/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 233 by schoenebeck, Tue Sep 7 09:32:21 2004 UTC revision 425 by persson, Sat Mar 5 07:27:48 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 22  Line 23 
23    
24  #include "EGADSR.h"  #include "EGADSR.h"
25  #include "Manipulator.h"  #include "Manipulator.h"
26    #include "../../common/Features.h"
27    #include "Synthesizer.h"
28    
29  #include "Voice.h"  #include "Voice.h"
30    
31  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
32    
     // TODO: no support for crossfades yet  
   
33      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
34    
35      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());
# Line 47  namespace LinuxSampler { namespace gig { Line 48  namespace LinuxSampler { namespace gig {
48      Voice::Voice() {      Voice::Voice() {
49          pEngine     = NULL;          pEngine     = NULL;
50          pDiskThread = NULL;          pDiskThread = NULL;
51          Active = false;          PlaybackState = playback_state_end;
52          pEG1   = NULL;          pEG1   = NULL;
53          pEG2   = NULL;          pEG2   = NULL;
54          pEG3   = NULL;          pEG3   = NULL;
# Line 57  namespace LinuxSampler { namespace gig { Line 58  namespace LinuxSampler { namespace gig {
58          pLFO1  = NULL;          pLFO1  = NULL;
59          pLFO2  = NULL;          pLFO2  = NULL;
60          pLFO3  = NULL;          pLFO3  = NULL;
61            KeyGroup = 0;
62            SynthesisMode = 0; // set all mode bits to 0 first
63            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
64            #if ARCH_X86
65            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
66            #else
67            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
68            #endif
69            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);
70    
71            FilterLeft.Reset();
72            FilterRight.Reset();
73      }      }
74    
75      Voice::~Voice() {      Voice::~Voice() {
# Line 104  namespace LinuxSampler { namespace gig { Line 117  namespace LinuxSampler { namespace gig {
117       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
118       *  needed.       *  needed.
119       *       *
120       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel      - engine channel on which this voice was ordered
121       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent       - event that caused triggering of this voice
122       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)
123       *  @param iLayer       - layer number this voice refers to (only if this is a layered sound of course)       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data
124       *  @returns            0 on success, a value < 0 if something failed       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)
125         *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)
126         *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices
127         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
128         *           (either due to an error or e.g. because no region is
129         *           defined for the given key)
130       */       */
131      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {
132            this->pEngineChannel = pEngineChannel;
133          if (!pInstrument) {          if (!pInstrument) {
134             dmsg(1,("voice::trigger: !pInstrument\n"));             dmsg(1,("voice::trigger: !pInstrument\n"));
135             exit(EXIT_FAILURE);             exit(EXIT_FAILURE);
136          }          }
137            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // FIXME: should be removed before the final release (purpose: just a sanity check for debugging)
138                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
139            }
140    
141          Active          = true;          Type            = type_normal;
142          MIDIKey         = pNoteOnEvent->Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
143          pRegion         = pInstrument->GetRegion(MIDIKey);          pRegion         = pInstrument->GetRegion(MIDIKey);
144          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
145          Pos             = 0;          Delay           = itNoteOnEvent->FragmentPos();
146          Delay           = pNoteOnEvent->FragmentPos();          itTriggerEvent  = itNoteOnEvent;
147          pTriggerEvent   = pNoteOnEvent;          itKillEvent     = Pool<Event>::Iterator();
148            itChildVoice    = Pool<Voice>::Iterator();
149    
150          if (!pRegion) {          if (!pRegion) {
151              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;              dmsg(4, ("gig::Voice: No Region defined for MIDI key %d\n", MIDIKey));
             Kill();  
152              return -1;              return -1;
153          }          }
154    
155            KeyGroup = pRegion->KeyGroup;
156    
157          // get current dimension values to select the right dimension region          // get current dimension values to select the right dimension region
158          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          //FIXME: controller values for selecting the dimension region here are currently not sample accurate
159          uint DimValues[5] = {0,0,0,0,0};          uint DimValues[8] = { 0 };
160          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {
161              switch (pRegion->pDimensionDefinitions[i].dimension) {              switch (pRegion->pDimensionDefinitions[i].dimension) {
162                  case ::gig::dimension_samplechannel:                  case ::gig::dimension_samplechannel:
# Line 143  namespace LinuxSampler { namespace gig { Line 167  namespace LinuxSampler { namespace gig {
167                      // if this is the 1st layer then spawn further voices for all the other layers                      // if this is the 1st layer then spawn further voices for all the other layers
168                      if (iLayer == 0)                      if (iLayer == 0)
169                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)
170                              pEngine->LaunchVoice(pNoteOnEvent, iNewLayer);                              itChildVoice = pEngine->LaunchVoice(pEngineChannel, itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);
171                      break;                      break;
172                  case ::gig::dimension_velocity:                  case ::gig::dimension_velocity:
173                      DimValues[i] = pNoteOnEvent->Velocity;                      DimValues[i] = itNoteOnEvent->Param.Note.Velocity;
174                      break;                      break;
175                  case ::gig::dimension_channelaftertouch:                  case ::gig::dimension_channelaftertouch:
176                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      DimValues[i] = 0; //TODO: we currently ignore this dimension
177                      break;                      break;
178                  case ::gig::dimension_releasetrigger:                  case ::gig::dimension_releasetrigger:
179                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;
180                        DimValues[i] = (uint) ReleaseTriggerVoice;
181                      break;                      break;
182                  case ::gig::dimension_keyboard:                  case ::gig::dimension_keyboard:
183                      DimValues[i] = (uint) pNoteOnEvent->Key;                      DimValues[i] = (uint) pEngineChannel->CurrentKeyDimension;
184                      break;                      break;
185                  case ::gig::dimension_modwheel:                  case ::gig::dimension_modwheel:
186                      DimValues[i] = pEngine->ControllerTable[1];                      DimValues[i] = pEngineChannel->ControllerTable[1];
187                      break;                      break;
188                  case ::gig::dimension_breath:                  case ::gig::dimension_breath:
189                      DimValues[i] = pEngine->ControllerTable[2];                      DimValues[i] = pEngineChannel->ControllerTable[2];
190                      break;                      break;
191                  case ::gig::dimension_foot:                  case ::gig::dimension_foot:
192                      DimValues[i] = pEngine->ControllerTable[4];                      DimValues[i] = pEngineChannel->ControllerTable[4];
193                      break;                      break;
194                  case ::gig::dimension_portamentotime:                  case ::gig::dimension_portamentotime:
195                      DimValues[i] = pEngine->ControllerTable[5];                      DimValues[i] = pEngineChannel->ControllerTable[5];
196                      break;                      break;
197                  case ::gig::dimension_effect1:                  case ::gig::dimension_effect1:
198                      DimValues[i] = pEngine->ControllerTable[12];                      DimValues[i] = pEngineChannel->ControllerTable[12];
199                      break;                      break;
200                  case ::gig::dimension_effect2:                  case ::gig::dimension_effect2:
201                      DimValues[i] = pEngine->ControllerTable[13];                      DimValues[i] = pEngineChannel->ControllerTable[13];
202                      break;                      break;
203                  case ::gig::dimension_genpurpose1:                  case ::gig::dimension_genpurpose1:
204                      DimValues[i] = pEngine->ControllerTable[16];                      DimValues[i] = pEngineChannel->ControllerTable[16];
205                      break;                      break;
206                  case ::gig::dimension_genpurpose2:                  case ::gig::dimension_genpurpose2:
207                      DimValues[i] = pEngine->ControllerTable[17];                      DimValues[i] = pEngineChannel->ControllerTable[17];
208                      break;                      break;
209                  case ::gig::dimension_genpurpose3:                  case ::gig::dimension_genpurpose3:
210                      DimValues[i] = pEngine->ControllerTable[18];                      DimValues[i] = pEngineChannel->ControllerTable[18];
211                      break;                      break;
212                  case ::gig::dimension_genpurpose4:                  case ::gig::dimension_genpurpose4:
213                      DimValues[i] = pEngine->ControllerTable[19];                      DimValues[i] = pEngineChannel->ControllerTable[19];
214                      break;                      break;
215                  case ::gig::dimension_sustainpedal:                  case ::gig::dimension_sustainpedal:
216                      DimValues[i] = pEngine->ControllerTable[64];                      DimValues[i] = pEngineChannel->ControllerTable[64];
217                      break;                      break;
218                  case ::gig::dimension_portamento:                  case ::gig::dimension_portamento:
219                      DimValues[i] = pEngine->ControllerTable[65];                      DimValues[i] = pEngineChannel->ControllerTable[65];
220                      break;                      break;
221                  case ::gig::dimension_sostenutopedal:                  case ::gig::dimension_sostenutopedal:
222                      DimValues[i] = pEngine->ControllerTable[66];                      DimValues[i] = pEngineChannel->ControllerTable[66];
223                      break;                      break;
224                  case ::gig::dimension_softpedal:                  case ::gig::dimension_softpedal:
225                      DimValues[i] = pEngine->ControllerTable[67];                      DimValues[i] = pEngineChannel->ControllerTable[67];
226                      break;                      break;
227                  case ::gig::dimension_genpurpose5:                  case ::gig::dimension_genpurpose5:
228                      DimValues[i] = pEngine->ControllerTable[80];                      DimValues[i] = pEngineChannel->ControllerTable[80];
229                      break;                      break;
230                  case ::gig::dimension_genpurpose6:                  case ::gig::dimension_genpurpose6:
231                      DimValues[i] = pEngine->ControllerTable[81];                      DimValues[i] = pEngineChannel->ControllerTable[81];
232                      break;                      break;
233                  case ::gig::dimension_genpurpose7:                  case ::gig::dimension_genpurpose7:
234                      DimValues[i] = pEngine->ControllerTable[82];                      DimValues[i] = pEngineChannel->ControllerTable[82];
235                      break;                      break;
236                  case ::gig::dimension_genpurpose8:                  case ::gig::dimension_genpurpose8:
237                      DimValues[i] = pEngine->ControllerTable[83];                      DimValues[i] = pEngineChannel->ControllerTable[83];
238                      break;                      break;
239                  case ::gig::dimension_effect1depth:                  case ::gig::dimension_effect1depth:
240                      DimValues[i] = pEngine->ControllerTable[91];                      DimValues[i] = pEngineChannel->ControllerTable[91];
241                      break;                      break;
242                  case ::gig::dimension_effect2depth:                  case ::gig::dimension_effect2depth:
243                      DimValues[i] = pEngine->ControllerTable[92];                      DimValues[i] = pEngineChannel->ControllerTable[92];
244                      break;                      break;
245                  case ::gig::dimension_effect3depth:                  case ::gig::dimension_effect3depth:
246                      DimValues[i] = pEngine->ControllerTable[93];                      DimValues[i] = pEngineChannel->ControllerTable[93];
247                      break;                      break;
248                  case ::gig::dimension_effect4depth:                  case ::gig::dimension_effect4depth:
249                      DimValues[i] = pEngine->ControllerTable[94];                      DimValues[i] = pEngineChannel->ControllerTable[94];
250                      break;                      break;
251                  case ::gig::dimension_effect5depth:                  case ::gig::dimension_effect5depth:
252                      DimValues[i] = pEngine->ControllerTable[95];                      DimValues[i] = pEngineChannel->ControllerTable[95];
253                      break;                      break;
254                  case ::gig::dimension_none:                  case ::gig::dimension_none:
255                      std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;                      std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;
# Line 233  namespace LinuxSampler { namespace gig { Line 258  namespace LinuxSampler { namespace gig {
258                      std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;                      std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;
259              }              }
260          }          }
261          ::gig::DimensionRegion* pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues);
262    
263          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          pSample = pDimRgn->pSample; // sample won't change until the voice is finished
264            if (!pSample || !pSample->SamplesTotal) return -1; // no need to continue if sample is silent
265    
266            // select channel mode (mono or stereo)
267            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
268    
269            // get starting crossfade volume level
270            switch (pDimRgn->AttenuationController.type) {
271                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
272                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
273                    break;
274                case ::gig::attenuation_ctrl_t::type_velocity:
275                    CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
276                    break;
277                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
278                    CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
279                    break;
280                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
281                default:
282                    CrossfadeVolume = 1.0f;
283            }
284    
285            PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
286            PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
287    
288            Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
289    
290          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
291          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
# Line 253  namespace LinuxSampler { namespace gig { Line 303  namespace LinuxSampler { namespace gig {
303    
304              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
305                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
306                  Kill();                  KillImmediately();
307                  return -1;                  return -1;
308              }              }
309              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
# Line 271  namespace LinuxSampler { namespace gig { Line 321  namespace LinuxSampler { namespace gig {
321    
322          // calculate initial pitch value          // calculate initial pitch value
323          {          {
324              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
325              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
326              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));
327              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
328          }          }
329    
330            Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
331    
332          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          Volume *= pDimRgn->SampleAttenuation;
   
333    
334          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
335          {          {
# Line 293  namespace LinuxSampler { namespace gig { Line 343  namespace LinuxSampler { namespace gig {
343                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
344                      break;                      break;
345                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
346                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
347                      break;                      break;
348                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
349                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
350                      break;                      break;
351              }              }
352              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
# Line 315  namespace LinuxSampler { namespace gig { Line 365  namespace LinuxSampler { namespace gig {
365                            pDimRgn->EG1InfiniteSustain,                            pDimRgn->EG1InfiniteSustain,
366                            pDimRgn->EG1Sustain,                            pDimRgn->EG1Sustain,
367                            pDimRgn->EG1Release + eg1release,                            pDimRgn->EG1Release + eg1release,
368                            Delay);                            // the SSE synthesis implementation requires
369                              // the vca start to be 16 byte aligned
370                              SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?
371                              Delay & 0xfffffffc : Delay);
372          }          }
373    
374    
     #if ENABLE_FILTER  
375          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
376          {          {
377              // get current value of EG2 controller              // get current value of EG2 controller
# Line 332  namespace LinuxSampler { namespace gig { Line 384  namespace LinuxSampler { namespace gig {
384                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
385                      break;                      break;
386                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
387                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
388                      break;                      break;
389                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
390                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
391                      break;                      break;
392              }              }
393              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
# Line 356  namespace LinuxSampler { namespace gig { Line 408  namespace LinuxSampler { namespace gig {
408                            pDimRgn->EG2Release + eg2release,                            pDimRgn->EG2Release + eg2release,
409                            Delay);                            Delay);
410          }          }
     #endif // ENABLE_FILTER  
411    
412    
413          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
# Line 397  namespace LinuxSampler { namespace gig { Line 448  namespace LinuxSampler { namespace gig {
448              pLFO1->Trigger(pDimRgn->LFO1Frequency,              pLFO1->Trigger(pDimRgn->LFO1Frequency,
449                            lfo1_internal_depth,                            lfo1_internal_depth,
450                            pDimRgn->LFO1ControlDepth,                            pDimRgn->LFO1ControlDepth,
451                            pEngine->ControllerTable[pLFO1->ExtController],                            pEngineChannel->ControllerTable[pLFO1->ExtController],
452                            pDimRgn->LFO1FlipPhase,                            pDimRgn->LFO1FlipPhase,
453                            pEngine->SampleRate,                            pEngine->SampleRate,
454                            Delay);                            Delay);
455          }          }
456    
457      #if ENABLE_FILTER  
458          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
459          {          {
460              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 435  namespace LinuxSampler { namespace gig { Line 486  namespace LinuxSampler { namespace gig {
486              pLFO2->Trigger(pDimRgn->LFO2Frequency,              pLFO2->Trigger(pDimRgn->LFO2Frequency,
487                            lfo2_internal_depth,                            lfo2_internal_depth,
488                            pDimRgn->LFO2ControlDepth,                            pDimRgn->LFO2ControlDepth,
489                            pEngine->ControllerTable[pLFO2->ExtController],                            pEngineChannel->ControllerTable[pLFO2->ExtController],
490                            pDimRgn->LFO2FlipPhase,                            pDimRgn->LFO2FlipPhase,
491                            pEngine->SampleRate,                            pEngine->SampleRate,
492                            Delay);                            Delay);
493          }          }
494      #endif // ENABLE_FILTER  
495    
496          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
497          {          {
# Line 473  namespace LinuxSampler { namespace gig { Line 524  namespace LinuxSampler { namespace gig {
524              pLFO3->Trigger(pDimRgn->LFO3Frequency,              pLFO3->Trigger(pDimRgn->LFO3Frequency,
525                            lfo3_internal_depth,                            lfo3_internal_depth,
526                            pDimRgn->LFO3ControlDepth,                            pDimRgn->LFO3ControlDepth,
527                            pEngine->ControllerTable[pLFO3->ExtController],                            pEngineChannel->ControllerTable[pLFO3->ExtController],
528                            false,                            false,
529                            pEngine->SampleRate,                            pEngine->SampleRate,
530                            Delay);                            Delay);
531          }          }
532    
533      #if ENABLE_FILTER  
534          #if FORCE_FILTER_USAGE          #if FORCE_FILTER_USAGE
535          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
536          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
537          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
538          #endif // FORCE_FILTER_USAGE          #endif // FORCE_FILTER_USAGE
539          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
540            if (bUseFilter) {
541              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL
542              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;
543              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
# Line 555  namespace LinuxSampler { namespace gig { Line 607  namespace LinuxSampler { namespace gig {
607              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(OVERRIDE_FILTER_TYPE);
608              #endif // OVERRIDE_FILTER_TYPE              #endif // OVERRIDE_FILTER_TYPE
609    
610              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
611              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
612    
613              // calculate cutoff frequency              // calculate cutoff frequency
614              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = (!VCFCutoffCtrl.controller)
615                  ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX
616                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;
617    
618              // calculate resonance              // calculate resonance
619              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
620              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
621                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
622              }              }
623              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
624    
625              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;
626              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
627    
             FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);  
   
628              FilterUpdateCounter = -1;              FilterUpdateCounter = -1;
629          }          }
630          else {          else {
631              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
632              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
633          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
634    
635          return 0; // success          return 0; // success
636      }      }
# Line 604  namespace LinuxSampler { namespace gig { Line 648  namespace LinuxSampler { namespace gig {
648       */       */
649      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
650    
651            // select default values for synthesis mode bits
652            SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);
653            SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);
654            SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
655    
656          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
657          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);  
658            pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);
659          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
     #if ENABLE_FILTER  
660          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
661          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);
     #endif // ENABLE_FILTER  
   
662    
663          // Apply events to the synthesis parameter matrix          // Apply events to the synthesis parameter matrix
664          ProcessEvents(Samples);          ProcessEvents(Samples);
665    
   
666          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
667          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
668      #if ENABLE_FILTER          pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
669          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          if (pEG3->Process(Samples)) { // if pitch EG is active
670      #endif // ENABLE_FILTER              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
671          pEG3->Process(Samples);              SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
672            }
673          pLFO1->Process(Samples);          pLFO1->Process(Samples);
     #if ENABLE_FILTER  
674          pLFO2->Process(Samples);          pLFO2->Process(Samples);
675      #endif // ENABLE_FILTER          if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active
676          pLFO3->Process(Samples);              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
677                SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
678            }
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
679    
680            if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))
681                CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters
682    
683          switch (this->PlaybackState) {          switch (this->PlaybackState) {
684    
685              case playback_state_ram: {              case playback_state_ram: {
686                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
687                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
688                        // render current fragment
689                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
690    
691                      if (DiskVoice) {                      if (DiskVoice) {
692                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
693                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 659  namespace LinuxSampler { namespace gig { Line 707  namespace LinuxSampler { namespace gig {
707                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
708                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
709                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
710                              Kill();                              KillImmediately();
711                              return;                              return;
712                          }                          }
713                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));
714                          Pos -= RTMath::DoubleToInt(Pos);                          Pos -= int(Pos);
715                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
716                      }                      }
717    
718                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
719    
720                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
721                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
722                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
723                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
724                                // remember how many sample words there are before any silence has been added
725                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
726                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
727                            }
728                      }                      }
729    
730                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
731                      Interpolate(Samples, ptr, Delay);  
732                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
733                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
734    
735                        const int iPos = (int) Pos;
736                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
737                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
738                        Pos -= iPos; // just keep fractional part of Pos
739    
740                        // change state of voice to 'end' if we really reached the end of the sample data
741                        if (RealSampleWordsLeftToRead >= 0) {
742                            RealSampleWordsLeftToRead -= readSampleWords;
743                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
744                        }
745                  }                  }
746                  break;                  break;
747    
748              case playback_state_end:              case playback_state_end:
749                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
750                  break;                  break;
751          }          }
752    
   
     #if ENABLE_FILTER  
753          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
754            pEngine->pSynthesisEvents[Event::destination_vca]->clear();
755          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();
756          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();
     #endif // ENABLE_FILTER  
757    
758          // Reset delay          // Reset delay
759          Delay = 0;          Delay = 0;
760    
761          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
762    
763          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
764          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();
765      }      }
766    
767      /**      /**
# Line 708  namespace LinuxSampler { namespace gig { Line 772  namespace LinuxSampler { namespace gig {
772          pLFO1->Reset();          pLFO1->Reset();
773          pLFO2->Reset();          pLFO2->Reset();
774          pLFO3->Reset();          pLFO3->Reset();
775            FilterLeft.Reset();
776            FilterRight.Reset();
777          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
778          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
779          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
780          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
781          Active = false;          PlaybackState = playback_state_end;
782            itTriggerEvent = Pool<Event>::Iterator();
783            itKillEvent    = Pool<Event>::Iterator();
784      }      }
785    
786      /**      /**
# Line 725  namespace LinuxSampler { namespace gig { Line 793  namespace LinuxSampler { namespace gig {
793      void Voice::ProcessEvents(uint Samples) {      void Voice::ProcessEvents(uint Samples) {
794    
795          // dispatch control change events          // dispatch control change events
796          Event* pCCEvent = pEngine->pCCEvents->first();          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();
797          if (Delay) { // skip events that happened before this voice was triggered          if (Delay) { // skip events that happened before this voice was triggered
798              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;
799          }          }
800          while (pCCEvent) {          while (itCCEvent) {
801              if (pCCEvent->Controller) { // if valid MIDI controller              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
802                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
803                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
804                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);                  }
805                    if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
806                        *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
807                  }                  }
808                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
809                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      pLFO1->SendEvent(itCCEvent);
810                  }                  }
811                  #endif // ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
812                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO2->SendEvent(itCCEvent);
                     pLFO1->SendEvent(pCCEvent);  
813                  }                  }
814                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
815                  if (pCCEvent->Controller == pLFO2->ExtController) {                      pLFO3->SendEvent(itCCEvent);
                     pLFO2->SendEvent(pCCEvent);  
816                  }                  }
817                  #endif // ENABLE_FILTER                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
818                  if (pCCEvent->Controller == pLFO3->ExtController) {                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
819                      pLFO3->SendEvent(pCCEvent);                      *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;
820                  }                  }
821              }              }
822    
823              pCCEvent = pEngine->pCCEvents->next();              ++itCCEvent;
824          }          }
825    
826    
827          // process pitch events          // process pitch events
828          {          {
829              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];
830              Event* pVCOEvent = pVCOEventList->first();              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();
831              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
832                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;
833              }              }
834              // apply old pitchbend value until first pitch event occurs              // apply old pitchbend value until first pitch event occurs
835              if (this->PitchBend != 1.0) {              if (this->PitchBend != 1.0) {
836                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;
837                  for (uint i = Delay; i < end; i++) {                  for (uint i = Delay; i < end; i++) {
838                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;
839                  }                  }
840              }              }
841              float pitch;              float pitch;
842              while (pVCOEvent) {              while (itVCOEvent) {
843                  Event* pNextVCOEvent = pVCOEventList->next();                  RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;
844                    ++itNextVCOEvent;
845    
846                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
847                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;                  uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;
848    
849                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents                  pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
850    
851                  // apply pitch value to the pitch parameter sequence                  // apply pitch value to the pitch parameter sequence
852                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {
853                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;
854                  }                  }
855    
856                  pVCOEvent = pNextVCOEvent;                  itVCOEvent = itNextVCOEvent;
857                }
858                if (!pVCOEventList->isEmpty()) {
859                    this->PitchBend = pitch;
860                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
861                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
862              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
863          }          }
864    
865            // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
866            {
867                RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];
868                RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();
869                if (Delay) { // skip events that happened before this voice was triggered
870                    while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;
871                }
872                float crossfadevolume;
873                while (itVCAEvent) {
874                    RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;
875                    ++itNextVCAEvent;
876    
877                    // calculate the influence length of this event (in sample points)
878                    uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;
879    
880                    crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);
881    
882                    float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;
883    
884                    // apply volume value to the volume parameter sequence
885                    for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {
886                        pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;
887                    }
888    
889                    itVCAEvent = itNextVCAEvent;
890                }
891                if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
892            }
893    
     #if ENABLE_FILTER  
894          // process filter cutoff events          // process filter cutoff events
895          {          {
896              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];              RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];
897              Event* pCutoffEvent = pCutoffEventList->first();              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();
898              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
899                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;
900              }              }
901              float cutoff;              float cutoff;
902              while (pCutoffEvent) {              while (itCutoffEvent) {
903                  Event* pNextCutoffEvent = pCutoffEventList->next();                  RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;
904                    ++itNextCutoffEvent;
905    
906                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
907                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;
908    
909                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;
910    
911                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
912                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {
913                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;
914                  }                  }
915    
916                  pCutoffEvent = pNextCutoffEvent;                  itCutoffEvent = itNextCutoffEvent;
917              }              }
918              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time
919          }          }
920    
921          // process filter resonance events          // process filter resonance events
922          {          {
923              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];
924              Event* pResonanceEvent = pResonanceEventList->first();              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();
925              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
926                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;
927              }              }
928              while (pResonanceEvent) {              while (itResonanceEvent) {
929                  Event* pNextResonanceEvent = pResonanceEventList->next();                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;
930                    ++itNextResonanceEvent;
931    
932                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
933                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;
934    
935                  // convert absolute controller value to differential                  // convert absolute controller value to differential
936                  int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;                  int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;
937                  VCFResonanceCtrl.value = pResonanceEvent->Value;                  VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;
938    
939                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
940    
941                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
942                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {
943                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;
944                  }                  }
945    
946                  pResonanceEvent = pNextResonanceEvent;                  itResonanceEvent = itNextResonanceEvent;
947              }              }
948              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
949          }          }
     #endif // ENABLE_FILTER  
950      }      }
951    
     #if ENABLE_FILTER  
952      /**      /**
953       * Calculate all necessary, final biquad filter parameters.       * Calculate all necessary, final biquad filter parameters.
954       *       *
955       * @param Samples - number of samples to be rendered in this audio fragment cycle       * @param Samples - number of samples to be rendered in this audio fragment cycle
956       */       */
957      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::CalculateBiquadParameters(uint Samples) {
         if (!FilterLeft.Enabled) return;  
   
958          biquad_param_t bqbase;          biquad_param_t bqbase;
959          biquad_param_t bqmain;          biquad_param_t bqmain;
960          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];
961          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];
962          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
963            FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
964          pEngine->pBasicFilterParameters[0] = bqbase;          pEngine->pBasicFilterParameters[0] = bqbase;
965          pEngine->pMainFilterParameters[0]  = bqmain;          pEngine->pMainFilterParameters[0]  = bqmain;
966    
967          float* bq;          float* bq;
968          for (int i = 1; i < Samples; i++) {          for (int i = 1; i < Samples; i++) {
969              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              // recalculate biquad parameters if cutoff or resonance differ from previous sample point
970              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||              if (!(i & FILTER_UPDATE_MASK)) {
971                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||
972                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)
973                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];                  {
974                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];
975                        prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];
976                        FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
977                        FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
978                    }
979              }              }
980    
981              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'
982              bq    = (float*) &pEngine->pBasicFilterParameters[i];              bq    = (float*) &pEngine->pBasicFilterParameters[i];
983              bq[0] = bqbase.a1;              bq[0] = bqbase.b0;
984              bq[1] = bqbase.a2;              bq[1] = bqbase.b1;
985              bq[2] = bqbase.b0;              bq[2] = bqbase.b2;
986              bq[3] = bqbase.b1;              bq[3] = bqbase.a1;
987              bq[4] = bqbase.b2;              bq[4] = bqbase.a2;
988    
989              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'
990              bq    = (float*) &pEngine->pMainFilterParameters[i];              bq    = (float*) &pEngine->pMainFilterParameters[i];
991              bq[0] = bqmain.a1;              bq[0] = bqmain.b0;
992              bq[1] = bqmain.a2;              bq[1] = bqmain.b1;
993              bq[2] = bqmain.b0;              bq[2] = bqmain.b2;
994              bq[3] = bqmain.b1;              bq[3] = bqmain.a1;
995              bq[4] = bqmain.b2;              bq[4] = bqmain.a2;
996          }          }
997      }      }
     #endif // ENABLE_FILTER  
998    
999      /**      /**
1000       *  Interpolates the input audio data (no loop).       *  Synthesizes the current audio fragment for this voice.
1001       *       *
1002       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
1003       *                   fragment cycle       *                   fragment cycle
1004       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
1005       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
1006       */       */
1007      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
1008          int i = Skip;          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);
   
         // FIXME: assuming either mono or stereo  
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Stereo(pSrc, i,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
         }  
         else { // Mono Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
         }  
1009      }      }
1010    
1011      /**      /**
1012       *  Interpolates the input audio data, this method honors looping.       *  Immediately kill the voice. This method should not be used to kill
1013         *  a normal, active voice, because it doesn't take care of things like
1014         *  fading down the volume level to avoid clicks and regular processing
1015         *  until the kill event actually occured!
1016       *       *
1017       *  @param Samples - number of sample points to be rendered in this audio       *  @see Kill()
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
1018       */       */
1019      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::KillImmediately() {
1020          int i = Skip;          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
1021                pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
1022          }          }
1023            Reset();
1024      }      }
1025    
1026      /**      /**
1027       *  Immediately kill the voice.       *  Kill the voice in regular sense. Let the voice render audio until
1028         *  the kill event actually occured and then fade down the volume level
1029         *  very quickly and let the voice die finally. Unlike a normal release
1030         *  of a voice, a kill process cannot be cancalled and is therefore
1031         *  usually used for voice stealing and key group conflicts.
1032         *
1033         *  @param itKillEvent - event which caused the voice to be killed
1034       */       */
1035      void Voice::Kill() {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
1036          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          //FIXME: just two sanity checks for debugging, can be removed
1037              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
1038          }          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
1039          Reset();  
1040            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
1041            this->itKillEvent = itKillEvent;
1042      }      }
1043    
1044  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.233  
changed lines
  Added in v.425

  ViewVC Help
Powered by ViewVC