/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 233 by schoenebeck, Tue Sep 7 09:32:21 2004 UTC revision 247 by senkov, Sun Sep 19 23:44:23 2004 UTC
# Line 27  Line 27 
27    
28  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
29    
     // TODO: no support for crossfades yet  
   
30      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
31    
32      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());
# Line 57  namespace LinuxSampler { namespace gig { Line 55  namespace LinuxSampler { namespace gig {
55          pLFO1  = NULL;          pLFO1  = NULL;
56          pLFO2  = NULL;          pLFO2  = NULL;
57          pLFO3  = NULL;          pLFO3  = NULL;
58            KeyGroup = 0;
59      }      }
60    
61      Voice::~Voice() {      Voice::~Voice() {
# Line 104  namespace LinuxSampler { namespace gig { Line 103  namespace LinuxSampler { namespace gig {
103       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
104       *  needed.       *  needed.
105       *       *
106       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pNoteOnEvent        - event that caused triggering of this voice
107       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)
108       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data
109       *  @param iLayer       - layer number this voice refers to (only if this is a layered sound of course)       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)
110       *  @returns            0 on success, a value < 0 if something failed       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)
111         *  @returns 0 on success, a value < 0 if something failed
112       */       */
113      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer) {      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice) {
114          if (!pInstrument) {          if (!pInstrument) {
115             dmsg(1,("voice::trigger: !pInstrument\n"));             dmsg(1,("voice::trigger: !pInstrument\n"));
116             exit(EXIT_FAILURE);             exit(EXIT_FAILURE);
117          }          }
118    
119            Type            = type_normal;
120          Active          = true;          Active          = true;
121          MIDIKey         = pNoteOnEvent->Key;          MIDIKey         = pNoteOnEvent->Param.Note.Key;
122          pRegion         = pInstrument->GetRegion(MIDIKey);          pRegion         = pInstrument->GetRegion(MIDIKey);
123          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
         Pos             = 0;  
124          Delay           = pNoteOnEvent->FragmentPos();          Delay           = pNoteOnEvent->FragmentPos();
125          pTriggerEvent   = pNoteOnEvent;          pTriggerEvent   = pNoteOnEvent;
126            pKillEvent      = NULL;
127    
128          if (!pRegion) {          if (!pRegion) {
129              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;
130              Kill();              KillImmediately();
131              return -1;              return -1;
132          }          }
133    
134            KeyGroup = pRegion->KeyGroup;
135    
136          // get current dimension values to select the right dimension region          // get current dimension values to select the right dimension region
137          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          //FIXME: controller values for selecting the dimension region here are currently not sample accurate
138          uint DimValues[5] = {0,0,0,0,0};          uint DimValues[5] = {0,0,0,0,0};
# Line 143  namespace LinuxSampler { namespace gig { Line 146  namespace LinuxSampler { namespace gig {
146                      // if this is the 1st layer then spawn further voices for all the other layers                      // if this is the 1st layer then spawn further voices for all the other layers
147                      if (iLayer == 0)                      if (iLayer == 0)
148                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)
149                              pEngine->LaunchVoice(pNoteOnEvent, iNewLayer);                              pEngine->LaunchVoice(pNoteOnEvent, iNewLayer, ReleaseTriggerVoice);
150                      break;                      break;
151                  case ::gig::dimension_velocity:                  case ::gig::dimension_velocity:
152                      DimValues[i] = pNoteOnEvent->Velocity;                      DimValues[i] = pNoteOnEvent->Param.Note.Velocity;
153                      break;                      break;
154                  case ::gig::dimension_channelaftertouch:                  case ::gig::dimension_channelaftertouch:
155                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      DimValues[i] = 0; //TODO: we currently ignore this dimension
156                      break;                      break;
157                  case ::gig::dimension_releasetrigger:                  case ::gig::dimension_releasetrigger:
158                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;
159                        DimValues[i] = (uint) ReleaseTriggerVoice;
160                      break;                      break;
161                  case ::gig::dimension_keyboard:                  case ::gig::dimension_keyboard:
162                      DimValues[i] = (uint) pNoteOnEvent->Key;                      DimValues[i] = (uint) pNoteOnEvent->Param.Note.Key;
163                      break;                      break;
164                  case ::gig::dimension_modwheel:                  case ::gig::dimension_modwheel:
165                      DimValues[i] = pEngine->ControllerTable[1];                      DimValues[i] = pEngine->ControllerTable[1];
# Line 233  namespace LinuxSampler { namespace gig { Line 237  namespace LinuxSampler { namespace gig {
237                      std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;                      std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;
238              }              }
239          }          }
240          ::gig::DimensionRegion* pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);
241    
242            // get starting crossfade volume level
243            switch (pDimRgn->AttenuationController.type) {
244                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
245                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
246                    break;
247                case ::gig::attenuation_ctrl_t::type_velocity:
248                    CrossfadeVolume = CrossfadeAttenuation(pNoteOnEvent->Param.Note.Velocity);
249                    break;
250                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
251                    CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);
252                    break;
253                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
254                default:
255                    CrossfadeVolume = 1.0f;
256            }
257    
258            const float fpan = float(RTMath::Max(RTMath::Min(pDimRgn->Pan, 63), -64)) / 64.0f;
259            PanLeft  = 1.0f - fpan;
260            PanRight = 1.0f + fpan;
261    
262          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          pSample = pDimRgn->pSample; // sample won't change until the voice is finished
263    
264            Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
265    
266          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
267          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
268          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
# Line 253  namespace LinuxSampler { namespace gig { Line 279  namespace LinuxSampler { namespace gig {
279    
280              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
281                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
282                  Kill();                  KillImmediately();
283                  return -1;                  return -1;
284              }              }
285              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
# Line 271  namespace LinuxSampler { namespace gig { Line 297  namespace LinuxSampler { namespace gig {
297    
298          // calculate initial pitch value          // calculate initial pitch value
299          {          {
300              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];
301              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
302              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));
303              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
304          }          }
305    
306    
307          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
308    
309    
310          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
# Line 293  namespace LinuxSampler { namespace gig { Line 319  namespace LinuxSampler { namespace gig {
319                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
320                      break;                      break;
321                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
322                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = pNoteOnEvent->Param.Note.Velocity;
323                      break;                      break;
324                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
325                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];
# Line 332  namespace LinuxSampler { namespace gig { Line 358  namespace LinuxSampler { namespace gig {
358                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
359                      break;                      break;
360                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
361                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = pNoteOnEvent->Param.Note.Velocity;
362                      break;                      break;
363                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
364                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];
# Line 560  namespace LinuxSampler { namespace gig { Line 586  namespace LinuxSampler { namespace gig {
586    
587              // calculate cutoff frequency              // calculate cutoff frequency
588              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = (!VCFCutoffCtrl.controller)
589                  ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX                  ? exp((float) (127 - pNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX
590                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;
591    
592              // calculate resonance              // calculate resonance
593              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
594              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
595                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (pNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
596              }              }
597              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
598    
# Line 584  namespace LinuxSampler { namespace gig { Line 610  namespace LinuxSampler { namespace gig {
610          }          }
611      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
612    
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
   
613          return 0; // success          return 0; // success
614      }      }
615    
# Line 605  namespace LinuxSampler { namespace gig { Line 627  namespace LinuxSampler { namespace gig {
627      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
628    
629          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
630          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);
631          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
632      #if ENABLE_FILTER      #if ENABLE_FILTER
633          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
# Line 618  namespace LinuxSampler { namespace gig { Line 640  namespace LinuxSampler { namespace gig {
640    
641    
642          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
643          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, pKillEvent);
644      #if ENABLE_FILTER      #if ENABLE_FILTER
645          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
646      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
# Line 639  namespace LinuxSampler { namespace gig { Line 661  namespace LinuxSampler { namespace gig {
661    
662              case playback_state_ram: {              case playback_state_ram: {
663                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
664                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
665                      if (DiskVoice) {                      if (DiskVoice) {
666                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
667                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 659  namespace LinuxSampler { namespace gig { Line 681  namespace LinuxSampler { namespace gig {
681                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
682                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
683                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
684                              Kill();                              KillImmediately();
685                              return;                              return;
686                          }                          }
687                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));
# Line 673  namespace LinuxSampler { namespace gig { Line 695  namespace LinuxSampler { namespace gig {
695                      }                      }
696    
697                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
698                      Interpolate(Samples, ptr, Delay);                      InterpolateNoLoop(Samples, ptr, Delay);
699                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);
700                      Pos -= RTMath::DoubleToInt(Pos);                      Pos -= RTMath::DoubleToInt(Pos);
701                  }                  }
702                  break;                  break;
703    
704              case playback_state_end:              case playback_state_end:
705                  Kill(); // free voice                  KillImmediately(); // free voice
706                  break;                  break;
707          }          }
708    
709    
     #if ENABLE_FILTER  
710          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
711            pEngine->pSynthesisEvents[Event::destination_vca]->clear();
712        #if ENABLE_FILTER
713          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();
714          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();
715      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
# Line 730  namespace LinuxSampler { namespace gig { Line 753  namespace LinuxSampler { namespace gig {
753              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();
754          }          }
755          while (pCCEvent) {          while (pCCEvent) {
756              if (pCCEvent->Controller) { // if valid MIDI controller              if (pCCEvent->Param.CC.Controller) { // if valid MIDI controller
757                  #if ENABLE_FILTER                  #if ENABLE_FILTER
758                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {                  if (pCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
759                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);
760                  }                  }
761                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (pCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
762                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);
763                  }                  }
764                  #endif // ENABLE_FILTER                  #endif // ENABLE_FILTER
765                  if (pCCEvent->Controller == pLFO1->ExtController) {                  if (pCCEvent->Param.CC.Controller == pLFO1->ExtController) {
766                      pLFO1->SendEvent(pCCEvent);                      pLFO1->SendEvent(pCCEvent);
767                  }                  }
768                  #if ENABLE_FILTER                  #if ENABLE_FILTER
769                  if (pCCEvent->Controller == pLFO2->ExtController) {                  if (pCCEvent->Param.CC.Controller == pLFO2->ExtController) {
770                      pLFO2->SendEvent(pCCEvent);                      pLFO2->SendEvent(pCCEvent);
771                  }                  }
772                  #endif // ENABLE_FILTER                  #endif // ENABLE_FILTER
773                  if (pCCEvent->Controller == pLFO3->ExtController) {                  if (pCCEvent->Param.CC.Controller == pLFO3->ExtController) {
774                      pLFO3->SendEvent(pCCEvent);                      pLFO3->SendEvent(pCCEvent);
775                  }                  }
776                    if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
777                        pCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
778                        pEngine->pSynthesisEvents[Event::destination_vca]->alloc_assign(*pCCEvent);
779                    }
780              }              }
781    
782              pCCEvent = pEngine->pCCEvents->next();              pCCEvent = pEngine->pCCEvents->next();
# Line 777  namespace LinuxSampler { namespace gig { Line 804  namespace LinuxSampler { namespace gig {
804                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
805                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;
806    
807                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
808    
809                  // apply pitch value to the pitch parameter sequence                  // apply pitch value to the pitch parameter sequence
810                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {
# Line 789  namespace LinuxSampler { namespace gig { Line 816  namespace LinuxSampler { namespace gig {
816              if (pVCOEventList->last()) this->PitchBend = pitch;              if (pVCOEventList->last()) this->PitchBend = pitch;
817          }          }
818    
819            // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
820            {
821                RTEList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];
822                Event* pVCAEvent = pVCAEventList->first();
823                if (Delay) { // skip events that happened before this voice was triggered
824                    while (pVCAEvent && pVCAEvent->FragmentPos() <= Delay) pVCAEvent = pVCAEventList->next();
825                }
826                float crossfadevolume;
827                while (pVCAEvent) {
828                    Event* pNextVCAEvent = pVCAEventList->next();
829    
830                    // calculate the influence length of this event (in sample points)
831                    uint end = (pNextVCAEvent) ? pNextVCAEvent->FragmentPos() : Samples;
832    
833                    crossfadevolume = CrossfadeAttenuation(pVCAEvent->Param.CC.Value);
834    
835                    float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;
836    
837                    // apply volume value to the volume parameter sequence
838                    for (uint i = pVCAEvent->FragmentPos(); i < end; i++) {
839                        pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;
840                    }
841    
842                    pVCAEvent = pNextVCAEvent;
843                }
844                if (pVCAEventList->last()) this->CrossfadeVolume = crossfadevolume;
845            }
846    
847      #if ENABLE_FILTER      #if ENABLE_FILTER
848          // process filter cutoff events          // process filter cutoff events
# Line 805  namespace LinuxSampler { namespace gig { Line 859  namespace LinuxSampler { namespace gig {
859                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
860                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;
861    
862                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  cutoff = exp((float) pCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;
863    
864                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
865                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {
# Line 831  namespace LinuxSampler { namespace gig { Line 885  namespace LinuxSampler { namespace gig {
885                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;
886    
887                  // convert absolute controller value to differential                  // convert absolute controller value to differential
888                  int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;                  int ctrldelta = pResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;
889                  VCFResonanceCtrl.value = pResonanceEvent->Value;                  VCFResonanceCtrl.value = pResonanceEvent->Param.CC.Value;
890    
891                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
892    
# Line 843  namespace LinuxSampler { namespace gig { Line 897  namespace LinuxSampler { namespace gig {
897    
898                  pResonanceEvent = pNextResonanceEvent;                  pResonanceEvent = pNextResonanceEvent;
899              }              }
900              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
901          }          }
902      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
903      }      }
# Line 895  namespace LinuxSampler { namespace gig { Line 949  namespace LinuxSampler { namespace gig {
949      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
950    
951      /**      /**
952       *  Interpolates the input audio data (no loop).       *  Interpolates the input audio data (without looping).
953       *       *
954       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
955       *                   fragment cycle       *                   fragment cycle
956       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
957       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
958       */       */
959      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {
960          int i = Skip;          int i = Skip;
961    
962          // FIXME: assuming either mono or stereo          // FIXME: assuming either mono or stereo
963          if (this->pSample->Channels == 2) { // Stereo Sample          if (this->pSample->Channels == 2) { // Stereo Sample
964              while (i < Samples) {              while (i < Samples) InterpolateStereo(pSrc, i);
                 InterpolateOneStep_Stereo(pSrc, i,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
965          }          }
966          else { // Mono Sample          else { // Mono Sample
967              while (i < Samples) {              while (i < Samples) InterpolateMono(pSrc, i);
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
968          }          }
969      }      }
970    
# Line 942  namespace LinuxSampler { namespace gig { Line 984  namespace LinuxSampler { namespace gig {
984              if (pSample->LoopPlayCount) {              if (pSample->LoopPlayCount) {
985                  // render loop (loop count limited)                  // render loop (loop count limited)
986                  while (i < Samples && LoopCyclesLeft) {                  while (i < Samples && LoopCyclesLeft) {
987                      InterpolateOneStep_Stereo(pSrc, i,                      InterpolateStereo(pSrc, i);
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
988                      if (Pos > pSample->LoopEnd) {                      if (Pos > pSample->LoopEnd) {
989                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;
990                          LoopCyclesLeft--;                          LoopCyclesLeft--;
991                      }                      }
992                  }                  }
993                  // render on without loop                  // render on without loop
994                  while (i < Samples) {                  while (i < Samples) InterpolateStereo(pSrc, i);
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                 }  
995              }              }
996              else { // render loop (endless loop)              else { // render loop (endless loop)
997                  while (i < Samples) {                  while (i < Samples) {
998                      InterpolateOneStep_Stereo(pSrc, i,                      InterpolateStereo(pSrc, i);
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
999                      if (Pos > pSample->LoopEnd) {                      if (Pos > pSample->LoopEnd) {
1000                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);
1001                      }                      }
# Line 978  namespace LinuxSampler { namespace gig { Line 1006  namespace LinuxSampler { namespace gig {
1006              if (pSample->LoopPlayCount) {              if (pSample->LoopPlayCount) {
1007                  // render loop (loop count limited)                  // render loop (loop count limited)
1008                  while (i < Samples && LoopCyclesLeft) {                  while (i < Samples && LoopCyclesLeft) {
1009                      InterpolateOneStep_Mono(pSrc, i,                      InterpolateMono(pSrc, i);
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
1010                      if (Pos > pSample->LoopEnd) {                      if (Pos > pSample->LoopEnd) {
1011                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;
1012                          LoopCyclesLeft--;                          LoopCyclesLeft--;
1013                      }                      }
1014                  }                  }
1015                  // render on without loop                  // render on without loop
1016                  while (i < Samples) {                  while (i < Samples) InterpolateMono(pSrc, i);
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
1017              }              }
1018              else { // render loop (endless loop)              else { // render loop (endless loop)
1019                  while (i < Samples) {                  while (i < Samples) {
1020                      InterpolateOneStep_Mono(pSrc, i,                      InterpolateMono(pSrc, i);
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
1021                      if (Pos > pSample->LoopEnd) {                      if (Pos > pSample->LoopEnd) {
1022                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;
1023                      }                      }
# Line 1013  namespace LinuxSampler { namespace gig { Line 1027  namespace LinuxSampler { namespace gig {
1027      }      }
1028    
1029      /**      /**
1030       *  Immediately kill the voice.       *  Immediately kill the voice. This method should not be used to kill
1031         *  a normal, active voice, because it doesn't take care of things like
1032         *  fading down the volume level to avoid clicks and regular processing
1033         *  until the kill event actually occured!
1034         *
1035         *  @see Kill()
1036       */       */
1037      void Voice::Kill() {      void Voice::KillImmediately() {
1038          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
1039              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
1040          }          }
1041          Reset();          Reset();
1042      }      }
1043    
1044        /**
1045         *  Kill the voice in regular sense. Let the voice render audio until
1046         *  the kill event actually occured and then fade down the volume level
1047         *  very quickly and let the voice die finally. Unlike a normal release
1048         *  of a voice, a kill process cannot be cancalled and is therefore
1049         *  usually used for voice stealing and key group conflicts.
1050         *
1051         *  @param pKillEvent - event which caused the voice to be killed
1052         */
1053        void Voice::Kill(Event* pKillEvent) {
1054            if (pTriggerEvent && pKillEvent->FragmentPos() <= pTriggerEvent->FragmentPos()) return;
1055            this->pKillEvent = pKillEvent;
1056        }
1057    
1058  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.233  
changed lines
  Added in v.247

  ViewVC Help
Powered by ViewVC