/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 233 by schoenebeck, Tue Sep 7 09:32:21 2004 UTC revision 1923 by persson, Sat Jun 27 16:55:41 2009 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 - 2009 Christian Schoenebeck                       *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     // TODO: no support for crossfades yet  
   
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          Active = false;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
39          pVCAManipulator  = NULL;          KeyGroup = 0;
40          pVCFCManipulator = NULL;          SynthesisMode = 0; // set all mode bits to 0 first
41          pVCOManipulator  = NULL;          // select synthesis implementation (asm core is not supported ATM)
42          pLFO1  = NULL;          #if 0 // CONFIG_ASM && ARCH_X86
43          pLFO2  = NULL;          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44          pLFO3  = NULL;          #else
45            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46            #endif
47            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49            finalSynthesisParameters.filterLeft.Reset();
50            finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 104  namespace LinuxSampler { namespace gig { Line 66  namespace LinuxSampler { namespace gig {
66       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
67       *  needed.       *  needed.
68       *       *
69       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
70       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
71       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
72       *  @param iLayer       - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
73       *  @returns            0 on success, a value < 0 if something failed       *  @param VoiceType      - type of this voice
74         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
75         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
76         *           (either due to an error or e.g. because no region is
77         *           defined for the given key)
78       */       */
79      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
81             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
82             exit(EXIT_FAILURE);          Orphan = false;
83          }  
84            #if CONFIG_DEVMODE
85          Active          = true;          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
86          MIDIKey         = pNoteOnEvent->Key;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
87          pRegion         = pInstrument->GetRegion(MIDIKey);          }
88          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          #endif // CONFIG_DEVMODE
89          Pos             = 0;  
90          Delay           = pNoteOnEvent->FragmentPos();          Type            = VoiceType;
91          pTriggerEvent   = pNoteOnEvent;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
92            PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
93          if (!pRegion) {          Delay           = itNoteOnEvent->FragmentPos();
94              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          itTriggerEvent  = itNoteOnEvent;
95              Kill();          itKillEvent     = Pool<Event>::Iterator();
96              return -1;          KeyGroup        = iKeyGroup;
97          }          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
98    
99          // get current dimension values to select the right dimension region          // calculate volume
100          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
101          uint DimValues[5] = {0,0,0,0,0};  
102          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          // For 16 bit samples, we downscale by 32768 to convert from
103              switch (pRegion->pDimensionDefinitions[i].dimension) {          // int16 value range to DSP value range (which is
104                  case ::gig::dimension_samplechannel:          // -1.0..1.0). For 24 bit, we downscale from int32.
105                      DimValues[i] = 0; //TODO: we currently ignore this dimension          float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
106                      break;  
107                  case ::gig::dimension_layer:          volume *= pDimRgn->SampleAttenuation * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;
108                      DimValues[i] = iLayer;  
109                      // if this is the 1st layer then spawn further voices for all the other layers          // the volume of release triggered samples depends on note length
110                      if (iLayer == 0)          if (Type == type_release_trigger) {
111                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)              float noteLength = float(pEngine->FrameTime + Delay -
112                              pEngine->LaunchVoice(pNoteOnEvent, iNewLayer);                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
113                      break;              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
114                  case ::gig::dimension_velocity:              if (attenuation <= 0) return -1;
115                      DimValues[i] = pNoteOnEvent->Velocity;              volume *= attenuation;
116                      break;          }
117                  case ::gig::dimension_channelaftertouch:  
118                      DimValues[i] = 0; //TODO: we currently ignore this dimension          // select channel mode (mono or stereo)
119                      break;          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
120                  case ::gig::dimension_releasetrigger:          // select bit depth (16 or 24)
121                      DimValues[i] = 0; //TODO: we currently ignore this dimension          SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
122                      break;  
123                  case ::gig::dimension_keyboard:          // get starting crossfade volume level
124                      DimValues[i] = (uint) pNoteOnEvent->Key;          float crossfadeVolume;
125                      break;          switch (pDimRgn->AttenuationController.type) {
126                  case ::gig::dimension_modwheel:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                      DimValues[i] = pEngine->ControllerTable[1];                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
128                      break;                  break;
129                  case ::gig::dimension_breath:              case ::gig::attenuation_ctrl_t::type_velocity:
130                      DimValues[i] = pEngine->ControllerTable[2];                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                      break;                  break;
132                  case ::gig::dimension_foot:              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                      DimValues[i] = pEngine->ControllerTable[4];                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                      break;                  break;
135                  case ::gig::dimension_portamentotime:              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136                      DimValues[i] = pEngine->ControllerTable[5];              default:
137                      break;                  crossfadeVolume = 1.0f;
138                  case ::gig::dimension_effect1:          }
139                      DimValues[i] = pEngine->ControllerTable[12];  
140                      break;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141                  case ::gig::dimension_effect2:          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142                      DimValues[i] = pEngine->ControllerTable[13];  
143                      break;          float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144                  case ::gig::dimension_genpurpose1:          CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145                      DimValues[i] = pEngine->ControllerTable[16];          VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);
146                      break;          PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147                  case ::gig::dimension_genpurpose2:          PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         ::gig::DimensionRegion* pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
148    
149          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
157    
158          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
159              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              if (cachedsamples > (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH)) {
160                    MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
161                } else {
162                    // The cache is too small to fit a max sample buffer.
163                    // Setting MaxRAMPos to 0 will probably cause a click
164                    // in the audio, but it's better than not handling
165                    // this case at all, which would have caused the
166                    // unsigned MaxRAMPos to be set to a negative number.
167                    MaxRAMPos = 0;
168                }
169    
170              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
171              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
172    
173              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
174                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
175                  Kill();                  KillImmediately();
176                  return -1;                  return -1;
177              }              }
178              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
179          }          }
180          else { // RAM only voice          else { // RAM only voice
181              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
182              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
183              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
184          }          }
185            if (RAMLoop) {
186                loop.uiTotalCycles = pSample->LoopPlayCount;
187                loop.uiCyclesLeft  = pSample->LoopPlayCount;
188                loop.uiStart       = loopinfo.LoopStart;
189                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
190                loop.uiSize        = loopinfo.LoopLength;
191            }
192    
193          // calculate initial pitch value          // calculate initial pitch value
194          {          {
195              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pEngineChannel->pInstrument->FineTune + pDimRgn->FineTune + pEngine->ScaleTuning[MIDIKey % 12];
             if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;  
             this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));  
             this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents  
         }  
196    
197                // GSt behaviour: maximum transpose up is 40 semitones. If
198                // MIDI key is more than 40 semitones above unity note,
199                // the transpose is not done.
200                if (pDimRgn->PitchTrack && (MIDIKey - (int) pDimRgn->UnityNote) < 40) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
201    
202          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)              this->PitchBase = RTMath::CentsToFreqRatioUnlimited(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
203                this->PitchBendRange = 1.0 / 8192.0 * 100.0 * pEngineChannel->pInstrument->PitchbendRange;
204                this->PitchBend = RTMath::CentsToFreqRatio(PitchBend * PitchBendRange);
205            }
206    
207            // the length of the decay and release curves are dependent on the velocity
208            const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
209    
210          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
211          {          {
# Line 290  namespace LinuxSampler { namespace gig { Line 216  namespace LinuxSampler { namespace gig {
216                      eg1controllervalue = 0;                      eg1controllervalue = 0;
217                      break;                      break;
218                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
219                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
220                      break;                      break;
221                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
222                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
223                      break;                      break;
224                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
225                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
226                      break;                      break;
227              }              }
228              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
229    
230              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
231              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
232              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
233              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
234                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
235              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
236                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
237                            pDimRgn->EG1Hold,  
238                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
239                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
240                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
241                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
242                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
243                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
244                            Delay);                          pDimRgn->EG1Sustain,
245                            pDimRgn->EG1Release * eg1release * velrelease,
246                            velocityAttenuation,
247                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
248            }
249    
250    #ifdef CONFIG_INTERPOLATE_VOLUME
251            // setup initial volume in synthesis parameters
252    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
253            if (pEngineChannel->GetMute()) {
254                finalSynthesisParameters.fFinalVolumeLeft  = 0;
255                finalSynthesisParameters.fFinalVolumeRight = 0;
256          }          }
257            else
258    #else
259            {
260                float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
261    
262                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
263                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
264            }
265    #endif
266    #endif
267    
     #if ENABLE_FILTER  
268          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
269          {          {
270              // get current value of EG2 controller              // get current value of EG2 controller
# Line 329  namespace LinuxSampler { namespace gig { Line 274  namespace LinuxSampler { namespace gig {
274                      eg2controllervalue = 0;                      eg2controllervalue = 0;
275                      break;                      break;
276                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
277                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
278                      break;                      break;
279                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
280                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
281                      break;                      break;
282                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
283                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
284                      break;                      break;
285              }              }
286              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
287    
288              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
289              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
290              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
291              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
292    
293              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
294                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
295                            false,                          false,
296                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
297                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
298                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
299                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
300                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
301                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
302                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
303          }          }
     #endif // ENABLE_FILTER  
304    
305    
306          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
307          {          {
308            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
309            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
310                float eg3depth = (bPortamento)
311                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
312                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
313                float eg3time = (bPortamento)
314                                    ? pEngineChannel->PortamentoTime
315                                    : pDimRgn->EG3Attack;
316                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
317                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
318          }          }
319    
320    
# Line 373  namespace LinuxSampler { namespace gig { Line 325  namespace LinuxSampler { namespace gig {
325                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
326                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
327                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
328                        bLFO1Enabled         = (lfo1_internal_depth > 0);
329                      break;                      break;
330                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
331                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
332                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
333                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
334                      break;                      break;
335                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
336                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
337                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
338                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
339                      break;                      break;
340                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
341                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
342                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
343                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
344                      break;                      break;
345                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
346                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
347                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
348                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
349                      break;                      break;
350                  default:                  default:
351                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
352                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
353                        bLFO1Enabled         = false;
354                }
355                if (bLFO1Enabled) {
356                    pLFO1->trigger(pDimRgn->LFO1Frequency,
357                                   start_level_min,
358                                   lfo1_internal_depth,
359                                   pDimRgn->LFO1ControlDepth,
360                                   pDimRgn->LFO1FlipPhase,
361                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
362                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
363              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngine->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
364          }          }
365    
366      #if ENABLE_FILTER  
367          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
368          {          {
369              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 411  namespace LinuxSampler { namespace gig { Line 371  namespace LinuxSampler { namespace gig {
371                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
374                        bLFO2Enabled         = (lfo2_internal_depth > 0);
375                      break;                      break;
376                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
377                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
378                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
379                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
380                      break;                      break;
381                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
382                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
383                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
384                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
385                      break;                      break;
386                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
387                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
388                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
389                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
390                      break;                      break;
391                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
392                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
393                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
394                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
395                      break;                      break;
396                  default:                  default:
397                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
398                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
399                        bLFO2Enabled         = false;
400                }
401                if (bLFO2Enabled) {
402                    pLFO2->trigger(pDimRgn->LFO2Frequency,
403                                   start_level_max,
404                                   lfo2_internal_depth,
405                                   pDimRgn->LFO2ControlDepth,
406                                   pDimRgn->LFO2FlipPhase,
407                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
408                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
409              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngine->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
410          }          }
411      #endif // ENABLE_FILTER  
412    
413          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
414          {          {
# Line 449  namespace LinuxSampler { namespace gig { Line 417  namespace LinuxSampler { namespace gig {
417                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
418                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
419                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
420                        bLFO3Enabled         = (lfo3_internal_depth > 0);
421                      break;                      break;
422                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
423                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
424                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
425                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
426                      break;                      break;
427                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
428                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
429                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
430                        bLFO3Enabled         = true;
431                      break;                      break;
432                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
433                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
434                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
435                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
436                      break;                      break;
437                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
438                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
439                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
440                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
441                      break;                      break;
442                  default:                  default:
443                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
444                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
445                        bLFO3Enabled         = false;
446                }
447                if (bLFO3Enabled) {
448                    pLFO3->trigger(pDimRgn->LFO3Frequency,
449                                   start_level_mid,
450                                   lfo3_internal_depth,
451                                   pDimRgn->LFO3ControlDepth,
452                                   false,
453                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
454                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
455              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngine->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
456          }          }
457    
458      #if ENABLE_FILTER  
459          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
460          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
461          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
462          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
463          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
464          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
465              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
466              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
467                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
468              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
469              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
470                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 517  namespace LinuxSampler { namespace gig { Line 494  namespace LinuxSampler { namespace gig {
494                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
495                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
496                      break;                      break;
497                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
498                        VCFCutoffCtrl.controller = 128;
499                        break;
500                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
501                  default:                  default:
502                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
503                      break;                      break;
504              }              }
505              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
506    
507              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
508              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
509              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
510              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
511                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 545  namespace LinuxSampler { namespace gig { Line 524  namespace LinuxSampler { namespace gig {
524                  default:                  default:
525                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
526              }              }
527              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
528    
529              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
530              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
531              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
532              #else // override filter type              #else // override filter type
533              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
534              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
535              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
536    
537              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
538              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
539    
540              // calculate cutoff frequency              // calculate cutoff frequency
541              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
542              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
543                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
544              }              }
545              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
546    
547              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
548              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
549                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
550                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
551                    // VCFVelocityScale in this case means Minimum cutoff
552                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
553                }
554                else {
555                    cvalue = pDimRgn->VCFCutoff;
556                }
557                cutoff *= float(cvalue);
558                if (cutoff > 127.0f) cutoff = 127.0f;
559    
560              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
561              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
562    
563              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
564                VCFResonanceCtrl.fvalue = resonance;
565          }          }
566          else {          else {
567              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
568              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
569          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
570    
571          return 0; // success          return 0; // success
572      }      }
# Line 604  namespace LinuxSampler { namespace gig { Line 584  namespace LinuxSampler { namespace gig {
584       */       */
585      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
586    
587          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
588          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
589    
590          switch (this->PlaybackState) {          switch (this->PlaybackState) {
591    
592                case playback_state_init:
593                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
594                    // no break - continue with playback_state_ram
595    
596              case playback_state_ram: {              case playback_state_ram: {
597                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
598                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
599                        // render current fragment
600                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
601    
602                      if (DiskVoice) {                      if (DiskVoice) {
603                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
604                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
605                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
606                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
607                          }                          }
608                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
609                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
610                      }                      }
611                  }                  }
# Line 659  namespace LinuxSampler { namespace gig { Line 617  namespace LinuxSampler { namespace gig {
617                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
618                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
619                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
620                              Kill();                              KillImmediately();
621                              return;                              return;
622                          }                          }
623                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
624                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
625                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
626                      }                      }
627    
628                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
629    
630                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
631                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
632                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
633                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
634                                // remember how many sample words there are before any silence has been added
635                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
636                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
637                            }
638                      }                      }
639    
640                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
641                      Interpolate(Samples, ptr, Delay);  
642                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
643                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
644    
645                        const int iPos = (int) finalSynthesisParameters.dPos;
646                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
647                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
648                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
649    
650                        // change state of voice to 'end' if we really reached the end of the sample data
651                        if (RealSampleWordsLeftToRead >= 0) {
652                            RealSampleWordsLeftToRead -= readSampleWords;
653                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
654                        }
655                  }                  }
656                  break;                  break;
657    
658              case playback_state_end:              case playback_state_end:
659                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
660                  break;                  break;
661          }          }
662    
   
     #if ENABLE_FILTER  
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
663          // Reset delay          // Reset delay
664          Delay = 0;          Delay = 0;
665    
666          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
667    
668          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
669          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
670      }      }
671    
672      /**      /**
# Line 705  namespace LinuxSampler { namespace gig { Line 674  namespace LinuxSampler { namespace gig {
674       *  suspended / not running.       *  suspended / not running.
675       */       */
676      void Voice::Reset() {      void Voice::Reset() {
677          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
678          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
679          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
680          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
681          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
682          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
683          Active = false;          PlaybackState = playback_state_end;
684            itTriggerEvent = Pool<Event>::Iterator();
685            itKillEvent    = Pool<Event>::Iterator();
686      }      }
687    
688      /**      /**
689       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
690       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
691       *       *
692       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
693         * @param End     - youngest time stamp where processing should be stopped
694       */       */
695      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
696            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
697          // dispatch control change events              if (itEvent->Type == Event::type_release) {
698          Event* pCCEvent = pEngine->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
699          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
700              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              } else if (itEvent->Type == Event::type_cancel_release) {
701                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
702                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
703                }
704          }          }
705          while (pCCEvent) {      }
706              if (pCCEvent->Controller) { // if valid MIDI controller  
707                  #if ENABLE_FILTER      /**
708                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {       * Process given list of MIDI control change and pitch bend events for
709                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);       * the given time.
710         *
711         * @param itEvent - iterator pointing to the next event to be processed
712         * @param End     - youngest time stamp where processing should be stopped
713         */
714        void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
715            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
716                if (itEvent->Type == Event::type_control_change &&
717                    itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
718                    if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
719                        processCutoffEvent(itEvent);
720                  }                  }
721                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
722                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      processResonanceEvent(itEvent);
723                  }                  }
724                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
725                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(pCCEvent);  
726                  }                  }
727                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
728                  if (pCCEvent->Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(pCCEvent);  
729                  }                  }
730                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
731                  if (pCCEvent->Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(pCCEvent);  
732                  }                  }
733                    if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
734                        itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
735                        CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
736                    }
737                    if (itEvent->Param.CC.Controller == 7) { // volume
738                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
739                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
740                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
741                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
742                    }
743                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
744                    processPitchEvent(itEvent);
745              }              }
   
             pCCEvent = pEngine->pCCEvents->next();  
746          }          }
747        }
748    
749        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
750            PitchBend = RTMath::CentsToFreqRatio(itEvent->Param.Pitch.Pitch * PitchBendRange);
751        }
752    
753          // process pitch events      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
754          {          int ccvalue = itEvent->Param.CC.Value;
755              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];          if (VCFCutoffCtrl.value == ccvalue) return;
756              Event* pVCOEvent = pVCOEventList->first();          VCFCutoffCtrl.value == ccvalue;
757              if (Delay) { // skip events that happened before this voice was triggered          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
758                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
759              }          float cutoff = CutoffBase * float(ccvalue);
760              // apply old pitchbend value until first pitch event occurs          if (cutoff > 127.0f) cutoff = 127.0f;
             if (this->PitchBend != 1.0) {  
                 uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (pVCOEvent) {  
                 Event* pNextVCOEvent = pVCOEventList->next();  
761    
762                  // calculate the influence length of this event (in sample points)          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
763                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;          fFinalCutoff = cutoff;
764        }
765    
766                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
767            // convert absolute controller value to differential
768            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
769            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
770            const float resonancedelta = (float) ctrldelta;
771            fFinalResonance += resonancedelta;
772            // needed for initialization of parameter
773            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
774        }
775    
776                  // apply pitch value to the pitch parameter sequence      /**
777                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {       *  Synthesizes the current audio fragment for this voice.
778                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;       *
779         *  @param Samples - number of sample points to be rendered in this audio
780         *                   fragment cycle
781         *  @param pSrc    - pointer to input sample data
782         *  @param Skip    - number of sample points to skip in output buffer
783         */
784        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
785            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];
786            finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];
787            finalSynthesisParameters.pSrc      = pSrc;
788    
789            RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
790            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
791    
792            if (itTriggerEvent) { // skip events that happened before this voice was triggered
793                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
794                // we can't simply compare the timestamp here, because note events
795                // might happen on the same time stamp, so we have to deal on the
796                // actual sequence the note events arrived instead (see bug #112)
797                for (; itNoteEvent; ++itNoteEvent) {
798                    if (itTriggerEvent == itNoteEvent) {
799                        ++itNoteEvent;
800                        break;
801                  }                  }
802                }
803            }
804    
805                  pVCOEvent = pNextVCOEvent;          uint killPos;
806            if (itKillEvent) {
807                int maxFadeOutPos = Samples - pEngine->MinFadeOutSamples;
808                if (maxFadeOutPos < 0) {
809                    // There's not enough space in buffer to do a fade out
810                    // from max volume (this can only happen for audio
811                    // drivers that use Samples < MaxSamplesPerCycle).
812                    // End the EG1 here, at pos 0, with a shorter max fade
813                    // out time.
814                    EG1.enterFadeOutStage(Samples / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
815                    itKillEvent = Pool<Event>::Iterator();
816                } else {
817                    killPos = RTMath::Min(itKillEvent->FragmentPos(), maxFadeOutPos);
818              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
819          }          }
820    
821            uint i = Skip;
822            while (i < Samples) {
823                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
824    
825      #if ENABLE_FILTER              // initialize all final synthesis parameters
826          // process filter cutoff events              fFinalCutoff    = VCFCutoffCtrl.fvalue;
827          {              fFinalResonance = VCFResonanceCtrl.fvalue;
             RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             Event* pCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();  
             }  
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
828    
829                  // calculate the influence length of this event (in sample points)              // process MIDI control change and pitchbend events for this subfragment
830                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;              processCCEvents(itCCEvent, iSubFragmentEnd);
831    
832                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
833                float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
834    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
835                if (pEngineChannel->GetMute()) fFinalVolume = 0;
836    #endif
837    
838                  // apply cutoff frequency to the cutoff parameter sequence              // process transition events (note on, note off & sustain pedal)
839                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
840    
841                  pCutoffEvent = pNextCutoffEvent;              // if the voice was killed in this subfragment, or if the
842                // filter EG is finished, switch EG1 to fade out stage
843                if ((itKillEvent && killPos <= iSubFragmentEnd) ||
844                    (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
845                     EG2.getSegmentType() == EGADSR::segment_end)) {
846                    EG1.enterFadeOutStage();
847                    itKillEvent = Pool<Event>::Iterator();
848              }              }
             if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
849    
850          // process filter resonance events              // process envelope generators
851          {              switch (EG1.getSegmentType()) {
852              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];                  case EGADSR::segment_lin:
853              Event* pResonanceEvent = pResonanceEventList->first();                      fFinalVolume *= EG1.processLin();
854              if (Delay) { // skip events that happened before this voice was triggered                      break;
855                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();                  case EGADSR::segment_exp:
856                        fFinalVolume *= EG1.processExp();
857                        break;
858                    case EGADSR::segment_end:
859                        fFinalVolume *= EG1.getLevel();
860                        break; // noop
861                }
862                switch (EG2.getSegmentType()) {
863                    case EGADSR::segment_lin:
864                        fFinalCutoff *= EG2.processLin();
865                        break;
866                    case EGADSR::segment_exp:
867                        fFinalCutoff *= EG2.processExp();
868                        break;
869                    case EGADSR::segment_end:
870                        fFinalCutoff *= EG2.getLevel();
871                        break; // noop
872              }              }
873              while (pResonanceEvent) {              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
874    
875                  // calculate the influence length of this event (in sample points)              // process low frequency oscillators
876                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;              if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
877                if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
878                if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
879    
880                  // convert absolute controller value to differential              // limit the pitch so we don't read outside the buffer
881                  int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;              finalSynthesisParameters.fFinalPitch = RTMath::Min(finalSynthesisParameters.fFinalPitch, float(1 << CONFIG_MAX_PITCH));
                 VCFResonanceCtrl.value = pResonanceEvent->Value;  
882    
883                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0              // if filter enabled then update filter coefficients
884                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
885                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
886                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
887                }
888    
889                // do we need resampling?
890                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
891                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
892                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
893                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
894                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
895    
896                // prepare final synthesis parameters structure
897                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
898    #ifdef CONFIG_INTERPOLATE_VOLUME
899                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
900                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
901                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
902                finalSynthesisParameters.fFinalVolumeDeltaRight =
903                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
904                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
905    #else
906                finalSynthesisParameters.fFinalVolumeLeft  =
907                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
908                finalSynthesisParameters.fFinalVolumeRight =
909                    fFinalVolume * VolumeRight * PanRightSmoother.render();
910    #endif
911                // render audio for one subfragment
912                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
913    
914                // stop the rendering if volume EG is finished
915                if (EG1.getSegmentType() == EGADSR::segment_end) break;
916    
917                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
918    
919                // increment envelopes' positions
920                if (EG1.active()) {
921    
922                  // apply cutoff frequency to the cutoff parameter sequence                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
923                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {                  if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
924                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
925                  }                  }
926    
927                  pResonanceEvent = pNextResonanceEvent;                  EG1.increment(1);
928                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
929              }              }
930              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time              if (EG2.active()) {
931                    EG2.increment(1);
932                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
933                }
934                EG3.increment(1);
935                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
936    
937                Pos = newPos;
938                i = iSubFragmentEnd;
939          }          }
     #endif // ENABLE_FILTER  
940      }      }
941    
942      #if ENABLE_FILTER      /** @brief Update current portamento position.
     /**  
      * Calculate all necessary, final biquad filter parameters.  
943       *       *
944       * @param Samples - number of samples to be rendered in this audio fragment cycle       * Will be called when portamento mode is enabled to get the final
945         * portamento position of this active voice from where the next voice(s)
946         * might continue to slide on.
947         *
948         * @param itNoteOffEvent - event which causes this voice to die soon
949       */       */
950      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
951          if (!FilterLeft.Enabled) return;          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
952            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {  
                 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                 prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                 FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
             }  
   
             //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'  
             bq    = (float*) &pEngine->pBasicFilterParameters[i];  
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
953      }      }
     #endif // ENABLE_FILTER  
954    
955      /**      /**
956       *  Interpolates the input audio data (no loop).       *  Immediately kill the voice. This method should not be used to kill
957         *  a normal, active voice, because it doesn't take care of things like
958         *  fading down the volume level to avoid clicks and regular processing
959         *  until the kill event actually occured!
960       *       *
961       *  @param Samples - number of sample points to be rendered in this audio       * If it's necessary to know when the voice's disk stream was actually
962       *                   fragment cycle       * deleted, then one can set the optional @a bRequestNotification
963       *  @param pSrc    - pointer to input sample data       * parameter and this method will then return the handle of the disk
964       *  @param Skip    - number of sample points to skip in output buffer       * stream (unique identifier) and one can use this handle to poll the
965         * disk thread if this stream has been deleted. In any case this method
966         * will return immediately and will not block until the stream actually
967         * was deleted.
968         *
969         * @param bRequestNotification - (optional) whether the disk thread shall
970         *                                provide a notification once it deleted
971         *                               the respective disk stream
972         *                               (default=false)
973         * @returns handle to the voice's disk stream or @c Stream::INVALID_HANDLE
974         *          if the voice did not use a disk stream at all
975         * @see Kill()
976       */       */
977      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      Stream::Handle Voice::KillImmediately(bool bRequestNotification) {
978          int i = Skip;          Stream::Handle hStream = Stream::INVALID_HANDLE;
979            if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
980          // FIXME: assuming either mono or stereo              pDiskThread->OrderDeletionOfStream(&DiskStreamRef, bRequestNotification);
981          if (this->pSample->Channels == 2) { // Stereo Sample              hStream = DiskStreamRef.hStream;
             while (i < Samples) {  
                 InterpolateOneStep_Stereo(pSrc, i,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
         }  
         else { // Mono Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
982          }          }
983            Reset();
984            return hStream;
985      }      }
986    
987      /**      /**
988       *  Interpolates the input audio data, this method honors looping.       *  Kill the voice in regular sense. Let the voice render audio until
989         *  the kill event actually occured and then fade down the volume level
990         *  very quickly and let the voice die finally. Unlike a normal release
991         *  of a voice, a kill process cannot be cancalled and is therefore
992         *  usually used for voice stealing and key group conflicts.
993       *       *
994       *  @param Samples - number of sample points to be rendered in this audio       *  @param itKillEvent - event which caused the voice to be killed
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
995       */       */
996      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
997          int i = Skip;          #if CONFIG_DEVMODE
998            if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
999          // FIXME: assuming either mono or stereo          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
1000          if (pSample->Channels == 2) { // Stereo Sample          #endif // CONFIG_DEVMODE
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
         }  
     }  
1001    
1002      /**          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
1003       *  Immediately kill the voice.          this->itKillEvent = itKillEvent;
      */  
     void Voice::Kill() {  
         if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {  
             pDiskThread->OrderDeletionOfStream(&DiskStreamRef);  
         }  
         Reset();  
1004      }      }
1005    
1006  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.233  
changed lines
  Added in v.1923

  ViewVC Help
Powered by ViewVC