/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 233 by schoenebeck, Tue Sep 7 09:32:21 2004 UTC revision 770 by schoenebeck, Sun Sep 11 15:56:29 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     // TODO: no support for crossfades yet  
   
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          Active = false;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
45          pVCAManipulator  = NULL;          KeyGroup = 0;
46          pVCFCManipulator = NULL;          SynthesisMode = 0; // set all mode bits to 0 first
47          pVCOManipulator  = NULL;          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48          pLFO1  = NULL;          #if CONFIG_ASM && ARCH_X86
49          pLFO2  = NULL;          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50          pLFO3  = NULL;          #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 104  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param iLayer       - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @returns            0 on success, a value < 0 if something failed       *  @param VoiceType      - type of this voice
80         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89          }          #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91          Active          = true;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          MIDIKey         = pNoteOnEvent->Key;          }
93          pRegion         = pInstrument->GetRegion(MIDIKey);          #endif // CONFIG_DEVMODE
94          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
95          Pos             = 0;          Type            = VoiceType;
96          Delay           = pNoteOnEvent->FragmentPos();          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pTriggerEvent   = pNoteOnEvent;          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
98            Delay           = itNoteOnEvent->FragmentPos();
99          if (!pRegion) {          itTriggerEvent  = itNoteOnEvent;
100              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          itKillEvent     = Pool<Event>::Iterator();
101              Kill();          KeyGroup        = iKeyGroup;
102              return -1;          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104            // calculate volume
105            const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
106    
107            Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109            Volume *= pDimRgn->SampleAttenuation;
110    
111            // the volume of release triggered samples depends on note length
112            if (Type == type_release_trigger) {
113                float noteLength = float(pEngine->FrameTime + Delay -
114                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                if (attenuation <= 0) return -1;
117                Volume *= attenuation;
118            }
119    
120            // select channel mode (mono or stereo)
121            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123            // get starting crossfade volume level
124            switch (pDimRgn->AttenuationController.type) {
125                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
126                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
127                    break;
128                case ::gig::attenuation_ctrl_t::type_velocity:
129                    CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
130                    break;
131                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
132                    CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
133                    break;
134                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
135                default:
136                    CrossfadeVolume = 1.0f;
137          }          }
138    
139          // get current dimension values to select the right dimension region          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
         uint DimValues[5] = {0,0,0,0,0};  
         for (int i = pRegion->Dimensions - 1; i >= 0; i--) {  
             switch (pRegion->pDimensionDefinitions[i].dimension) {  
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             pEngine->LaunchVoice(pNoteOnEvent, iNewLayer);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = pNoteOnEvent->Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pNoteOnEvent->Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         ::gig::DimensionRegion* pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
141    
142          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143    
144          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
145          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
146          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
147    
148          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
149              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
150    
151              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
152              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
153                  RAMLoop        = true;                  RAMLoop            = true;
154                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiTotalCycles = pSample->LoopPlayCount;
155                    loop.uiCyclesLeft  = pSample->LoopPlayCount;
156                    loop.uiStart       = pSample->LoopStart;
157                    loop.uiEnd         = pSample->LoopEnd;
158                    loop.uiSize        = pSample->LoopSize;
159              }              }
160              else RAMLoop = false;              else RAMLoop = false;
161    
162              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
163                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
164                  Kill();                  KillImmediately();
165                  return -1;                  return -1;
166              }              }
167              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
# Line 261  namespace LinuxSampler { namespace gig { Line 169  namespace LinuxSampler { namespace gig {
169          else { // RAM only voice          else { // RAM only voice
170              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
171              if (pSample->Loops) {              if (pSample->Loops) {
172                  RAMLoop        = true;                  RAMLoop           = true;
173                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiCyclesLeft = pSample->LoopPlayCount;
174              }              }
175              else RAMLoop = false;              else RAMLoop = false;
176              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
# Line 271  namespace LinuxSampler { namespace gig { Line 179  namespace LinuxSampler { namespace gig {
179    
180          // calculate initial pitch value          // calculate initial pitch value
181          {          {
182              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
183              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
184              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
185              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
186          }          }
187    
188            // the length of the decay and release curves are dependent on the velocity
189          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
190    
191          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
192          {          {
# Line 293  namespace LinuxSampler { namespace gig { Line 200  namespace LinuxSampler { namespace gig {
200                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
201                      break;                      break;
202                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
203                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
204                      break;                      break;
205                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
206                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
207                      break;                      break;
208              }              }
209              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
210    
211              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
212              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
213              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
214              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
215                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
216              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
217                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
218                            pDimRgn->EG1Hold,  
219                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
220                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
221                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
222                            pDimRgn->EG1InfiniteSustain,                          pSample->LoopStart,
223                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
224                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
225                            Delay);                          pDimRgn->EG1InfiniteSustain,
226                            pDimRgn->EG1Sustain,
227                            pDimRgn->EG1Release * eg1release * velrelease,
228                            velocityAttenuation,
229                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
230          }          }
231    
232    
     #if ENABLE_FILTER  
233          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
234          {          {
235              // get current value of EG2 controller              // get current value of EG2 controller
# Line 332  namespace LinuxSampler { namespace gig { Line 242  namespace LinuxSampler { namespace gig {
242                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
243                      break;                      break;
244                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
245                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
246                      break;                      break;
247                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
248                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
249                      break;                      break;
250              }              }
251              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
252    
253              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
254              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
255              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
256              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
257    
258              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
259                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
260                            false,                          false,
261                            pSample->LoopStart,                          pSample->LoopStart,
262                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
263                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
264                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2InfiniteSustain,
265                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Sustain,
266                            pDimRgn->EG2Release + eg2release,                          pDimRgn->EG2Release * eg2release * velrelease,
267                            Delay);                          velocityAttenuation,
268                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
269          }          }
     #endif // ENABLE_FILTER  
270    
271    
272          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
273          {          {
274            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
275            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);            EG3.trigger(eg3depth, pDimRgn->EG3Attack, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
276          }          }
277    
278    
# Line 373  namespace LinuxSampler { namespace gig { Line 283  namespace LinuxSampler { namespace gig {
283                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
284                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
285                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
286                        bLFO1Enabled         = (lfo1_internal_depth > 0);
287                      break;                      break;
288                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
289                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
290                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
291                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
292                      break;                      break;
293                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
294                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
295                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
296                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
297                      break;                      break;
298                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
299                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
300                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
301                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
302                      break;                      break;
303                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
304                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
305                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
306                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
307                      break;                      break;
308                  default:                  default:
309                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
310                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
311                        bLFO1Enabled         = false;
312              }              }
313              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
314                            lfo1_internal_depth,                                               start_level_max,
315                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
316                            pEngine->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
317                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
318                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
319          }          }
320    
321      #if ENABLE_FILTER  
322          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
323          {          {
324              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 411  namespace LinuxSampler { namespace gig { Line 326  namespace LinuxSampler { namespace gig {
326                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
327                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
328                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
329                        bLFO2Enabled         = (lfo2_internal_depth > 0);
330                      break;                      break;
331                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
332                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
333                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
334                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
335                      break;                      break;
336                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
337                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
338                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
339                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
340                      break;                      break;
341                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
342                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
343                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
344                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
345                      break;                      break;
346                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
347                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
348                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
349                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
350                      break;                      break;
351                  default:                  default:
352                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
353                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
354                        bLFO2Enabled         = false;
355              }              }
356              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
357                            lfo2_internal_depth,                                               start_level_max,
358                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
359                            pEngine->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
360                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
361                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
362          }          }
363      #endif // ENABLE_FILTER  
364    
365          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
366          {          {
# Line 449  namespace LinuxSampler { namespace gig { Line 369  namespace LinuxSampler { namespace gig {
369                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
370                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
371                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
372                        bLFO3Enabled         = (lfo3_internal_depth > 0);
373                      break;                      break;
374                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
375                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
376                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
377                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
378                      break;                      break;
379                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
380                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
381                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
382                        bLFO3Enabled         = false; // see TODO comment in line above
383                      break;                      break;
384                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
385                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
386                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
387                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
388                      break;                      break;
389                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
390                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
391                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
392                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
393                      break;                      break;
394                  default:                  default:
395                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
396                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
397                        bLFO3Enabled         = false;
398              }              }
399              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
400                            lfo3_internal_depth,                                               start_level_mid,
401                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
402                            pEngine->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
403                            false,                                               false,
404                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
405          }          }
406    
407      #if ENABLE_FILTER  
408          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
409          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
410          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
411          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
412          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
413          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
414              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
415              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
416                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
417              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
418              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
419                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 523  namespace LinuxSampler { namespace gig { Line 449  namespace LinuxSampler { namespace gig {
449                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
450                      break;                      break;
451              }              }
452              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
453    
454              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
455              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
456              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
457              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
458                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 545  namespace LinuxSampler { namespace gig { Line 471  namespace LinuxSampler { namespace gig {
471                  default:                  default:
472                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
473              }              }
474              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
475    
476              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
477              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
478              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
479              #else // override filter type              #else // override filter type
480              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
481              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
482              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
483    
484              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
485              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
486    
487              // calculate cutoff frequency              // calculate cutoff frequency
488              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
489                  ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX              if (pDimRgn->VCFKeyboardTracking) {
490                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
491                }
492                CutoffBase = cutoff;
493    
494                int cvalue;
495                if (VCFCutoffCtrl.controller) {
496                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
497                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
498                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
499                }
500                else {
501                    cvalue = pDimRgn->VCFCutoff;
502                }
503                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
504                if (cutoff > 1.0) cutoff = 1.0;
505                cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN;
506    
507              // calculate resonance              // calculate resonance
508              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
509              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
510                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
511              }              }
512              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
513    
514              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;
515              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
   
             FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);  
   
             FilterUpdateCounter = -1;  
516          }          }
517          else {          else {
518              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
519              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
520          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
521    
522          return 0; // success          return 0; // success
523      }      }
# Line 604  namespace LinuxSampler { namespace gig { Line 535  namespace LinuxSampler { namespace gig {
535       */       */
536      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
537    
538          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
539          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
540    
541          switch (this->PlaybackState) {          switch (this->PlaybackState) {
542    
543                case playback_state_init:
544                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
545                    // no break - continue with playback_state_ram
546    
547              case playback_state_ram: {              case playback_state_ram: {
548                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
549                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
550                        // render current fragment
551                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
552    
553                      if (DiskVoice) {                      if (DiskVoice) {
554                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
555                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
556                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
557                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
558                          }                          }
559                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
560                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
561                      }                      }
562                  }                  }
# Line 659  namespace LinuxSampler { namespace gig { Line 568  namespace LinuxSampler { namespace gig {
568                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
569                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
570                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
571                              Kill();                              KillImmediately();
572                              return;                              return;
573                          }                          }
574                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
575                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
576                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
577                      }                      }
578    
579                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
580    
581                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
582                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
583                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
584                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
585                                // remember how many sample words there are before any silence has been added
586                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
587                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
588                            }
589                      }                      }
590    
591                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
592                      Interpolate(Samples, ptr, Delay);  
593                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
594                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
595    
596                        const int iPos = (int) finalSynthesisParameters.dPos;
597                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
598                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
599                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
600    
601                        // change state of voice to 'end' if we really reached the end of the sample data
602                        if (RealSampleWordsLeftToRead >= 0) {
603                            RealSampleWordsLeftToRead -= readSampleWords;
604                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
605                        }
606                  }                  }
607                  break;                  break;
608    
609              case playback_state_end:              case playback_state_end:
610                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
611                  break;                  break;
612          }          }
613    
614            // Reset synthesis event lists
615      #if ENABLE_FILTER          pEngineChannel->pEvents->clear();
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
616    
617          // Reset delay          // Reset delay
618          Delay = 0;          Delay = 0;
619    
620          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
621    
622          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
623          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
624      }      }
625    
626      /**      /**
# Line 705  namespace LinuxSampler { namespace gig { Line 628  namespace LinuxSampler { namespace gig {
628       *  suspended / not running.       *  suspended / not running.
629       */       */
630      void Voice::Reset() {      void Voice::Reset() {
631          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
632          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
633          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
634          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
635          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
636          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
637          Active = false;          PlaybackState = playback_state_end;
638            itTriggerEvent = Pool<Event>::Iterator();
639            itKillEvent    = Pool<Event>::Iterator();
640      }      }
641    
642      /**      /**
643       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
644       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
645       *       *
646       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
647         * @param End     - youngest time stamp where processing should be stopped
648       */       */
649      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
650            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
651          // dispatch control change events              if (itEvent->Type == Event::type_release) {
652          Event* pCCEvent = pEngine->pCCEvents->first();                  EG1.update(EGADSR::event_release, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
653          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
654              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              } else if (itEvent->Type == Event::type_cancel_release) {
655          }                  EG1.update(EGADSR::event_cancel_release, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
656          while (pCCEvent) {                  EG2.update(EGADSR::event_cancel_release, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
             if (pCCEvent->Controller) { // if valid MIDI controller  
                 #if ENABLE_FILTER  
                 if (pCCEvent->Controller == VCFCutoffCtrl.controller) {  
                     pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);  
                 }  
                 if (pCCEvent->Controller == VCFResonanceCtrl.controller) {  
                     pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(pCCEvent);  
                 }  
                 #if ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(pCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(pCCEvent);  
                 }  
             }  
   
             pCCEvent = pEngine->pCCEvents->next();  
         }  
   
   
         // process pitch events  
         {  
             RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];  
             Event* pVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (pVCOEvent) {  
                 Event* pNextVCOEvent = pVCOEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
   
                 pVCOEvent = pNextVCOEvent;  
             }  
             if (pVCOEventList->last()) this->PitchBend = pitch;  
         }  
   
   
     #if ENABLE_FILTER  
         // process filter cutoff events  
         {  
             RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             Event* pCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();  
             }  
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 pCutoffEvent = pNextCutoffEvent;  
             }  
             if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
   
         // process filter resonance events  
         {  
             RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];  
             Event* pResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();  
             }  
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = pResonanceEvent->Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
   
                 pResonanceEvent = pNextResonanceEvent;  
657              }              }
             if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time  
658          }          }
     #endif // ENABLE_FILTER  
659      }      }
660    
     #if ENABLE_FILTER  
661      /**      /**
662       * Calculate all necessary, final biquad filter parameters.       * Process given list of MIDI control change and pitch bend events for
663         * the given time.
664       *       *
665       * @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
666         * @param End     - youngest time stamp where processing should be stopped
667       */       */
668      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
669          if (!FilterLeft.Enabled) return;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
670                if (itEvent->Type == Event::type_control_change &&
671          biquad_param_t bqbase;                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
672          biquad_param_t bqmain;                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
673          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];                      processCutoffEvent(itEvent);
674          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];                  }
675          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
676          pEngine->pBasicFilterParameters[0] = bqbase;                      processResonanceEvent(itEvent);
677          pEngine->pMainFilterParameters[0]  = bqmain;                  }
678                    if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
679          float* bq;                      pLFO1->update(itEvent->Param.CC.Value);
680          for (int i = 1; i < Samples; i++) {                  }
681              // recalculate biquad parameters if cutoff or resonance differ from previous sample point                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
682              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||                      pLFO2->update(itEvent->Param.CC.Value);
683                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  }
684                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
685                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];                      pLFO3->update(itEvent->Param.CC.Value);
686                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                  }
687              }                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
688                        itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
689              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'                      processCrossFadeEvent(itEvent);
690              bq    = (float*) &pEngine->pBasicFilterParameters[i];                  }
691              bq[0] = bqbase.a1;              } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
692              bq[1] = bqbase.a2;                  processPitchEvent(itEvent);
693              bq[2] = bqbase.b0;              }
694              bq[3] = bqbase.b1;          }
695              bq[4] = bqbase.b2;      }
696    
697              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'      void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
698              bq    = (float*) &pEngine->pMainFilterParameters[i];          const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
699              bq[0] = bqmain.a1;          finalSynthesisParameters.fFinalPitch *= pitch;
700              bq[1] = bqmain.a2;          PitchBend = pitch;
701              bq[2] = bqmain.b0;      }
702              bq[3] = bqmain.b1;  
703              bq[4] = bqmain.b2;      void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
704          }          CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
705            #if CONFIG_PROCESS_MUTED_CHANNELS
706            const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
707            #else
708            const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
709            #endif
710            fFinalVolume = effectiveVolume;
711        }
712    
713        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
714            int ccvalue = itEvent->Param.CC.Value;
715            if (VCFCutoffCtrl.value == ccvalue) return;
716            VCFCutoffCtrl.value == ccvalue;
717            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
718            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
719            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
720            if (cutoff > 1.0) cutoff = 1.0;
721            cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN - CONFIG_FILTER_CUTOFF_MIN;
722            VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
723            fFinalCutoff = cutoff;
724        }
725    
726        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
727            // convert absolute controller value to differential
728            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
729            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
730            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
731            fFinalResonance += resonancedelta;
732            // needed for initialization of parameter
733            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
734      }      }
     #endif // ENABLE_FILTER  
735    
736      /**      /**
737       *  Interpolates the input audio data (no loop).       *  Synthesizes the current audio fragment for this voice.
738       *       *
739       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
740       *                   fragment cycle       *                   fragment cycle
741       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
742       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
743       */       */
744      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
745          int i = Skip;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
746            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
747          // FIXME: assuming either mono or stereo          finalSynthesisParameters.pSrc      = pSrc;
748          if (this->pSample->Channels == 2) { // Stereo Sample  
749              while (i < Samples) {          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
750                  InterpolateOneStep_Stereo(pSrc, i,          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
751                                            pEngine->pSynthesisParameters[Event::destination_vca][i],  
752                                            pEngine->pSynthesisParameters[Event::destination_vco][i],          if (Skip) { // skip events that happened before this voice was triggered
753                                            pEngine->pBasicFilterParameters[i],              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
754                                            pEngine->pMainFilterParameters[i]);              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
755              }          }
756          }  
757          else { // Mono Sample          uint i = Skip;
758              while (i < Samples) {          while (i < Samples) {
759                  InterpolateOneStep_Mono(pSrc, i,              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
760                                          pEngine->pSynthesisParameters[Event::destination_vca][i],  
761                                          pEngine->pSynthesisParameters[Event::destination_vco][i],              // initialize all final synthesis parameters
762                                          pEngine->pBasicFilterParameters[i],              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
763                                          pEngine->pMainFilterParameters[i]);              #if CONFIG_PROCESS_MUTED_CHANNELS
764                fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
765                #else
766                fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
767                #endif
768                fFinalCutoff    = VCFCutoffCtrl.fvalue;
769                fFinalResonance = VCFResonanceCtrl.fvalue;
770    
771                // process MIDI control change and pitchbend events for this subfragment
772                processCCEvents(itCCEvent, iSubFragmentEnd);
773    
774                // process transition events (note on, note off & sustain pedal)
775                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
776    
777                // process envelope generators
778                switch (EG1.getSegmentType()) {
779                    case EGADSR::segment_lin:
780                        fFinalVolume *= EG1.processLin();
781                        break;
782                    case EGADSR::segment_exp:
783                        fFinalVolume *= EG1.processExp();
784                        break;
785                    case EGADSR::segment_end:
786                        fFinalVolume *= EG1.getLevel();
787                        break; // noop
788                }
789                switch (EG2.getSegmentType()) {
790                    case EGADSR::segment_lin:
791                        fFinalCutoff *= EG2.processLin();
792                        break;
793                    case EGADSR::segment_exp:
794                        fFinalCutoff *= EG2.processExp();
795                        break;
796                    case EGADSR::segment_end:
797                        fFinalCutoff *= EG2.getLevel();
798                        break; // noop
799                }
800                if (EG3.active()) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(EG3.render());
801    
802                // process low frequency oscillators
803                if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
804                if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
805                if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
806    
807                // if filter enabled then update filter coefficients
808                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
809                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
810                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
811                }
812    
813                // do we need resampling?
814                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
815                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
816                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
817                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
818                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
819    
820                // prepare final synthesis parameters structure
821                finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
822                finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
823                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
824    
825                // render audio for one subfragment
826                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
827    
828                // increment envelopes' positions
829                if (EG1.active()) {
830                    EG1.increment(1);
831                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
832                }
833                if (EG2.active()) {
834                    EG2.increment(1);
835                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
836              }              }
837                EG3.increment(1);
838                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
839    
840                i = iSubFragmentEnd;
841          }          }
842      }      }
843    
844      /**      /**
845       *  Interpolates the input audio data, this method honors looping.       *  Immediately kill the voice. This method should not be used to kill
846         *  a normal, active voice, because it doesn't take care of things like
847         *  fading down the volume level to avoid clicks and regular processing
848         *  until the kill event actually occured!
849       *       *
850       *  @param Samples - number of sample points to be rendered in this audio       *  @see Kill()
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
851       */       */
852      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::KillImmediately() {
853          int i = Skip;          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
854                pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
855          }          }
856            Reset();
857      }      }
858    
859      /**      /**
860       *  Immediately kill the voice.       *  Kill the voice in regular sense. Let the voice render audio until
861         *  the kill event actually occured and then fade down the volume level
862         *  very quickly and let the voice die finally. Unlike a normal release
863         *  of a voice, a kill process cannot be cancalled and is therefore
864         *  usually used for voice stealing and key group conflicts.
865         *
866         *  @param itKillEvent - event which caused the voice to be killed
867       */       */
868      void Voice::Kill() {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
869          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          #if CONFIG_DEVMODE
870              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
871          }          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
872          Reset();          #endif // CONFIG_DEVMODE
873    
874            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
875            this->itKillEvent = itKillEvent;
876      }      }
877    
878  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.233  
changed lines
  Added in v.770

  ViewVC Help
Powered by ViewVC