
             }  
   
             //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'  
             bq    = (float*) &pEngine->pBasicFilterParameters[i];  
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
940      }      }
     #endif // ENABLE_FILTER  
941    
942      /**      /**
943       *  Interpolates the input audio data (no loop).       *  Immediately kill the voice. This method should not be used to kill
944         *  a normal, active voice, because it doesn't take care of things like
945         *  fading down the volume level to avoid clicks and regular processing
946         *  until the kill event actually occured!
947       *       *
948       *  @param Samples - number of sample points to be rendered in this audio       * If it's necessary to know when the voice's disk stream was actually
949       *                   fragment cycle       * deleted, then one can set the optional @a bRequestNotification
950       *  @param pSrc    - pointer to input sample data       * parameter and this method will then return the handle of the disk
951       *  @param Skip    - number of sample points to skip in output buffer       * stream (unique identifier) and one can use this handle to poll the
952         * disk thread if this stream has been deleted. In any case this method
953         * will return immediately and will not block until the stream actually
954         * was deleted.
955         *
956         * @param bRequestNotification - (optional) whether the disk thread shall
957         *                                provide a notification once it deleted
958         *                               the respective disk stream
959         *                               (default=false)
960         * @returns handle to the voice's disk stream or @c Stream::INVALID_HANDLE
961         *          if the voice did not use a disk stream at all
962         * @see Kill()
963       */       */
964      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      Stream::Handle Voice::KillImmediately(bool bRequestNotification) {
965          int i = Skip;          Stream::Handle hStream = Stream::INVALID_HANDLE;
966            if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
967          // FIXME: assuming either mono or stereo              pDiskThread->OrderDeletionOfStream(&DiskStreamRef, bRequestNotification);
968          if (this->pSample->Channels == 2) { // Stereo Sample              hStream = DiskStreamRef.hStream;
             while (i < Samples) {  
                 InterpolateOneStep_Stereo(pSrc, i,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
         }  
         else { // Mono Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
969          }          }
970            Reset();
971            return hStream;
972      }      }
973    
974      /**      /**
975       *  Interpolates the input audio data, this method honors looping.       *  Kill the voice in regular sense. Let the voice render audio until
976         *  the kill event actually occured and then fade down the volume level
977         *  very quickly and let the voice die finally. Unlike a normal release
978         *  of a voice, a kill process cannot be cancalled and is therefore
979         *  usually used for voice stealing and key group conflicts.
980       *       *
981       *  @param Samples - number of sample points to be rendered in this audio       *  @param itKillEvent - event which caused the voice to be killed
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
982       */       */
983      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
984          int i = Skip;          #if CONFIG_DEVMODE
985            if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
986          // FIXME: assuming either mono or stereo          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
987          if (pSample->Channels == 2) { // Stereo Sample          #endif // CONFIG_DEVMODE
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
         }  
     }  
988    
989      /**          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
990       *  Immediately kill the voice.          this->itKillEvent = itKillEvent;
      */  
     void Voice::Kill() {  
         if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {  
             pDiskThread->OrderDeletionOfStream(&DiskStreamRef);  
         }  
         Reset();  
991      }      }
992    
993  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.233  
changed lines
  Added in v.1858

  ViewVC Help
Powered by ViewVC