/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 246 by schoenebeck, Sun Sep 19 14:12:55 2004 UTC revision 323 by schoenebeck, Tue Dec 14 00:32:21 2004 UTC
# Line 22  Line 22 
22    
23  #include "EGADSR.h"  #include "EGADSR.h"
24  #include "Manipulator.h"  #include "Manipulator.h"
25    #include "../../common/Features.h"
26    #include "Synthesizer.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 45  namespace LinuxSampler { namespace gig { Line 47  namespace LinuxSampler { namespace gig {
47      Voice::Voice() {      Voice::Voice() {
48          pEngine     = NULL;          pEngine     = NULL;
49          pDiskThread = NULL;          pDiskThread = NULL;
50          Active = false;          PlaybackState = playback_state_end;
51          pEG1   = NULL;          pEG1   = NULL;
52          pEG2   = NULL;          pEG2   = NULL;
53          pEG3   = NULL;          pEG3   = NULL;
# Line 56  namespace LinuxSampler { namespace gig { Line 58  namespace LinuxSampler { namespace gig {
58          pLFO2  = NULL;          pLFO2  = NULL;
59          pLFO3  = NULL;          pLFO3  = NULL;
60          KeyGroup = 0;          KeyGroup = 0;
61    
62            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
63            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
64      }      }
65    
66      Voice::~Voice() {      Voice::~Voice() {
# Line 103  namespace LinuxSampler { namespace gig { Line 108  namespace LinuxSampler { namespace gig {
108       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
109       *  needed.       *  needed.
110       *       *
111       *  @param pNoteOnEvent        - event that caused triggering of this voice       *  @param itNoteOnEvent       - event that caused triggering of this voice
112       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)
113       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data
114       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)
115       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)
116         *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices
117       *  @returns 0 on success, a value < 0 if something failed       *  @returns 0 on success, a value < 0 if something failed
118       */       */
119      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice) {      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {
120          if (!pInstrument) {          if (!pInstrument) {
121             dmsg(1,("voice::trigger: !pInstrument\n"));             dmsg(1,("voice::trigger: !pInstrument\n"));
122             exit(EXIT_FAILURE);             exit(EXIT_FAILURE);
123          }          }
124            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // FIXME: should be removed before the final release (purpose: just a sanity check for debugging)
125                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
126            }
127    
128          Type            = type_normal;          Type            = type_normal;
129          Active          = true;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
         MIDIKey         = pNoteOnEvent->Param.Note.Key;  
130          pRegion         = pInstrument->GetRegion(MIDIKey);          pRegion         = pInstrument->GetRegion(MIDIKey);
131          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
132          Delay           = pNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
133          pTriggerEvent   = pNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
134          pKillEvent      = NULL;          itKillEvent     = Pool<Event>::Iterator();
135            itChildVoice    = Pool<Voice>::Iterator();
136    
137          if (!pRegion) {          if (!pRegion) {
138              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;
# Line 146  namespace LinuxSampler { namespace gig { Line 155  namespace LinuxSampler { namespace gig {
155                      // if this is the 1st layer then spawn further voices for all the other layers                      // if this is the 1st layer then spawn further voices for all the other layers
156                      if (iLayer == 0)                      if (iLayer == 0)
157                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)
158                              pEngine->LaunchVoice(pNoteOnEvent, iNewLayer, ReleaseTriggerVoice);                              itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);
159                      break;                      break;
160                  case ::gig::dimension_velocity:                  case ::gig::dimension_velocity:
161                      DimValues[i] = pNoteOnEvent->Param.Note.Velocity;                      DimValues[i] = itNoteOnEvent->Param.Note.Velocity;
162                      break;                      break;
163                  case ::gig::dimension_channelaftertouch:                  case ::gig::dimension_channelaftertouch:
164                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      DimValues[i] = 0; //TODO: we currently ignore this dimension
# Line 159  namespace LinuxSampler { namespace gig { Line 168  namespace LinuxSampler { namespace gig {
168                      DimValues[i] = (uint) ReleaseTriggerVoice;                      DimValues[i] = (uint) ReleaseTriggerVoice;
169                      break;                      break;
170                  case ::gig::dimension_keyboard:                  case ::gig::dimension_keyboard:
171                      DimValues[i] = (uint) pNoteOnEvent->Param.Note.Key;                      DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;
172                      break;                      break;
173                  case ::gig::dimension_modwheel:                  case ::gig::dimension_modwheel:
174                      DimValues[i] = pEngine->ControllerTable[1];                      DimValues[i] = pEngine->ControllerTable[1];
# Line 239  namespace LinuxSampler { namespace gig { Line 248  namespace LinuxSampler { namespace gig {
248          }          }
249          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);
250    
251            pSample = pDimRgn->pSample; // sample won't change until the voice is finished
252    
253            // select channel mode (mono or stereo)
254            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
255    
256          // get starting crossfade volume level          // get starting crossfade volume level
257          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
258              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
259                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
260                  break;                  break;
261              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
262                  CrossfadeVolume = CrossfadeAttenuation(pNoteOnEvent->Param.Note.Velocity);                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
263                  break;                  break;
264              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
265                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);
# Line 255  namespace LinuxSampler { namespace gig { Line 269  namespace LinuxSampler { namespace gig {
269                  CrossfadeVolume = 1.0f;                  CrossfadeVolume = 1.0f;
270          }          }
271    
272          PanLeft  = float(RTMath::Max(pDimRgn->Pan, 0)) / -64.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
273          PanRight = float(RTMath::Min(pDimRgn->Pan, 0)) /  63.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
   
         pSample = pDimRgn->pSample; // sample won't change until the voice is finished  
274    
275          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
276    
# Line 302  namespace LinuxSampler { namespace gig { Line 314  namespace LinuxSampler { namespace gig {
314              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
315          }          }
316    
317            Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
         Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)  
   
318    
319          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
320          {          {
# Line 318  namespace LinuxSampler { namespace gig { Line 328  namespace LinuxSampler { namespace gig {
328                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
329                      break;                      break;
330                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
331                      eg1controllervalue = pNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
332                      break;                      break;
333                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
334                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];
# Line 344  namespace LinuxSampler { namespace gig { Line 354  namespace LinuxSampler { namespace gig {
354          }          }
355    
356    
     #if ENABLE_FILTER  
357          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
358          {          {
359              // get current value of EG2 controller              // get current value of EG2 controller
# Line 357  namespace LinuxSampler { namespace gig { Line 366  namespace LinuxSampler { namespace gig {
366                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
367                      break;                      break;
368                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
369                      eg2controllervalue = pNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
370                      break;                      break;
371                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
372                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];
# Line 381  namespace LinuxSampler { namespace gig { Line 390  namespace LinuxSampler { namespace gig {
390                            pDimRgn->EG2Release + eg2release,                            pDimRgn->EG2Release + eg2release,
391                            Delay);                            Delay);
392          }          }
     #endif // ENABLE_FILTER  
393    
394    
395          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
# Line 428  namespace LinuxSampler { namespace gig { Line 436  namespace LinuxSampler { namespace gig {
436                            Delay);                            Delay);
437          }          }
438    
439      #if ENABLE_FILTER  
440          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
441          {          {
442              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 465  namespace LinuxSampler { namespace gig { Line 473  namespace LinuxSampler { namespace gig {
473                            pEngine->SampleRate,                            pEngine->SampleRate,
474                            Delay);                            Delay);
475          }          }
476      #endif // ENABLE_FILTER  
477    
478          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
479          {          {
# Line 504  namespace LinuxSampler { namespace gig { Line 512  namespace LinuxSampler { namespace gig {
512                            Delay);                            Delay);
513          }          }
514    
515      #if ENABLE_FILTER  
516          #if FORCE_FILTER_USAGE          #if FORCE_FILTER_USAGE
517          FilterLeft.Enabled = FilterRight.Enabled = true;          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, true);
518          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
519          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, pDimRgn->VCFEnabled);
520          #endif // FORCE_FILTER_USAGE          #endif // FORCE_FILTER_USAGE
521          if (pDimRgn->VCFEnabled) {          if (pDimRgn->VCFEnabled) {
522              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL
# Line 585  namespace LinuxSampler { namespace gig { Line 593  namespace LinuxSampler { namespace gig {
593    
594              // calculate cutoff frequency              // calculate cutoff frequency
595              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = (!VCFCutoffCtrl.controller)
596                  ? exp((float) (127 - pNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX
597                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;
598    
599              // calculate resonance              // calculate resonance
600              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
601              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
602                  resonance += (float) (pNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
603              }              }
604              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
605    
606              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;
607              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
608    
             FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);  
   
609              FilterUpdateCounter = -1;              FilterUpdateCounter = -1;
610          }          }
611          else {          else {
612              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
613              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
614          }          }
     #endif // ENABLE_FILTER  
615    
616          return 0; // success          return 0; // success
617      }      }
# Line 625  namespace LinuxSampler { namespace gig { Line 629  namespace LinuxSampler { namespace gig {
629       */       */
630      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
631    
632            // select default values for synthesis mode bits
633            SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);
634            SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);
635            SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
636    
637          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
638    
639          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);
640          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
     #if ENABLE_FILTER  
641          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
642          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);
     #endif // ENABLE_FILTER  
   
643    
644          // Apply events to the synthesis parameter matrix          // Apply events to the synthesis parameter matrix
645          ProcessEvents(Samples);          ProcessEvents(Samples);
646    
   
647          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
648          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, pKillEvent);          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
649      #if ENABLE_FILTER          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
650          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          if (pEG3->Process(Samples)) { // if pitch EG is active
651      #endif // ENABLE_FILTER              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
652          pEG3->Process(Samples);              SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
653            }
654          pLFO1->Process(Samples);          pLFO1->Process(Samples);
     #if ENABLE_FILTER  
655          pLFO2->Process(Samples);          pLFO2->Process(Samples);
656      #endif // ENABLE_FILTER          if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active
657          pLFO3->Process(Samples);              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
658                SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
659            }
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
660    
661            if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))
662                    CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters
663    
664          switch (this->PlaybackState) {          switch (this->PlaybackState) {
665    
666              case playback_state_ram: {              case playback_state_ram: {
667                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
668                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
669                        // render current fragment
670                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
671    
672                      if (DiskVoice) {                      if (DiskVoice) {
673                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
674                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 683  namespace LinuxSampler { namespace gig { Line 691  namespace LinuxSampler { namespace gig {
691                              KillImmediately();                              KillImmediately();
692                              return;                              return;
693                          }                          }
694                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));
695                          Pos -= RTMath::DoubleToInt(Pos);                          Pos -= int(Pos);
696                      }                      }
697    
698                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
699    
700                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
701                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
702                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
703                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
704                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
705                            }
706                      }                      }
707    
708                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
709                      InterpolateNoLoop(Samples, ptr, Delay);  
710                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
711                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
712    
713                        const int iPos = (int) Pos;
714                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
715                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
716                        Pos -= iPos; // just keep fractional part of Pos
717    
718                        // change state of voice to 'end' if we really reached the end of the sample data
719                        if (DiskStreamRef.State == Stream::state_end && readSampleWords >= sampleWordsLeftToRead) this->PlaybackState = playback_state_end;
720                  }                  }
721                  break;                  break;
722    
723              case playback_state_end:              case playback_state_end:
724                  KillImmediately(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
725                  break;                  break;
726          }          }
727    
   
728          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
729          pEngine->pSynthesisEvents[Event::destination_vca]->clear();          pEngine->pSynthesisEvents[Event::destination_vca]->clear();
     #if ENABLE_FILTER  
730          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();
731          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();
     #endif // ENABLE_FILTER  
732    
733          // Reset delay          // Reset delay
734          Delay = 0;          Delay = 0;
735    
736          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
737    
738          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
739          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();
740      }      }
741    
742      /**      /**
# Line 730  namespace LinuxSampler { namespace gig { Line 747  namespace LinuxSampler { namespace gig {
747          pLFO1->Reset();          pLFO1->Reset();
748          pLFO2->Reset();          pLFO2->Reset();
749          pLFO3->Reset();          pLFO3->Reset();
750            FilterLeft.Reset();
751            FilterRight.Reset();
752          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
753          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
754          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
755          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
756          Active = false;          PlaybackState = playback_state_end;
757            itTriggerEvent = Pool<Event>::Iterator();
758            itKillEvent    = Pool<Event>::Iterator();
759      }      }
760    
761      /**      /**
# Line 747  namespace LinuxSampler { namespace gig { Line 768  namespace LinuxSampler { namespace gig {
768      void Voice::ProcessEvents(uint Samples) {      void Voice::ProcessEvents(uint Samples) {
769    
770          // dispatch control change events          // dispatch control change events
771          Event* pCCEvent = pEngine->pCCEvents->first();          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();
772          if (Delay) { // skip events that happened before this voice was triggered          if (Delay) { // skip events that happened before this voice was triggered
773              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;
774          }          }
775          while (pCCEvent) {          while (itCCEvent) {
776              if (pCCEvent->Param.CC.Controller) { // if valid MIDI controller              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
777                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
778                  if (pCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
                     pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);  
779                  }                  }
780                  if (pCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
781                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
782                  }                  }
783                  #endif // ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
784                  if (pCCEvent->Param.CC.Controller == pLFO1->ExtController) {                      pLFO1->SendEvent(itCCEvent);
                     pLFO1->SendEvent(pCCEvent);  
785                  }                  }
786                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
787                  if (pCCEvent->Param.CC.Controller == pLFO2->ExtController) {                      pLFO2->SendEvent(itCCEvent);
                     pLFO2->SendEvent(pCCEvent);  
788                  }                  }
789                  #endif // ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
790                  if (pCCEvent->Param.CC.Controller == pLFO3->ExtController) {                      pLFO3->SendEvent(itCCEvent);
                     pLFO3->SendEvent(pCCEvent);  
791                  }                  }
792                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
793                      pCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
794                      pEngine->pSynthesisEvents[Event::destination_vca]->alloc_assign(*pCCEvent);                      *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;
795                  }                  }
796              }              }
797    
798              pCCEvent = pEngine->pCCEvents->next();              ++itCCEvent;
799          }          }
800    
801    
802          // process pitch events          // process pitch events
803          {          {
804              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];
805              Event* pVCOEvent = pVCOEventList->first();              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();
806              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
807                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;
808              }              }
809              // apply old pitchbend value until first pitch event occurs              // apply old pitchbend value until first pitch event occurs
810              if (this->PitchBend != 1.0) {              if (this->PitchBend != 1.0) {
811                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;
812                  for (uint i = Delay; i < end; i++) {                  for (uint i = Delay; i < end; i++) {
813                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;
814                  }                  }
815              }              }
816              float pitch;              float pitch;
817              while (pVCOEvent) {              while (itVCOEvent) {
818                  Event* pNextVCOEvent = pVCOEventList->next();                  RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;
819                    ++itNextVCOEvent;
820    
821                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
822                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;                  uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;
823    
824                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents                  pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
825    
826                  // apply pitch value to the pitch parameter sequence                  // apply pitch value to the pitch parameter sequence
827                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {
828                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;
829                  }                  }
830    
831                  pVCOEvent = pNextVCOEvent;                  itVCOEvent = itNextVCOEvent;
832                }
833                if (!pVCOEventList->isEmpty()) {
834                    this->PitchBend = pitch;
835                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
836                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
837              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
838          }          }
839    
840          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
841          {          {
842              RTEList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];              RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];
843              Event* pVCAEvent = pVCAEventList->first();              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();
844              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
845                  while (pVCAEvent && pVCAEvent->FragmentPos() <= Delay) pVCAEvent = pVCAEventList->next();                  while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;
846              }              }
847              float crossfadevolume;              float crossfadevolume;
848              while (pVCAEvent) {              while (itVCAEvent) {
849                  Event* pNextVCAEvent = pVCAEventList->next();                  RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;
850                    ++itNextVCAEvent;
851    
852                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
853                  uint end = (pNextVCAEvent) ? pNextVCAEvent->FragmentPos() : Samples;                  uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;
854    
855                  crossfadevolume = CrossfadeAttenuation(pVCAEvent->Param.CC.Value);                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);
856    
857                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;
858    
859                  // apply volume value to the volume parameter sequence                  // apply volume value to the volume parameter sequence
860                  for (uint i = pVCAEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {
861                      pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;                      pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;
862                  }                  }
863    
864                  pVCAEvent = pNextVCAEvent;                  itVCAEvent = itNextVCAEvent;
865              }              }
866              if (pVCAEventList->last()) this->CrossfadeVolume = crossfadevolume;              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
867          }          }
868    
     #if ENABLE_FILTER  
869          // process filter cutoff events          // process filter cutoff events
870          {          {
871              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];              RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];
872              Event* pCutoffEvent = pCutoffEventList->first();              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();
873              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
874                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;
875              }              }
876              float cutoff;              float cutoff;
877              while (pCutoffEvent) {              while (itCutoffEvent) {
878                  Event* pNextCutoffEvent = pCutoffEventList->next();                  RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;
879                    ++itNextCutoffEvent;
880    
881                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
882                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;
883    
884                  cutoff = exp((float) pCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;
885    
886                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
887                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {
888                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;
889                  }                  }
890    
891                  pCutoffEvent = pNextCutoffEvent;                  itCutoffEvent = itNextCutoffEvent;
892              }              }
893              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time
894          }          }
895    
896          // process filter resonance events          // process filter resonance events
897          {          {
898              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];
899              Event* pResonanceEvent = pResonanceEventList->first();              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();
900              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
901                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;
902              }              }
903              while (pResonanceEvent) {              while (itResonanceEvent) {
904                  Event* pNextResonanceEvent = pResonanceEventList->next();                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;
905                    ++itNextResonanceEvent;
906    
907                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
908                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;
909    
910                  // convert absolute controller value to differential                  // convert absolute controller value to differential
911                  int ctrldelta = pResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;                  int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;
912                  VCFResonanceCtrl.value = pResonanceEvent->Param.CC.Value;                  VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;
913    
914                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
915    
916                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
917                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {
918                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;
919                  }                  }
920    
921                  pResonanceEvent = pNextResonanceEvent;                  itResonanceEvent = itNextResonanceEvent;
922              }              }
923              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
924          }          }
     #endif // ENABLE_FILTER  
925      }      }
926    
     #if ENABLE_FILTER  
927      /**      /**
928       * Calculate all necessary, final biquad filter parameters.       * Calculate all necessary, final biquad filter parameters.
929       *       *
930       * @param Samples - number of samples to be rendered in this audio fragment cycle       * @param Samples - number of samples to be rendered in this audio fragment cycle
931       */       */
932      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::CalculateBiquadParameters(uint Samples) {
         if (!FilterLeft.Enabled) return;  
   
933          biquad_param_t bqbase;          biquad_param_t bqbase;
934          biquad_param_t bqmain;          biquad_param_t bqmain;
935          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];
936          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];
937          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);
938            FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);
939          pEngine->pBasicFilterParameters[0] = bqbase;          pEngine->pBasicFilterParameters[0] = bqbase;
940          pEngine->pMainFilterParameters[0]  = bqmain;          pEngine->pMainFilterParameters[0]  = bqmain;
941    
942          float* bq;          float* bq;
943          for (int i = 1; i < Samples; i++) {          for (int i = 1; i < Samples; i++) {
944              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              // recalculate biquad parameters if cutoff or resonance differ from previous sample point
945              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||              if (!(i & FILTER_UPDATE_MASK)) {
946                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||
947                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)
948                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];                  {
949                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];
950                        prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];
951                        FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);
952                        FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);
953                    }
954              }              }
955    
956              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'
# Line 945  namespace LinuxSampler { namespace gig { Line 970  namespace LinuxSampler { namespace gig {
970              bq[4] = bqmain.b2;              bq[4] = bqmain.b2;
971          }          }
972      }      }
     #endif // ENABLE_FILTER  
973    
974      /**      /**
975       *  Interpolates the input audio data (without looping).       *  Synthesizes the current audio fragment for this voice.
976       *       *
977       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
978       *                   fragment cycle       *                   fragment cycle
979       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
980       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
981       */       */
982      void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, int Skip) {
983          int i = Skip;          UpdateSynthesisMode();
984            SynthesizeFragment_Fn* f = (SynthesizeFragment_Fn*) SynthesizeFragmentFnPtr;
985          // FIXME: assuming either mono or stereo          f(*this, Samples, pSrc, Skip);
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) InterpolateStereo(pSrc, i);  
         }  
         else { // Mono Sample  
             while (i < Samples) InterpolateMono(pSrc, i);  
         }  
986      }      }
987    
988      /**      /**
989       *  Interpolates the input audio data, this method honors looping.       *  Determine the respective synthesis function for the given synthesis
990       *       *  mode.
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
991       */       */
992      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdateSynthesisMode() {
993          int i = Skip;          SynthesizeFragmentFnPtr = GetSynthesisFunction(SynthesisMode);
   
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateStereo(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateMono(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
         }  
994      }      }
995    
996      /**      /**
# Line 1047  namespace LinuxSampler { namespace gig { Line 1015  namespace LinuxSampler { namespace gig {
1015       *  of a voice, a kill process cannot be cancalled and is therefore       *  of a voice, a kill process cannot be cancalled and is therefore
1016       *  usually used for voice stealing and key group conflicts.       *  usually used for voice stealing and key group conflicts.
1017       *       *
1018       *  @param pKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
1019       */       */
1020      void Voice::Kill(Event* pKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
1021          if (pTriggerEvent && pKillEvent->FragmentPos() <= pTriggerEvent->FragmentPos()) return;          //FIXME: just two sanity checks for debugging, can be removed
1022          this->pKillEvent = pKillEvent;          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
1023            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
1024    
1025            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
1026            this->itKillEvent = itKillEvent;
1027      }      }
1028    
1029  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.246  
changed lines
  Added in v.323

  ViewVC Help
Powered by ViewVC