/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 233 by schoenebeck, Tue Sep 7 09:32:21 2004 UTC revision 729 by persson, Tue Jul 26 11:18:46 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 22  Line 23 
23    
24  #include "EGADSR.h"  #include "EGADSR.h"
25  #include "Manipulator.h"  #include "Manipulator.h"
26    #include "../../common/Features.h"
27    #include "Synthesizer.h"
28    
29  #include "Voice.h"  #include "Voice.h"
30    
31  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
32    
     // TODO: no support for crossfades yet  
   
33      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
34    
35      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());
36    
37      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
38          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
39      }      }
40    
41      int Voice::CalculateFilterUpdateMask() {      int Voice::CalculateFilterUpdateMask() {
42          if (FILTER_UPDATE_PERIOD <= 0) return 0;          if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;
43          int power_of_two;          int power_of_two;
44          for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);          for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);
45          return (1 << power_of_two) - 1;          return (1 << power_of_two) - 1;
46      }      }
47    
48      Voice::Voice() {      Voice::Voice() {
49          pEngine     = NULL;          pEngine     = NULL;
50          pDiskThread = NULL;          pDiskThread = NULL;
51          Active = false;          PlaybackState = playback_state_end;
52          pEG1   = NULL;          pEG1   = NULL;
53          pEG2   = NULL;          pEG2   = NULL;
54          pEG3   = NULL;          pEG3   = NULL;
# Line 57  namespace LinuxSampler { namespace gig { Line 58  namespace LinuxSampler { namespace gig {
58          pLFO1  = NULL;          pLFO1  = NULL;
59          pLFO2  = NULL;          pLFO2  = NULL;
60          pLFO3  = NULL;          pLFO3  = NULL;
61            KeyGroup = 0;
62            SynthesisMode = 0; // set all mode bits to 0 first
63            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
64            #if CONFIG_ASM && ARCH_X86
65            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
66            #else
67            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
68            #endif
69            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);
70    
71            FilterLeft.Reset();
72            FilterRight.Reset();
73      }      }
74    
75      Voice::~Voice() {      Voice::~Voice() {
# Line 104  namespace LinuxSampler { namespace gig { Line 117  namespace LinuxSampler { namespace gig {
117       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
118       *  needed.       *  needed.
119       *       *
120       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
121       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
122       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
123       *  @param iLayer       - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
124       *  @returns            0 on success, a value < 0 if something failed       *  @param VoiceType      - type of this voice
125         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
126         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
127         *           (either due to an error or e.g. because no region is
128         *           defined for the given key)
129       */       */
130      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
131          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
132             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
133             exit(EXIT_FAILURE);  
134            #if CONFIG_DEVMODE
135            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
136                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
137            }
138            #endif // CONFIG_DEVMODE
139    
140            Type            = VoiceType;
141            MIDIKey         = itNoteOnEvent->Param.Note.Key;
142            PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
143            Delay           = itNoteOnEvent->FragmentPos();
144            itTriggerEvent  = itNoteOnEvent;
145            itKillEvent     = Pool<Event>::Iterator();
146            KeyGroup        = iKeyGroup;
147            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
148    
149            // calculate volume
150            const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
151    
152            Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
153    
154            Volume *= pDimRgn->SampleAttenuation;
155    
156            // the volume of release triggered samples depends on note length
157            if (Type == type_release_trigger) {
158                float noteLength = float(pEngine->FrameTime + Delay -
159                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
160                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
161                if (attenuation <= 0) return -1;
162                Volume *= attenuation;
163            }
164    
165            // select channel mode (mono or stereo)
166            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
167    
168            // get starting crossfade volume level
169            switch (pDimRgn->AttenuationController.type) {
170                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
171                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
172                    break;
173                case ::gig::attenuation_ctrl_t::type_velocity:
174                    CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
175                    break;
176                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
177                    CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
178                    break;
179                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
180                default:
181                    CrossfadeVolume = 1.0f;
182          }          }
183    
184          Active          = true;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
185          MIDIKey         = pNoteOnEvent->Key;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
         pRegion         = pInstrument->GetRegion(MIDIKey);  
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
         Pos             = 0;  
         Delay           = pNoteOnEvent->FragmentPos();  
         pTriggerEvent   = pNoteOnEvent;  
186    
187          if (!pRegion) {          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
             std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;  
             Kill();  
             return -1;  
         }  
   
         // get current dimension values to select the right dimension region  
         //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
         uint DimValues[5] = {0,0,0,0,0};  
         for (int i = pRegion->Dimensions - 1; i >= 0; i--) {  
             switch (pRegion->pDimensionDefinitions[i].dimension) {  
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             pEngine->LaunchVoice(pNoteOnEvent, iNewLayer);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = pNoteOnEvent->Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pNoteOnEvent->Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         ::gig::DimensionRegion* pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
   
         pSample = pDimRgn->pSample; // sample won't change until the voice is finished  
188    
189          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
190          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
191          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
192    
193          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
194              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
195    
196              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
197              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
# Line 253  namespace LinuxSampler { namespace gig { Line 202  namespace LinuxSampler { namespace gig {
202    
203              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
204                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
205                  Kill();                  KillImmediately();
206                  return -1;                  return -1;
207              }              }
208              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
# Line 271  namespace LinuxSampler { namespace gig { Line 220  namespace LinuxSampler { namespace gig {
220    
221          // calculate initial pitch value          // calculate initial pitch value
222          {          {
223              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
224              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
225              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));
226              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
227          }          }
228    
229            // the length of the decay and release curves are dependent on the velocity
230          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
231    
232          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
233          {          {
# Line 293  namespace LinuxSampler { namespace gig { Line 241  namespace LinuxSampler { namespace gig {
241                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
242                      break;                      break;
243                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
244                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
245                      break;                      break;
246                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
247                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
248                      break;                      break;
249              }              }
250              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
251    
252              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
253              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
254              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
255              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
256                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
257                double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
258                double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
259    
260              pEG1->Trigger(pDimRgn->EG1PreAttack,              pEG1->Trigger(pDimRgn->EG1PreAttack,
261                            pDimRgn->EG1Attack + eg1attack,                            pDimRgn->EG1Attack * eg1attack,
262                            pDimRgn->EG1Hold,                            pDimRgn->EG1Hold,
263                            pSample->LoopStart,                            pSample->LoopStart,
264                            pDimRgn->EG1Decay1 + eg1decay,                            pDimRgn->EG1Decay1 * eg1decay * velrelease,
265                            pDimRgn->EG1Decay2 + eg1decay,                            pDimRgn->EG1Decay2 * eg1decay * velrelease,
266                            pDimRgn->EG1InfiniteSustain,                            pDimRgn->EG1InfiniteSustain,
267                            pDimRgn->EG1Sustain,                            pDimRgn->EG1Sustain,
268                            pDimRgn->EG1Release + eg1release,                            pDimRgn->EG1Release * eg1release * velrelease,
269                            Delay);                            // the SSE synthesis implementation requires
270                              // the vca start to be 16 byte aligned
271                              SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?
272                              Delay & 0xfffffffc : Delay,
273                              velocityAttenuation);
274          }          }
275    
276    
     #if ENABLE_FILTER  
277          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
278          {          {
279              // get current value of EG2 controller              // get current value of EG2 controller
# Line 332  namespace LinuxSampler { namespace gig { Line 286  namespace LinuxSampler { namespace gig {
286                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
287                      break;                      break;
288                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
289                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
290                      break;                      break;
291                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
292                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
293                      break;                      break;
294              }              }
295              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
296    
297              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
298              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
299              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
300              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
301    
302              pEG2->Trigger(pDimRgn->EG2PreAttack,              pEG2->Trigger(pDimRgn->EG2PreAttack,
303                            pDimRgn->EG2Attack + eg2attack,                            pDimRgn->EG2Attack * eg2attack,
304                            false,                            false,
305                            pSample->LoopStart,                            pSample->LoopStart,
306                            pDimRgn->EG2Decay1 + eg2decay,                            pDimRgn->EG2Decay1 * eg2decay * velrelease,
307                            pDimRgn->EG2Decay2 + eg2decay,                            pDimRgn->EG2Decay2 * eg2decay * velrelease,
308                            pDimRgn->EG2InfiniteSustain,                            pDimRgn->EG2InfiniteSustain,
309                            pDimRgn->EG2Sustain,                            pDimRgn->EG2Sustain,
310                            pDimRgn->EG2Release + eg2release,                            pDimRgn->EG2Release * eg2release * velrelease,
311                            Delay);                            Delay,
312                              velocityAttenuation);
313          }          }
     #endif // ENABLE_FILTER  
314    
315    
316          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
# Line 373  namespace LinuxSampler { namespace gig { Line 327  namespace LinuxSampler { namespace gig {
327                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
328                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
329                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
330                        bLFO1Enabled         = (lfo1_internal_depth > 0);
331                      break;                      break;
332                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
333                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
334                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
335                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
336                      break;                      break;
337                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
338                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
339                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
340                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
341                      break;                      break;
342                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
343                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
344                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
345                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
346                      break;                      break;
347                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
348                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
349                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
350                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
351                      break;                      break;
352                  default:                  default:
353                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
354                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
355                        bLFO1Enabled         = false;
356              }              }
357              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,
358                            lfo1_internal_depth,                                               lfo1_internal_depth,
359                            pDimRgn->LFO1ControlDepth,                                               pDimRgn->LFO1ControlDepth,
360                            pEngine->ControllerTable[pLFO1->ExtController],                                               pEngineChannel->ControllerTable[pLFO1->ExtController],
361                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
362                            pEngine->SampleRate,                                               pEngine->SampleRate,
363                            Delay);                                               Delay);
364          }          }
365    
366      #if ENABLE_FILTER  
367          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
368          {          {
369              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 411  namespace LinuxSampler { namespace gig { Line 371  namespace LinuxSampler { namespace gig {
371                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
374                        bLFO2Enabled         = (lfo2_internal_depth > 0);
375                      break;                      break;
376                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
377                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
378                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
379                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
380                      break;                      break;
381                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
382                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
383                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
384                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
385                      break;                      break;
386                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
387                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
388                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
389                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
390                      break;                      break;
391                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
392                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
393                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
394                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
395                      break;                      break;
396                  default:                  default:
397                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
398                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
399                        bLFO2Enabled         = false;
400              }              }
401              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,
402                            lfo2_internal_depth,                                               lfo2_internal_depth,
403                            pDimRgn->LFO2ControlDepth,                                               pDimRgn->LFO2ControlDepth,
404                            pEngine->ControllerTable[pLFO2->ExtController],                                               pEngineChannel->ControllerTable[pLFO2->ExtController],
405                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
406                            pEngine->SampleRate,                                               pEngine->SampleRate,
407                            Delay);                                               Delay);
408          }          }
409      #endif // ENABLE_FILTER  
410    
411          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
412          {          {
# Line 449  namespace LinuxSampler { namespace gig { Line 415  namespace LinuxSampler { namespace gig {
415                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
416                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
417                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
418                        bLFO3Enabled         = (lfo3_internal_depth > 0);
419                      break;                      break;
420                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
421                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
422                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
423                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
424                      break;                      break;
425                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
426                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
427                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
428                        bLFO3Enabled         = false; // see TODO comment in line above
429                      break;                      break;
430                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
431                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
432                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
433                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
434                      break;                      break;
435                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
436                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
437                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
438                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
439                      break;                      break;
440                  default:                  default:
441                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
442                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
443                        bLFO3Enabled         = false;
444              }              }
445              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,
446                            lfo3_internal_depth,                                               lfo3_internal_depth,
447                            pDimRgn->LFO3ControlDepth,                                               pDimRgn->LFO3ControlDepth,
448                            pEngine->ControllerTable[pLFO3->ExtController],                                               pEngineChannel->ControllerTable[pLFO3->ExtController],
449                            false,                                               false,
450                            pEngine->SampleRate,                                               pEngine->SampleRate,
451                            Delay);                                               Delay);
452          }          }
453    
454      #if ENABLE_FILTER  
455          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
456          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
457          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
458          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
459          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
460          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
461              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
462              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
463                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
464              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
465              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
466                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 523  namespace LinuxSampler { namespace gig { Line 496  namespace LinuxSampler { namespace gig {
496                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
497                      break;                      break;
498              }              }
499              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
500    
501              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
502              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
503              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
504              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
505                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 545  namespace LinuxSampler { namespace gig { Line 518  namespace LinuxSampler { namespace gig {
518                  default:                  default:
519                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
520              }              }
521              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
522    
523              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
524              FilterLeft.SetType(pDimRgn->VCFType);              FilterLeft.SetType(pDimRgn->VCFType);
525              FilterRight.SetType(pDimRgn->VCFType);              FilterRight.SetType(pDimRgn->VCFType);
526              #else // override filter type              #else // override filter type
527              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
528              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
529              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
530    
531              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
532              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
533    
534              // calculate cutoff frequency              // calculate cutoff frequency
535              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
536                  ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX              if (pDimRgn->VCFKeyboardTracking) {
537                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
538                }
539                CutoffBase = cutoff;
540    
541                int cvalue;
542                if (VCFCutoffCtrl.controller) {
543                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
544                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
545                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
546                }
547                else {
548                    cvalue = pDimRgn->VCFCutoff;
549                }
550                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
551                if (cutoff > 1.0) cutoff = 1.0;
552                cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN;
553    
554              // calculate resonance              // calculate resonance
555              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
556              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
557                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
558              }              }
559              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
560    
561              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;
562              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
563    
             FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);  
   
564              FilterUpdateCounter = -1;              FilterUpdateCounter = -1;
565          }          }
566          else {          else {
567              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
568              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
569          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
570    
571          return 0; // success          return 0; // success
572      }      }
# Line 604  namespace LinuxSampler { namespace gig { Line 584  namespace LinuxSampler { namespace gig {
584       */       */
585      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
586    
587            // select default values for synthesis mode bits
588            SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);
589            SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);
590            SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
591    
592          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
593          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);  
594            #if CONFIG_PROCESS_MUTED_CHANNELS
595            pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume));
596            #else
597            pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);
598            #endif
599          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
     #if ENABLE_FILTER  
600          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
601          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);
     #endif // ENABLE_FILTER  
   
602    
603          // Apply events to the synthesis parameter matrix          // Apply events to the synthesis parameter matrix
604          ProcessEvents(Samples);          ProcessEvents(Samples);
605    
   
606          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
607          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
608      #if ENABLE_FILTER          pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
609          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          if (pEG3->Process(Samples)) { // if pitch EG is active
610      #endif // ENABLE_FILTER              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
611          pEG3->Process(Samples);              SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
612          pLFO1->Process(Samples);          }
613      #if ENABLE_FILTER          if (bLFO1Enabled) pLFO1->Process(Samples);
614          pLFO2->Process(Samples);          if (bLFO2Enabled) pLFO2->Process(Samples);
615      #endif // ENABLE_FILTER          if (bLFO3Enabled) {
616          pLFO3->Process(Samples);              if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active
617                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
618                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
619      #if ENABLE_FILTER              }
620          CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters          }
     #endif // ENABLE_FILTER  
621    
622            if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))
623                CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters
624    
625          switch (this->PlaybackState) {          switch (this->PlaybackState) {
626    
627                case playback_state_init:
628                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
629                    // no break - continue with playback_state_ram
630    
631              case playback_state_ram: {              case playback_state_ram: {
632                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
633                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
634                        // render current fragment
635                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
636    
637                      if (DiskVoice) {                      if (DiskVoice) {
638                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
639                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 659  namespace LinuxSampler { namespace gig { Line 653  namespace LinuxSampler { namespace gig {
653                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
654                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
655                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
656                              Kill();                              KillImmediately();
657                              return;                              return;
658                          }                          }
659                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));
660                          Pos -= RTMath::DoubleToInt(Pos);                          Pos -= int(Pos);
661                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
662                      }                      }
663    
664                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
665    
666                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
667                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
668                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
669                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
670                                // remember how many sample words there are before any silence has been added
671                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
672                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
673                            }
674                      }                      }
675    
676                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
677                      Interpolate(Samples, ptr, Delay);  
678                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
679                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
680    
681                        const int iPos = (int) Pos;
682                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
683                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
684                        Pos -= iPos; // just keep fractional part of Pos
685    
686                        // change state of voice to 'end' if we really reached the end of the sample data
687                        if (RealSampleWordsLeftToRead >= 0) {
688                            RealSampleWordsLeftToRead -= readSampleWords;
689                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
690                        }
691                  }                  }
692                  break;                  break;
693    
694              case playback_state_end:              case playback_state_end:
695                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
696                  break;                  break;
697          }          }
698    
   
     #if ENABLE_FILTER  
699          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
700          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();
701          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();          pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();
702      #endif // ENABLE_FILTER          pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();
703    
704          // Reset delay          // Reset delay
705          Delay = 0;          Delay = 0;
706    
707          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
708    
709          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
710          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();
711      }      }
712    
713      /**      /**
# Line 708  namespace LinuxSampler { namespace gig { Line 718  namespace LinuxSampler { namespace gig {
718          pLFO1->Reset();          pLFO1->Reset();
719          pLFO2->Reset();          pLFO2->Reset();
720          pLFO3->Reset();          pLFO3->Reset();
721            FilterLeft.Reset();
722            FilterRight.Reset();
723          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
724          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
725          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
726          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
727          Active = false;          PlaybackState = playback_state_end;
728            itTriggerEvent = Pool<Event>::Iterator();
729            itKillEvent    = Pool<Event>::Iterator();
730      }      }
731    
732      /**      /**
# Line 725  namespace LinuxSampler { namespace gig { Line 739  namespace LinuxSampler { namespace gig {
739      void Voice::ProcessEvents(uint Samples) {      void Voice::ProcessEvents(uint Samples) {
740    
741          // dispatch control change events          // dispatch control change events
742          Event* pCCEvent = pEngine->pCCEvents->first();          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();
743          if (Delay) { // skip events that happened before this voice was triggered          if (Delay) { // skip events that happened before this voice was triggered
744              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;
745          }          }
746          while (pCCEvent) {          while (itCCEvent) {
747              if (pCCEvent->Controller) { // if valid MIDI controller              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
748                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
749                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
750                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);                  }
751                    if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
752                        *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
753                  }                  }
754                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
755                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      pLFO1->SendEvent(itCCEvent);
756                  }                  }
757                  #endif // ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
758                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO2->SendEvent(itCCEvent);
                     pLFO1->SendEvent(pCCEvent);  
759                  }                  }
760                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
761                  if (pCCEvent->Controller == pLFO2->ExtController) {                      pLFO3->SendEvent(itCCEvent);
                     pLFO2->SendEvent(pCCEvent);  
762                  }                  }
763                  #endif // ENABLE_FILTER                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
764                  if (pCCEvent->Controller == pLFO3->ExtController) {                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
765                      pLFO3->SendEvent(pCCEvent);                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;
766                  }                  }
767              }              }
768    
769              pCCEvent = pEngine->pCCEvents->next();              ++itCCEvent;
770          }          }
771    
772    
773          // process pitch events          // process pitch events
774          {          {
775              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];
776              Event* pVCOEvent = pVCOEventList->first();              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();
777              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
778                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;
779              }              }
780              // apply old pitchbend value until first pitch event occurs              // apply old pitchbend value until first pitch event occurs
781              if (this->PitchBend != 1.0) {              if (this->PitchBend != 1.0) {
782                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;
783                  for (uint i = Delay; i < end; i++) {                  for (uint i = Delay; i < end; i++) {
784                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;
785                  }                  }
786              }              }
787              float pitch;              float pitch;
788              while (pVCOEvent) {              while (itVCOEvent) {
789                  Event* pNextVCOEvent = pVCOEventList->next();                  RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;
790                    ++itNextVCOEvent;
791    
792                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
793                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;                  uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;
794    
795                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents                  pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
796    
797                  // apply pitch value to the pitch parameter sequence                  // apply pitch value to the pitch parameter sequence
798                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {
799                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;
800                  }                  }
801    
802                  pVCOEvent = pNextVCOEvent;                  itVCOEvent = itNextVCOEvent;
803                }
804                if (!pVCOEventList->isEmpty()) {
805                    this->PitchBend = pitch;
806                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
807                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
808              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
809          }          }
810    
811            // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
812            {
813                RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];
814                RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();
815                if (Delay) { // skip events that happened before this voice was triggered
816                    while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;
817                }
818                float crossfadevolume;
819                while (itVCAEvent) {
820                    RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;
821                    ++itNextVCAEvent;
822    
823                    // calculate the influence length of this event (in sample points)
824                    uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;
825    
826                    crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);
827    
828                    #if CONFIG_PROCESS_MUTED_CHANNELS
829                    float effective_volume = crossfadevolume * this->Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
830                    #else
831                    float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;
832                    #endif
833    
834                    // apply volume value to the volume parameter sequence
835                    for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {
836                        pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;
837                    }
838    
839                    itVCAEvent = itNextVCAEvent;
840                }
841                if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
842            }
843    
     #if ENABLE_FILTER  
844          // process filter cutoff events          // process filter cutoff events
845          {          {
846              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];
847              Event* pCutoffEvent = pCutoffEventList->first();              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();
848              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
849                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;
850              }              }
851              float cutoff;              float cutoff;
852              while (pCutoffEvent) {              while (itCutoffEvent) {
853                  Event* pNextCutoffEvent = pCutoffEventList->next();                  RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;
854                    ++itNextCutoffEvent;
855    
856                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
857                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;
858    
859                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  int cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
860                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
861                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
862                    cutoff = CutoffBase * float(cvalue) * 0.00787402f; // (1 / 127)
863                    if (cutoff > 1.0) cutoff = 1.0;
864                    cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN - CONFIG_FILTER_CUTOFF_MIN;
865    
866                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
867                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {
868                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;
869                  }                  }
870    
871                  pCutoffEvent = pNextCutoffEvent;                  itCutoffEvent = itNextCutoffEvent;
872              }              }
873              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time
874          }          }
875    
876          // process filter resonance events          // process filter resonance events
877          {          {
878              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];
879              Event* pResonanceEvent = pResonanceEventList->first();              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();
880              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
881                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;
882              }              }
883              while (pResonanceEvent) {              while (itResonanceEvent) {
884                  Event* pNextResonanceEvent = pResonanceEventList->next();                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;
885                    ++itNextResonanceEvent;
886    
887                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
888                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;
889    
890                  // convert absolute controller value to differential                  // convert absolute controller value to differential
891                  int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;                  int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;
892                  VCFResonanceCtrl.value = pResonanceEvent->Value;                  VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;
893    
894                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
895    
896                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
897                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {
898                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;
899                  }                  }
900    
901                  pResonanceEvent = pNextResonanceEvent;                  itResonanceEvent = itNextResonanceEvent;
902              }              }
903              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
904          }          }
     #endif // ENABLE_FILTER  
905      }      }
906    
     #if ENABLE_FILTER  
907      /**      /**
908       * Calculate all necessary, final biquad filter parameters.       * Calculate all necessary, final biquad filter parameters.
909       *       *
910       * @param Samples - number of samples to be rendered in this audio fragment cycle       * @param Samples - number of samples to be rendered in this audio fragment cycle
911       */       */
912      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::CalculateBiquadParameters(uint Samples) {
         if (!FilterLeft.Enabled) return;  
   
913          biquad_param_t bqbase;          biquad_param_t bqbase;
914          biquad_param_t bqmain;          biquad_param_t bqmain;
915          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];
916          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];
917          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
918            FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
919          pEngine->pBasicFilterParameters[0] = bqbase;          pEngine->pBasicFilterParameters[0] = bqbase;
920          pEngine->pMainFilterParameters[0]  = bqmain;          pEngine->pMainFilterParameters[0]  = bqmain;
921    
922          float* bq;          float* bq;
923          for (int i = 1; i < Samples; i++) {          for (int i = 1; i < Samples; i++) {
924              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              // recalculate biquad parameters if cutoff or resonance differ from previous sample point
925              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||              if (!(i & FILTER_UPDATE_MASK)) {
926                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||
927                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)
928                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];                  {
929                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];
930                        prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];
931                        FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
932                        FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
933                    }
934              }              }
935    
936              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'
937              bq    = (float*) &pEngine->pBasicFilterParameters[i];              bq    = (float*) &pEngine->pBasicFilterParameters[i];
938              bq[0] = bqbase.a1;              bq[0] = bqbase.b0;
939              bq[1] = bqbase.a2;              bq[1] = bqbase.b1;
940              bq[2] = bqbase.b0;              bq[2] = bqbase.b2;
941              bq[3] = bqbase.b1;              bq[3] = bqbase.a1;
942              bq[4] = bqbase.b2;              bq[4] = bqbase.a2;
943    
944              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'
945              bq    = (float*) &pEngine->pMainFilterParameters[i];              bq    = (float*) &pEngine->pMainFilterParameters[i];
946              bq[0] = bqmain.a1;              bq[0] = bqmain.b0;
947              bq[1] = bqmain.a2;              bq[1] = bqmain.b1;
948              bq[2] = bqmain.b0;              bq[2] = bqmain.b2;
949              bq[3] = bqmain.b1;              bq[3] = bqmain.a1;
950              bq[4] = bqmain.b2;              bq[4] = bqmain.a2;
951          }          }
952      }      }
     #endif // ENABLE_FILTER  
953    
954      /**      /**
955       *  Interpolates the input audio data (no loop).       *  Synthesizes the current audio fragment for this voice.
956       *       *
957       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
958       *                   fragment cycle       *                   fragment cycle
959       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
960       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
961       */       */
962      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
963          int i = Skip;          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);
   
         // FIXME: assuming either mono or stereo  
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Stereo(pSrc, i,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
         }  
         else { // Mono Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
         }  
964      }      }
965    
966      /**      /**
967       *  Interpolates the input audio data, this method honors looping.       *  Immediately kill the voice. This method should not be used to kill
968         *  a normal, active voice, because it doesn't take care of things like
969         *  fading down the volume level to avoid clicks and regular processing
970         *  until the kill event actually occured!
971       *       *
972       *  @param Samples - number of sample points to be rendered in this audio       *  @see Kill()
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
973       */       */
974      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::KillImmediately() {
975          int i = Skip;          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
976                pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
977          }          }
978            Reset();
979      }      }
980    
981      /**      /**
982       *  Immediately kill the voice.       *  Kill the voice in regular sense. Let the voice render audio until
983         *  the kill event actually occured and then fade down the volume level
984         *  very quickly and let the voice die finally. Unlike a normal release
985         *  of a voice, a kill process cannot be cancalled and is therefore
986         *  usually used for voice stealing and key group conflicts.
987         *
988         *  @param itKillEvent - event which caused the voice to be killed
989       */       */
990      void Voice::Kill() {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
991          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          #if CONFIG_DEVMODE
992              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
993          }          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
994          Reset();          #endif // CONFIG_DEVMODE
995    
996            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
997            this->itKillEvent = itKillEvent;
998      }      }
999    
1000  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.233  
changed lines
  Added in v.729

  ViewVC Help
Powered by ViewVC