/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 233 by schoenebeck, Tue Sep 7 09:32:21 2004 UTC revision 271 by schoenebeck, Fri Oct 8 20:51:39 2004 UTC
# Line 27  Line 27 
27    
28  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
29    
     // TODO: no support for crossfades yet  
   
30      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
31    
32      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());
# Line 57  namespace LinuxSampler { namespace gig { Line 55  namespace LinuxSampler { namespace gig {
55          pLFO1  = NULL;          pLFO1  = NULL;
56          pLFO2  = NULL;          pLFO2  = NULL;
57          pLFO3  = NULL;          pLFO3  = NULL;
58            KeyGroup = 0;
59      }      }
60    
61      Voice::~Voice() {      Voice::~Voice() {
# Line 104  namespace LinuxSampler { namespace gig { Line 103  namespace LinuxSampler { namespace gig {
103       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
104       *  needed.       *  needed.
105       *       *
106       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param itNoteOnEvent       - event that caused triggering of this voice
107       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)
108       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data
109       *  @param iLayer       - layer number this voice refers to (only if this is a layered sound of course)       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)
110       *  @returns            0 on success, a value < 0 if something failed       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)
111         *  @returns 0 on success, a value < 0 if something failed
112       */       */
113      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer) {      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice) {
114          if (!pInstrument) {          if (!pInstrument) {
115             dmsg(1,("voice::trigger: !pInstrument\n"));             dmsg(1,("voice::trigger: !pInstrument\n"));
116             exit(EXIT_FAILURE);             exit(EXIT_FAILURE);
117          }          }
118    
119            Type            = type_normal;
120          Active          = true;          Active          = true;
121          MIDIKey         = pNoteOnEvent->Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
122          pRegion         = pInstrument->GetRegion(MIDIKey);          pRegion         = pInstrument->GetRegion(MIDIKey);
123          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
124          Pos             = 0;          Delay           = itNoteOnEvent->FragmentPos();
125          Delay           = pNoteOnEvent->FragmentPos();          itTriggerEvent  = itNoteOnEvent;
126          pTriggerEvent   = pNoteOnEvent;          itKillEvent     = Pool<Event>::Iterator();
127    
128          if (!pRegion) {          if (!pRegion) {
129              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;
130              Kill();              KillImmediately();
131              return -1;              return -1;
132          }          }
133    
134            KeyGroup = pRegion->KeyGroup;
135    
136          // get current dimension values to select the right dimension region          // get current dimension values to select the right dimension region
137          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          //FIXME: controller values for selecting the dimension region here are currently not sample accurate
138          uint DimValues[5] = {0,0,0,0,0};          uint DimValues[5] = {0,0,0,0,0};
# Line 143  namespace LinuxSampler { namespace gig { Line 146  namespace LinuxSampler { namespace gig {
146                      // if this is the 1st layer then spawn further voices for all the other layers                      // if this is the 1st layer then spawn further voices for all the other layers
147                      if (iLayer == 0)                      if (iLayer == 0)
148                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)
149                              pEngine->LaunchVoice(pNoteOnEvent, iNewLayer);                              pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice);
150                      break;                      break;
151                  case ::gig::dimension_velocity:                  case ::gig::dimension_velocity:
152                      DimValues[i] = pNoteOnEvent->Velocity;                      DimValues[i] = itNoteOnEvent->Param.Note.Velocity;
153                      break;                      break;
154                  case ::gig::dimension_channelaftertouch:                  case ::gig::dimension_channelaftertouch:
155                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      DimValues[i] = 0; //TODO: we currently ignore this dimension
156                      break;                      break;
157                  case ::gig::dimension_releasetrigger:                  case ::gig::dimension_releasetrigger:
158                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;
159                        DimValues[i] = (uint) ReleaseTriggerVoice;
160                      break;                      break;
161                  case ::gig::dimension_keyboard:                  case ::gig::dimension_keyboard:
162                      DimValues[i] = (uint) pNoteOnEvent->Key;                      DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;
163                      break;                      break;
164                  case ::gig::dimension_modwheel:                  case ::gig::dimension_modwheel:
165                      DimValues[i] = pEngine->ControllerTable[1];                      DimValues[i] = pEngine->ControllerTable[1];
# Line 233  namespace LinuxSampler { namespace gig { Line 237  namespace LinuxSampler { namespace gig {
237                      std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;                      std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;
238              }              }
239          }          }
240          ::gig::DimensionRegion* pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);
241    
242            // get starting crossfade volume level
243            switch (pDimRgn->AttenuationController.type) {
244                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
245                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
246                    break;
247                case ::gig::attenuation_ctrl_t::type_velocity:
248                    CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
249                    break;
250                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
251                    CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);
252                    break;
253                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
254                default:
255                    CrossfadeVolume = 1.0f;
256            }
257    
258            PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
259            PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
260    
261          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          pSample = pDimRgn->pSample; // sample won't change until the voice is finished
262    
263            Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
264    
265          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
266          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
267          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
# Line 253  namespace LinuxSampler { namespace gig { Line 278  namespace LinuxSampler { namespace gig {
278    
279              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
280                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
281                  Kill();                  KillImmediately();
282                  return -1;                  return -1;
283              }              }
284              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
# Line 271  namespace LinuxSampler { namespace gig { Line 296  namespace LinuxSampler { namespace gig {
296    
297          // calculate initial pitch value          // calculate initial pitch value
298          {          {
299              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];
300              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
301              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));
302              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
303          }          }
304    
305    
306          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
307    
308    
309          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
# Line 293  namespace LinuxSampler { namespace gig { Line 318  namespace LinuxSampler { namespace gig {
318                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
319                      break;                      break;
320                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
321                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
322                      break;                      break;
323                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
324                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];
# Line 332  namespace LinuxSampler { namespace gig { Line 357  namespace LinuxSampler { namespace gig {
357                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
358                      break;                      break;
359                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
360                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
361                      break;                      break;
362                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
363                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];
# Line 560  namespace LinuxSampler { namespace gig { Line 585  namespace LinuxSampler { namespace gig {
585    
586              // calculate cutoff frequency              // calculate cutoff frequency
587              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = (!VCFCutoffCtrl.controller)
588                  ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX
589                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;
590    
591              // calculate resonance              // calculate resonance
592              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
593              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
594                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
595              }              }
596              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
597    
# Line 584  namespace LinuxSampler { namespace gig { Line 609  namespace LinuxSampler { namespace gig {
609          }          }
610      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
611    
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
   
612          return 0; // success          return 0; // success
613      }      }
614    
# Line 605  namespace LinuxSampler { namespace gig { Line 626  namespace LinuxSampler { namespace gig {
626      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
627    
628          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
629          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);
630          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
631      #if ENABLE_FILTER      #if ENABLE_FILTER
632          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
# Line 618  namespace LinuxSampler { namespace gig { Line 639  namespace LinuxSampler { namespace gig {
639    
640    
641          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
642          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
643      #if ENABLE_FILTER      #if ENABLE_FILTER
644          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
645      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
646          pEG3->Process(Samples);          pEG3->Process(Samples);
647          pLFO1->Process(Samples);          pLFO1->Process(Samples);
# Line 639  namespace LinuxSampler { namespace gig { Line 660  namespace LinuxSampler { namespace gig {
660    
661              case playback_state_ram: {              case playback_state_ram: {
662                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
663                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
664                      if (DiskVoice) {                      if (DiskVoice) {
665                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
666                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 659  namespace LinuxSampler { namespace gig { Line 680  namespace LinuxSampler { namespace gig {
680                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
681                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
682                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
683                              Kill();                              KillImmediately();
684                              return;                              return;
685                          }                          }
686                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));
# Line 673  namespace LinuxSampler { namespace gig { Line 694  namespace LinuxSampler { namespace gig {
694                      }                      }
695    
696                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
697                      Interpolate(Samples, ptr, Delay);                      InterpolateNoLoop(Samples, ptr, Delay);
698                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);
699                      Pos -= RTMath::DoubleToInt(Pos);                      Pos -= RTMath::DoubleToInt(Pos);
700                  }                  }
701                  break;                  break;
702    
703              case playback_state_end:              case playback_state_end:
704                  Kill(); // free voice                  KillImmediately(); // free voice
705                  break;                  break;
706          }          }
707    
708    
     #if ENABLE_FILTER  
709          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
710            pEngine->pSynthesisEvents[Event::destination_vca]->clear();
711        #if ENABLE_FILTER
712          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();
713          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();
714      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
# Line 694  namespace LinuxSampler { namespace gig { Line 716  namespace LinuxSampler { namespace gig {
716          // Reset delay          // Reset delay
717          Delay = 0;          Delay = 0;
718    
719          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
720    
721          // If release stage finished, let the voice be killed          // If release stage finished, let the voice be killed
722          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;
# Line 725  namespace LinuxSampler { namespace gig { Line 747  namespace LinuxSampler { namespace gig {
747      void Voice::ProcessEvents(uint Samples) {      void Voice::ProcessEvents(uint Samples) {
748    
749          // dispatch control change events          // dispatch control change events
750          Event* pCCEvent = pEngine->pCCEvents->first();          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();
751          if (Delay) { // skip events that happened before this voice was triggered          if (Delay) { // skip events that happened before this voice was triggered
752              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;
753          }          }
754          while (pCCEvent) {          while (itCCEvent) {
755              if (pCCEvent->Controller) { // if valid MIDI controller              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
756                  #if ENABLE_FILTER                  #if ENABLE_FILTER
757                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
758                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
759                  }                  }
760                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
761                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
762                  }                  }
763                  #endif // ENABLE_FILTER                  #endif // ENABLE_FILTER
764                  if (pCCEvent->Controller == pLFO1->ExtController) {                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
765                      pLFO1->SendEvent(pCCEvent);                      pLFO1->SendEvent(itCCEvent);
766                  }                  }
767                  #if ENABLE_FILTER                  #if ENABLE_FILTER
768                  if (pCCEvent->Controller == pLFO2->ExtController) {                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
769                      pLFO2->SendEvent(pCCEvent);                      pLFO2->SendEvent(itCCEvent);
770                  }                  }
771                  #endif // ENABLE_FILTER                  #endif // ENABLE_FILTER
772                  if (pCCEvent->Controller == pLFO3->ExtController) {                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
773                      pLFO3->SendEvent(pCCEvent);                      pLFO3->SendEvent(itCCEvent);
774                    }
775                    if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
776                        itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
777                        *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;
778                  }                  }
779              }              }
780    
781              pCCEvent = pEngine->pCCEvents->next();              ++itCCEvent;
782          }          }
783    
784    
785          // process pitch events          // process pitch events
786          {          {
787              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];
788              Event* pVCOEvent = pVCOEventList->first();              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();
789              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
790                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;
791              }              }
792              // apply old pitchbend value until first pitch event occurs              // apply old pitchbend value until first pitch event occurs
793              if (this->PitchBend != 1.0) {              if (this->PitchBend != 1.0) {
794                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;
795                  for (uint i = Delay; i < end; i++) {                  for (uint i = Delay; i < end; i++) {
796                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;
797                  }                  }
798              }              }
799              float pitch;              float pitch;
800              while (pVCOEvent) {              while (itVCOEvent) {
801                  Event* pNextVCOEvent = pVCOEventList->next();                  RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;
802                    ++itNextVCOEvent;
803    
804                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
805                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;                  uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;
806    
807                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents                  pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
808    
809                  // apply pitch value to the pitch parameter sequence                  // apply pitch value to the pitch parameter sequence
810                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {
811                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;
812                  }                  }
813    
814                  pVCOEvent = pNextVCOEvent;                  itVCOEvent = itNextVCOEvent;
815              }              }
816              if (pVCOEventList->last()) this->PitchBend = pitch;              if (!pVCOEventList->isEmpty()) this->PitchBend = pitch;
817          }          }
818    
819            // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
820            {
821                RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];
822                RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();
823                if (Delay) { // skip events that happened before this voice was triggered
824                    while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;
825                }
826                float crossfadevolume;
827                while (itVCAEvent) {
828                    RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;
829                    ++itNextVCAEvent;
830    
831                    // calculate the influence length of this event (in sample points)
832                    uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;
833    
834                    crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);
835    
836                    float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;
837    
838                    // apply volume value to the volume parameter sequence
839                    for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {
840                        pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;
841                    }
842    
843                    itVCAEvent = itNextVCAEvent;
844                }
845                if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
846            }
847    
848      #if ENABLE_FILTER      #if ENABLE_FILTER
849          // process filter cutoff events          // process filter cutoff events
850          {          {
851              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];              RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];
852              Event* pCutoffEvent = pCutoffEventList->first();              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();
853              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
854                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;
855              }              }
856              float cutoff;              float cutoff;
857              while (pCutoffEvent) {              while (itCutoffEvent) {
858                  Event* pNextCutoffEvent = pCutoffEventList->next();                  RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;
859                    ++itNextCutoffEvent;
860    
861                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
862                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;
863    
864                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;
865    
866                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
867                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {
868                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;
869                  }                  }
870    
871                  pCutoffEvent = pNextCutoffEvent;                  itCutoffEvent = itNextCutoffEvent;
872              }              }
873              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time
874          }          }
875    
876          // process filter resonance events          // process filter resonance events
877          {          {
878              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];
879              Event* pResonanceEvent = pResonanceEventList->first();              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();
880              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
881                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;
882              }              }
883              while (pResonanceEvent) {              while (itResonanceEvent) {
884                  Event* pNextResonanceEvent = pResonanceEventList->next();                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;
885                    ++itNextResonanceEvent;
886    
887                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
888                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;
889    
890                  // convert absolute controller value to differential                  // convert absolute controller value to differential
891                  int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;                  int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;
892                  VCFResonanceCtrl.value = pResonanceEvent->Value;                  VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;
893    
894                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
895    
896                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
897                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {
898                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;
899                  }                  }
900    
901                  pResonanceEvent = pNextResonanceEvent;                  itResonanceEvent = itNextResonanceEvent;
902              }              }
903              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
904          }          }
905      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
906      }      }
# Line 895  namespace LinuxSampler { namespace gig { Line 952  namespace LinuxSampler { namespace gig {
952      #endif // ENABLE_FILTER      #endif // ENABLE_FILTER
953    
954      /**      /**
955       *  Interpolates the input audio data (no loop).       *  Interpolates the input audio data (without looping).
956       *       *
957       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
958       *                   fragment cycle       *                   fragment cycle
959       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
960       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
961       */       */
962      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {
963          int i = Skip;          int i = Skip;
964    
965          // FIXME: assuming either mono or stereo          // FIXME: assuming either mono or stereo
966          if (this->pSample->Channels == 2) { // Stereo Sample          if (this->pSample->Channels == 2) { // Stereo Sample
967              while (i < Samples) {              while (i < Samples) InterpolateStereo(pSrc, i);
                 InterpolateOneStep_Stereo(pSrc, i,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
968          }          }
969          else { // Mono Sample          else { // Mono Sample
970              while (i < Samples) {              while (i < Samples) InterpolateMono(pSrc, i);
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
971          }          }
972      }      }
973    
# Line 942  namespace LinuxSampler { namespace gig { Line 987  namespace LinuxSampler { namespace gig {
987              if (pSample->LoopPlayCount) {              if (pSample->LoopPlayCount) {
988                  // render loop (loop count limited)                  // render loop (loop count limited)
989                  while (i < Samples && LoopCyclesLeft) {                  while (i < Samples && LoopCyclesLeft) {
990                      InterpolateOneStep_Stereo(pSrc, i,                      InterpolateStereo(pSrc, i);
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
991                      if (Pos > pSample->LoopEnd) {                      if (Pos > pSample->LoopEnd) {
992                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;
993                          LoopCyclesLeft--;                          LoopCyclesLeft--;
994                      }                      }
995                  }                  }
996                  // render on without loop                  // render on without loop
997                  while (i < Samples) {                  while (i < Samples) InterpolateStereo(pSrc, i);
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                 }  
998              }              }
999              else { // render loop (endless loop)              else { // render loop (endless loop)
1000                  while (i < Samples) {                  while (i < Samples) {
1001                      InterpolateOneStep_Stereo(pSrc, i,                      InterpolateStereo(pSrc, i);
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
1002                      if (Pos > pSample->LoopEnd) {                      if (Pos > pSample->LoopEnd) {
1003                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);
1004                      }                      }
# Line 978  namespace LinuxSampler { namespace gig { Line 1009  namespace LinuxSampler { namespace gig {
1009              if (pSample->LoopPlayCount) {              if (pSample->LoopPlayCount) {
1010                  // render loop (loop count limited)                  // render loop (loop count limited)
1011                  while (i < Samples && LoopCyclesLeft) {                  while (i < Samples && LoopCyclesLeft) {
1012                      InterpolateOneStep_Mono(pSrc, i,                      InterpolateMono(pSrc, i);
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
1013                      if (Pos > pSample->LoopEnd) {                      if (Pos > pSample->LoopEnd) {
1014                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;
1015                          LoopCyclesLeft--;                          LoopCyclesLeft--;
1016                      }                      }
1017                  }                  }
1018                  // render on without loop                  // render on without loop
1019                  while (i < Samples) {                  while (i < Samples) InterpolateMono(pSrc, i);
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
1020              }              }
1021              else { // render loop (endless loop)              else { // render loop (endless loop)
1022                  while (i < Samples) {                  while (i < Samples) {
1023                      InterpolateOneStep_Mono(pSrc, i,                      InterpolateMono(pSrc, i);
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
1024                      if (Pos > pSample->LoopEnd) {                      if (Pos > pSample->LoopEnd) {
1025                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;
1026                      }                      }
# Line 1013  namespace LinuxSampler { namespace gig { Line 1030  namespace LinuxSampler { namespace gig {
1030      }      }
1031    
1032      /**      /**
1033       *  Immediately kill the voice.       *  Immediately kill the voice. This method should not be used to kill
1034         *  a normal, active voice, because it doesn't take care of things like
1035         *  fading down the volume level to avoid clicks and regular processing
1036         *  until the kill event actually occured!
1037         *
1038         *  @see Kill()
1039       */       */
1040      void Voice::Kill() {      void Voice::KillImmediately() {
1041          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
1042              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
1043          }          }
1044          Reset();          Reset();
1045      }      }
1046    
1047        /**
1048         *  Kill the voice in regular sense. Let the voice render audio until
1049         *  the kill event actually occured and then fade down the volume level
1050         *  very quickly and let the voice die finally. Unlike a normal release
1051         *  of a voice, a kill process cannot be cancalled and is therefore
1052         *  usually used for voice stealing and key group conflicts.
1053         *
1054         *  @param itKillEvent - event which caused the voice to be killed
1055         */
1056        void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
1057            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
1058            this->itKillEvent = itKillEvent;
1059        }
1060    
1061  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.233  
changed lines
  Added in v.271

  ViewVC Help
Powered by ViewVC