/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 233 by schoenebeck, Tue Sep 7 09:32:21 2004 UTC revision 783 by persson, Sun Oct 2 14:40:52 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     // TODO: no support for crossfades yet  
   
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          Active = false;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
45          pVCAManipulator  = NULL;          KeyGroup = 0;
46          pVCFCManipulator = NULL;          SynthesisMode = 0; // set all mode bits to 0 first
47          pVCOManipulator  = NULL;          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48          pLFO1  = NULL;          #if CONFIG_ASM && ARCH_X86
49          pLFO2  = NULL;          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50          pLFO3  = NULL;          #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 104  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param iLayer       - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @returns            0 on success, a value < 0 if something failed       *  @param VoiceType      - type of this voice
80         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89          }          #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91          Active          = true;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          MIDIKey         = pNoteOnEvent->Key;          }
93          pRegion         = pInstrument->GetRegion(MIDIKey);          #endif // CONFIG_DEVMODE
94          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
95          Pos             = 0;          Type            = VoiceType;
96          Delay           = pNoteOnEvent->FragmentPos();          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pTriggerEvent   = pNoteOnEvent;          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
98            Delay           = itNoteOnEvent->FragmentPos();
99          if (!pRegion) {          itTriggerEvent  = itNoteOnEvent;
100              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          itKillEvent     = Pool<Event>::Iterator();
101              Kill();          KeyGroup        = iKeyGroup;
102              return -1;          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104            // calculate volume
105            const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
106    
107            Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109            Volume *= pDimRgn->SampleAttenuation;
110    
111            // the volume of release triggered samples depends on note length
112            if (Type == type_release_trigger) {
113                float noteLength = float(pEngine->FrameTime + Delay -
114                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                if (attenuation <= 0) return -1;
117                Volume *= attenuation;
118            }
119    
120            // select channel mode (mono or stereo)
121            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123            // get starting crossfade volume level
124            switch (pDimRgn->AttenuationController.type) {
125                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
126                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
127                    break;
128                case ::gig::attenuation_ctrl_t::type_velocity:
129                    CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
130                    break;
131                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
132                    CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
133                    break;
134                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
135                default:
136                    CrossfadeVolume = 1.0f;
137          }          }
138    
139          // get current dimension values to select the right dimension region          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
         uint DimValues[5] = {0,0,0,0,0};  
         for (int i = pRegion->Dimensions - 1; i >= 0; i--) {  
             switch (pRegion->pDimensionDefinitions[i].dimension) {  
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             pEngine->LaunchVoice(pNoteOnEvent, iNewLayer);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = pNoteOnEvent->Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pNoteOnEvent->Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         ::gig::DimensionRegion* pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
141    
142          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143            Pos = pDimRgn->SampleStartOffset;
144    
145          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
146          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
147          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
148    
149          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
150              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
151    
152              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
153              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
154                  RAMLoop        = true;                  RAMLoop            = true;
155                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiTotalCycles = pSample->LoopPlayCount;
156                    loop.uiCyclesLeft  = pSample->LoopPlayCount;
157                    loop.uiStart       = pSample->LoopStart;
158                    loop.uiEnd         = pSample->LoopEnd;
159                    loop.uiSize        = pSample->LoopSize;
160              }              }
161              else RAMLoop = false;              else RAMLoop = false;
162    
163              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
164                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
165                  Kill();                  KillImmediately();
166                  return -1;                  return -1;
167              }              }
168              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
# Line 261  namespace LinuxSampler { namespace gig { Line 170  namespace LinuxSampler { namespace gig {
170          else { // RAM only voice          else { // RAM only voice
171              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
172              if (pSample->Loops) {              if (pSample->Loops) {
173                  RAMLoop        = true;                  RAMLoop           = true;
174                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiCyclesLeft = pSample->LoopPlayCount;
175              }              }
176              else RAMLoop = false;              else RAMLoop = false;
177              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
# Line 271  namespace LinuxSampler { namespace gig { Line 180  namespace LinuxSampler { namespace gig {
180    
181          // calculate initial pitch value          // calculate initial pitch value
182          {          {
183              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
184              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
185              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
186              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
187          }          }
188    
189            // the length of the decay and release curves are dependent on the velocity
190          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
191    
192          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
193          {          {
# Line 293  namespace LinuxSampler { namespace gig { Line 201  namespace LinuxSampler { namespace gig {
201                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
202                      break;                      break;
203                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
204                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
205                      break;                      break;
206                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
207                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
208                      break;                      break;
209              }              }
210              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
211    
212              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
213              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
214              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
215              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
216                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
217              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
218                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
219                            pDimRgn->EG1Hold,  
220                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
221                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
222                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
223                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
224                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
225                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
226                            Delay);                          pDimRgn->EG1Sustain,
227                            pDimRgn->EG1Release * eg1release * velrelease,
228                            velocityAttenuation,
229                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
230          }          }
231    
232    
     #if ENABLE_FILTER  
233          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
234          {          {
235              // get current value of EG2 controller              // get current value of EG2 controller
# Line 332  namespace LinuxSampler { namespace gig { Line 242  namespace LinuxSampler { namespace gig {
242                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
243                      break;                      break;
244                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
245                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
246                      break;                      break;
247                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
248                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
249                      break;                      break;
250              }              }
251              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
252    
253              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
254              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
255              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
256              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
257    
258              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
259                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
260                            false,                          false,
261                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
262                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
263                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
264                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
265                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
266                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
267                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
268          }          }
     #endif // ENABLE_FILTER  
269    
270    
271          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
272          {          {
273            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
274            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);            EG3.trigger(eg3depth, pDimRgn->EG3Attack, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
275          }          }
276    
277    
# Line 373  namespace LinuxSampler { namespace gig { Line 282  namespace LinuxSampler { namespace gig {
282                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
283                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
284                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
285                        bLFO1Enabled         = (lfo1_internal_depth > 0);
286                      break;                      break;
287                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
288                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
289                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
290                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
291                      break;                      break;
292                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
293                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
294                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
295                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
296                      break;                      break;
297                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
298                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
299                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
300                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
301                      break;                      break;
302                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
303                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
304                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
305                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
306                      break;                      break;
307                  default:                  default:
308                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
309                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
310                        bLFO1Enabled         = false;
311              }              }
312              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
313                            lfo1_internal_depth,                                               start_level_max,
314                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
315                            pEngine->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
316                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
317                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
318          }          }
319    
320      #if ENABLE_FILTER  
321          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
322          {          {
323              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 411  namespace LinuxSampler { namespace gig { Line 325  namespace LinuxSampler { namespace gig {
325                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
326                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
327                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
328                        bLFO2Enabled         = (lfo2_internal_depth > 0);
329                      break;                      break;
330                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
331                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
332                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
333                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
334                      break;                      break;
335                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
336                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
337                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
338                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
339                      break;                      break;
340                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
341                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
342                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
343                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
344                      break;                      break;
345                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
346                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
347                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
348                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
349                      break;                      break;
350                  default:                  default:
351                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
352                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
353                        bLFO2Enabled         = false;
354              }              }
355              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
356                            lfo2_internal_depth,                                               start_level_max,
357                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
358                            pEngine->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
359                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
360                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
361          }          }
362      #endif // ENABLE_FILTER  
363    
364          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
365          {          {
# Line 449  namespace LinuxSampler { namespace gig { Line 368  namespace LinuxSampler { namespace gig {
368                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
369                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
370                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
371                        bLFO3Enabled         = (lfo3_internal_depth > 0);
372                      break;                      break;
373                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
374                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
375                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
376                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
377                      break;                      break;
378                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
379                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
380                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
381                        bLFO3Enabled         = false; // see TODO comment in line above
382                      break;                      break;
383                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
384                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
385                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
386                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
387                      break;                      break;
388                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
389                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
390                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
391                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
392                      break;                      break;
393                  default:                  default:
394                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
395                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
396                        bLFO3Enabled         = false;
397              }              }
398              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
399                            lfo3_internal_depth,                                               start_level_mid,
400                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
401                            pEngine->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
402                            false,                                               false,
403                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
404          }          }
405    
406      #if ENABLE_FILTER  
407          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
408          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
409          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
410          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
411          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
412          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
413              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
414              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
415                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
416              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
417              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
418                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 523  namespace LinuxSampler { namespace gig { Line 448  namespace LinuxSampler { namespace gig {
448                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
449                      break;                      break;
450              }              }
451              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
452    
453              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
454              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
455              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
456              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
457                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 545  namespace LinuxSampler { namespace gig { Line 470  namespace LinuxSampler { namespace gig {
470                  default:                  default:
471                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
472              }              }
473              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
474    
475              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
476              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
477              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
478              #else // override filter type              #else // override filter type
479              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
480              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
481              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
482    
483              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
484              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
485    
486              // calculate cutoff frequency              // calculate cutoff frequency
487              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
488                  ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX              if (pDimRgn->VCFKeyboardTracking) {
489                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
490                }
491                CutoffBase = cutoff;
492    
493                int cvalue;
494                if (VCFCutoffCtrl.controller) {
495                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
496                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
497                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
498                }
499                else {
500                    cvalue = pDimRgn->VCFCutoff;
501                }
502                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
503                if (cutoff > 1.0) cutoff = 1.0;
504                cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN;
505    
506              // calculate resonance              // calculate resonance
507              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
508              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
509                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
510              }              }
511              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
512    
513              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;
514              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
   
             FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);  
   
             FilterUpdateCounter = -1;  
515          }          }
516          else {          else {
517              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
518              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
519          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
520    
521          return 0; // success          return 0; // success
522      }      }
# Line 604  namespace LinuxSampler { namespace gig { Line 534  namespace LinuxSampler { namespace gig {
534       */       */
535      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
536    
537          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
538          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
539    
540          switch (this->PlaybackState) {          switch (this->PlaybackState) {
541    
542                case playback_state_init:
543                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
544                    // no break - continue with playback_state_ram
545    
546              case playback_state_ram: {              case playback_state_ram: {
547                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
548                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
549                        // render current fragment
550                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
551    
552                      if (DiskVoice) {                      if (DiskVoice) {
553                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
554                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
555                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
556                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
557                          }                          }
558                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
559                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
560                      }                      }
561                  }                  }
# Line 659  namespace LinuxSampler { namespace gig { Line 567  namespace LinuxSampler { namespace gig {
567                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
568                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
569                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
570                              Kill();                              KillImmediately();
571                              return;                              return;
572                          }                          }
573                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
574                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
575                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
576                      }                      }
577    
578                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
579    
580                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
581                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
582                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
583                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
584                                // remember how many sample words there are before any silence has been added
585                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
586                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
587                            }
588                      }                      }
589    
590                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
591                      Interpolate(Samples, ptr, Delay);  
592                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
593                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
594    
595                        const int iPos = (int) finalSynthesisParameters.dPos;
596                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
597                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
598                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
599    
600                        // change state of voice to 'end' if we really reached the end of the sample data
601                        if (RealSampleWordsLeftToRead >= 0) {
602                            RealSampleWordsLeftToRead -= readSampleWords;
603                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
604                        }
605                  }                  }
606                  break;                  break;
607    
608              case playback_state_end:              case playback_state_end:
609                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
610                  break;                  break;
611          }          }
612    
   
     #if ENABLE_FILTER  
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
613          // Reset delay          // Reset delay
614          Delay = 0;          Delay = 0;
615    
616          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
617    
618          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
619          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
620      }      }
621    
622      /**      /**
# Line 705  namespace LinuxSampler { namespace gig { Line 624  namespace LinuxSampler { namespace gig {
624       *  suspended / not running.       *  suspended / not running.
625       */       */
626      void Voice::Reset() {      void Voice::Reset() {
627          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
628          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
629          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
630          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
631          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
632          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
633          Active = false;          PlaybackState = playback_state_end;
634            itTriggerEvent = Pool<Event>::Iterator();
635            itKillEvent    = Pool<Event>::Iterator();
636      }      }
637    
638      /**      /**
639       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
640       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
641       *       *
642       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
643         * @param End     - youngest time stamp where processing should be stopped
644       */       */
645      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
646            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
647          // dispatch control change events              if (itEvent->Type == Event::type_release) {
648          Event* pCCEvent = pEngine->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
649          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
650              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              } else if (itEvent->Type == Event::type_cancel_release) {
651          }                  EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
652          while (pCCEvent) {                  EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
             if (pCCEvent->Controller) { // if valid MIDI controller  
                 #if ENABLE_FILTER  
                 if (pCCEvent->Controller == VCFCutoffCtrl.controller) {  
                     pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);  
                 }  
                 if (pCCEvent->Controller == VCFResonanceCtrl.controller) {  
                     pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(pCCEvent);  
                 }  
                 #if ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(pCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(pCCEvent);  
                 }  
             }  
   
             pCCEvent = pEngine->pCCEvents->next();  
         }  
   
   
         // process pitch events  
         {  
             RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];  
             Event* pVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (pVCOEvent) {  
                 Event* pNextVCOEvent = pVCOEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
   
                 pVCOEvent = pNextVCOEvent;  
             }  
             if (pVCOEventList->last()) this->PitchBend = pitch;  
         }  
   
   
     #if ENABLE_FILTER  
         // process filter cutoff events  
         {  
             RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             Event* pCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();  
             }  
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 pCutoffEvent = pNextCutoffEvent;  
             }  
             if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
   
         // process filter resonance events  
         {  
             RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];  
             Event* pResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();  
             }  
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = pResonanceEvent->Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
   
                 pResonanceEvent = pNextResonanceEvent;  
653              }              }
             if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time  
654          }          }
     #endif // ENABLE_FILTER  
655      }      }
656    
     #if ENABLE_FILTER  
657      /**      /**
658       * Calculate all necessary, final biquad filter parameters.       * Process given list of MIDI control change and pitch bend events for
659         * the given time.
660       *       *
661       * @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
662         * @param End     - youngest time stamp where processing should be stopped
663       */       */
664      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
665          if (!FilterLeft.Enabled) return;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
666                if (itEvent->Type == Event::type_control_change &&
667          biquad_param_t bqbase;                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
668          biquad_param_t bqmain;                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
669          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];                      processCutoffEvent(itEvent);
670          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];                  }
671          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
672          pEngine->pBasicFilterParameters[0] = bqbase;                      processResonanceEvent(itEvent);
673          pEngine->pMainFilterParameters[0]  = bqmain;                  }
674                    if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
675          float* bq;                      pLFO1->update(itEvent->Param.CC.Value);
676          for (int i = 1; i < Samples; i++) {                  }
677              // recalculate biquad parameters if cutoff or resonance differ from previous sample point                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
678              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||                      pLFO2->update(itEvent->Param.CC.Value);
679                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  }
680                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
681                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];                      pLFO3->update(itEvent->Param.CC.Value);
682                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                  }
683              }                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
684                        itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
685              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'                      processCrossFadeEvent(itEvent);
686              bq    = (float*) &pEngine->pBasicFilterParameters[i];                  }
687              bq[0] = bqbase.a1;              } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
688              bq[1] = bqbase.a2;                  processPitchEvent(itEvent);
689              bq[2] = bqbase.b0;              }
690              bq[3] = bqbase.b1;          }
691              bq[4] = bqbase.b2;      }
692    
693              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'      void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
694              bq    = (float*) &pEngine->pMainFilterParameters[i];          const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
695              bq[0] = bqmain.a1;          finalSynthesisParameters.fFinalPitch *= pitch;
696              bq[1] = bqmain.a2;          PitchBend = pitch;
697              bq[2] = bqmain.b0;      }
698              bq[3] = bqmain.b1;  
699              bq[4] = bqmain.b2;      void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
700          }          CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
701            #if CONFIG_PROCESS_MUTED_CHANNELS
702            const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
703            #else
704            const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
705            #endif
706            fFinalVolume = effectiveVolume;
707        }
708    
709        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
710            int ccvalue = itEvent->Param.CC.Value;
711            if (VCFCutoffCtrl.value == ccvalue) return;
712            VCFCutoffCtrl.value == ccvalue;
713            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
714            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
715            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
716            if (cutoff > 1.0) cutoff = 1.0;
717            cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN - CONFIG_FILTER_CUTOFF_MIN;
718            VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
719            fFinalCutoff = cutoff;
720        }
721    
722        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
723            // convert absolute controller value to differential
724            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
725            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
726            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
727            fFinalResonance += resonancedelta;
728            // needed for initialization of parameter
729            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
730      }      }
     #endif // ENABLE_FILTER  
731    
732      /**      /**
733       *  Interpolates the input audio data (no loop).       *  Synthesizes the current audio fragment for this voice.
734       *       *
735       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
736       *                   fragment cycle       *                   fragment cycle
737       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
738       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
739       */       */
740      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
741          int i = Skip;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
742            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
743            finalSynthesisParameters.pSrc      = pSrc;
744    
745          // FIXME: assuming either mono or stereo          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
746          if (this->pSample->Channels == 2) { // Stereo Sample          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
747              while (i < Samples) {  
748                  InterpolateOneStep_Stereo(pSrc, i,          if (Skip) { // skip events that happened before this voice was triggered
749                                            pEngine->pSynthesisParameters[Event::destination_vca][i],              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
750                                            pEngine->pSynthesisParameters[Event::destination_vco][i],              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
         }  
         else { // Mono Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
751          }          }
     }  
752    
753      /**          uint i = Skip;
754       *  Interpolates the input audio data, this method honors looping.          while (i < Samples) {
755       *              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
756    
757          // FIXME: assuming either mono or stereo              // initialize all final synthesis parameters
758          if (pSample->Channels == 2) { // Stereo Sample              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
759              if (pSample->LoopPlayCount) {              #if CONFIG_PROCESS_MUTED_CHANNELS
760                  // render loop (loop count limited)              fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
761                  while (i < Samples && LoopCyclesLeft) {              #else
762                      InterpolateOneStep_Stereo(pSrc, i,              fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
763                                                pEngine->pSynthesisParameters[Event::destination_vca][i],              #endif
764                                                pEngine->pSynthesisParameters[Event::destination_vco][i],              fFinalCutoff    = VCFCutoffCtrl.fvalue;
765                                                pEngine->pBasicFilterParameters[i],              fFinalResonance = VCFResonanceCtrl.fvalue;
766                                                pEngine->pMainFilterParameters[i]);  
767                      if (Pos > pSample->LoopEnd) {              // process MIDI control change and pitchbend events for this subfragment
768                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              processCCEvents(itCCEvent, iSubFragmentEnd);
769                          LoopCyclesLeft--;  
770                      }              // process transition events (note on, note off & sustain pedal)
771                  }              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
772                  // render on without loop  
773                  while (i < Samples) {              // process envelope generators
774                      InterpolateOneStep_Stereo(pSrc, i,              switch (EG1.getSegmentType()) {
775                                                pEngine->pSynthesisParameters[Event::destination_vca][i],                  case EGADSR::segment_lin:
776                                                pEngine->pSynthesisParameters[Event::destination_vco][i],                      fFinalVolume *= EG1.processLin();
777                                                pEngine->pBasicFilterParameters[i],                      break;
778                                                pEngine->pMainFilterParameters[i]);                  case EGADSR::segment_exp:
779                  }                      fFinalVolume *= EG1.processExp();
780                        break;
781                    case EGADSR::segment_end:
782                        fFinalVolume *= EG1.getLevel();
783                        break; // noop
784              }              }
785              else { // render loop (endless loop)              switch (EG2.getSegmentType()) {
786                  while (i < Samples) {                  case EGADSR::segment_lin:
787                      InterpolateOneStep_Stereo(pSrc, i,                      fFinalCutoff *= EG2.processLin();
788                                                pEngine->pSynthesisParameters[Event::destination_vca][i],                      break;
789                                                pEngine->pSynthesisParameters[Event::destination_vco][i],                  case EGADSR::segment_exp:
790                                                pEngine->pBasicFilterParameters[i],                      fFinalCutoff *= EG2.processExp();
791                                                pEngine->pMainFilterParameters[i]);                      break;
792                      if (Pos > pSample->LoopEnd) {                  case EGADSR::segment_end:
793                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                      fFinalCutoff *= EG2.getLevel();
794                      }                      break; // noop
                 }  
795              }              }
796          }              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(EG3.render());
797          else { // Mono Sample  
798              if (pSample->LoopPlayCount) {              // process low frequency oscillators
799                  // render loop (loop count limited)              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
800                  while (i < Samples && LoopCyclesLeft) {              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
801                      InterpolateOneStep_Mono(pSrc, i,              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
802                                              pEngine->pSynthesisParameters[Event::destination_vca][i],  
803                                              pEngine->pSynthesisParameters[Event::destination_vco][i],              // if filter enabled then update filter coefficients
804                                              pEngine->pBasicFilterParameters[i],              if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
805                                              pEngine->pMainFilterParameters[i]);                  finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
806                      if (Pos > pSample->LoopEnd) {                  finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
807              }              }
808              else { // render loop (endless loop)  
809                  while (i < Samples) {              // do we need resampling?
810                      InterpolateOneStep_Mono(pSrc, i,              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
811                                              pEngine->pSynthesisParameters[Event::destination_vca][i],              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
812                                              pEngine->pSynthesisParameters[Event::destination_vco][i],              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
813                                              pEngine->pBasicFilterParameters[i],                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
814                                              pEngine->pMainFilterParameters[i]);              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
815                      if (Pos > pSample->LoopEnd) {  
816                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              // prepare final synthesis parameters structure
817                      }              finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
818                finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
819                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
820    
821                // render audio for one subfragment
822                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
823    
824                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
825    
826                // increment envelopes' positions
827                if (EG1.active()) {
828    
829                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
830                    if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
831                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
832                  }                  }
833    
834                    EG1.increment(1);
835                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
836              }              }
837                if (EG2.active()) {
838                    EG2.increment(1);
839                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
840                }
841                EG3.increment(1);
842                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
843    
844                Pos = newPos;
845                i = iSubFragmentEnd;
846          }          }
847      }      }
848    
849      /**      /**
850       *  Immediately kill the voice.       *  Immediately kill the voice. This method should not be used to kill
851         *  a normal, active voice, because it doesn't take care of things like
852         *  fading down the volume level to avoid clicks and regular processing
853         *  until the kill event actually occured!
854         *
855         *  @see Kill()
856       */       */
857      void Voice::Kill() {      void Voice::KillImmediately() {
858          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
859              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
860          }          }
861          Reset();          Reset();
862      }      }
863    
864        /**
865         *  Kill the voice in regular sense. Let the voice render audio until
866         *  the kill event actually occured and then fade down the volume level
867         *  very quickly and let the voice die finally. Unlike a normal release
868         *  of a voice, a kill process cannot be cancalled and is therefore
869         *  usually used for voice stealing and key group conflicts.
870         *
871         *  @param itKillEvent - event which caused the voice to be killed
872         */
873        void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
874            #if CONFIG_DEVMODE
875            if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
876            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
877            #endif // CONFIG_DEVMODE
878    
879            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
880            this->itKillEvent = itKillEvent;
881        }
882    
883  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.233  
changed lines
  Added in v.783

  ViewVC Help
Powered by ViewVC