/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 246 by schoenebeck, Sun Sep 19 14:12:55 2004 UTC revision 799 by persson, Sat Nov 5 10:59:37 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 29  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          Active = false;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46            SynthesisMode = 0; // set all mode bits to 0 first
47            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48            #if CONFIG_ASM && ARCH_X86
49            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50            #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 103  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param pNoteOnEvent        - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
80       *  @returns 0 on success, a value < 0 if something failed       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89            #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92            }
93            #endif // CONFIG_DEVMODE
94    
95            Type            = VoiceType;
96            MIDIKey         = itNoteOnEvent->Param.Note.Key;
97            PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
98            Delay           = itNoteOnEvent->FragmentPos();
99            itTriggerEvent  = itNoteOnEvent;
100            itKillEvent     = Pool<Event>::Iterator();
101            KeyGroup        = iKeyGroup;
102            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104            // calculate volume
105            const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
106    
107            Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109            Volume *= pDimRgn->SampleAttenuation;
110    
111            // the volume of release triggered samples depends on note length
112            if (Type == type_release_trigger) {
113                float noteLength = float(pEngine->FrameTime + Delay -
114                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                if (attenuation <= 0) return -1;
117                Volume *= attenuation;
118          }          }
119    
120          Type            = type_normal;          // select channel mode (mono or stereo)
121          Active          = true;          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
         MIDIKey         = pNoteOnEvent->Param.Note.Key;  
         pRegion         = pInstrument->GetRegion(MIDIKey);  
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
         Delay           = pNoteOnEvent->FragmentPos();  
         pTriggerEvent   = pNoteOnEvent;  
         pKillEvent      = NULL;  
   
         if (!pRegion) {  
             std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;  
             KillImmediately();  
             return -1;  
         }  
   
         KeyGroup = pRegion->KeyGroup;  
   
         // get current dimension values to select the right dimension region  
         //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
         uint DimValues[5] = {0,0,0,0,0};  
         for (int i = pRegion->Dimensions - 1; i >= 0; i--) {  
             switch (pRegion->pDimensionDefinitions[i].dimension) {  
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             pEngine->LaunchVoice(pNoteOnEvent, iNewLayer, ReleaseTriggerVoice);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = pNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
# Line 245  namespace LinuxSampler { namespace gig { Line 126  namespace LinuxSampler { namespace gig {
126                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
127                  break;                  break;
128              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
129                  CrossfadeVolume = CrossfadeAttenuation(pNoteOnEvent->Param.Note.Velocity);                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
130                  break;                  break;
131              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
132                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
133                  break;                  break;
134              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
135              default:              default:
136                  CrossfadeVolume = 1.0f;                  CrossfadeVolume = 1.0f;
137          }          }
138    
139          PanLeft  = float(RTMath::Max(pDimRgn->Pan, 0)) / -64.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140          PanRight = float(RTMath::Min(pDimRgn->Pan, 0)) /  63.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
   
         pSample = pDimRgn->pSample; // sample won't change until the voice is finished  
141    
142          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143            Pos = pDimRgn->SampleStartOffset;
144    
145          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
146          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
147          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
148    
149          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
150              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
151    
152              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
153              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
154    
155              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
156                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
# Line 285  namespace LinuxSampler { namespace gig { Line 161  namespace LinuxSampler { namespace gig {
161          }          }
162          else { // RAM only voice          else { // RAM only voice
163              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
164              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
165              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
166          }          }
167            if (RAMLoop) {
168                loop.uiTotalCycles = pSample->LoopPlayCount;
169                loop.uiCyclesLeft  = pSample->LoopPlayCount;
170                loop.uiStart       = pSample->LoopStart;
171                loop.uiEnd         = pSample->LoopEnd;
172                loop.uiSize        = pSample->LoopSize;
173            }
174    
175          // calculate initial pitch value          // calculate initial pitch value
176          {          {
177              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
178              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
179              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
180              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
181          }          }
182    
183            // the length of the decay and release curves are dependent on the velocity
184          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
185    
186          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
187          {          {
# Line 318  namespace LinuxSampler { namespace gig { Line 195  namespace LinuxSampler { namespace gig {
195                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
196                      break;                      break;
197                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
198                      eg1controllervalue = pNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
199                      break;                      break;
200                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
201                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
202                      break;                      break;
203              }              }
204              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
205    
206              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
207              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
208              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
209              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
210                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
211              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
212                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
213                            pDimRgn->EG1Hold,  
214                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
215                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
216                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
217                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
218                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
219                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
220                            Delay);                          pDimRgn->EG1Sustain,
221                            pDimRgn->EG1Release * eg1release * velrelease,
222                            velocityAttenuation,
223                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
224          }          }
225    
226    
     #if ENABLE_FILTER  
227          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
228          {          {
229              // get current value of EG2 controller              // get current value of EG2 controller
# Line 357  namespace LinuxSampler { namespace gig { Line 236  namespace LinuxSampler { namespace gig {
236                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
237                      break;                      break;
238                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
239                      eg2controllervalue = pNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
240                      break;                      break;
241                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
242                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
243                      break;                      break;
244              }              }
245              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
246    
247              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
248              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
249              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
250              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
251    
252              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
253                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
254                            false,                          false,
255                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
256                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
257                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
258                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
259                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
260                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
261                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
262          }          }
     #endif // ENABLE_FILTER  
263    
264    
265          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
266          {          {
267            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
268            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);            EG3.trigger(eg3depth, pDimRgn->EG3Attack, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
269          }          }
270    
271    
# Line 398  namespace LinuxSampler { namespace gig { Line 276  namespace LinuxSampler { namespace gig {
276                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
277                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
278                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
279                        bLFO1Enabled         = (lfo1_internal_depth > 0);
280                      break;                      break;
281                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
282                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
283                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
284                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
285                      break;                      break;
286                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
287                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
288                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
289                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
290                      break;                      break;
291                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
292                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
293                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
294                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
295                      break;                      break;
296                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
297                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
298                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
299                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
300                      break;                      break;
301                  default:                  default:
302                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
303                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
304                        bLFO1Enabled         = false;
305              }              }
306              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
307                            lfo1_internal_depth,                                               start_level_max,
308                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
309                            pEngine->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
310                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
311                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
312          }          }
313    
314      #if ENABLE_FILTER  
315          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
316          {          {
317              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 436  namespace LinuxSampler { namespace gig { Line 319  namespace LinuxSampler { namespace gig {
319                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
320                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
321                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
322                        bLFO2Enabled         = (lfo2_internal_depth > 0);
323                      break;                      break;
324                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
325                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
326                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
327                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
328                      break;                      break;
329                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
330                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
331                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
332                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
333                      break;                      break;
334                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
335                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
336                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
337                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
338                      break;                      break;
339                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
340                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
341                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
342                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
343                      break;                      break;
344                  default:                  default:
345                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
346                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
347                        bLFO2Enabled         = false;
348              }              }
349              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
350                            lfo2_internal_depth,                                               start_level_max,
351                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
352                            pEngine->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
353                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
354                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
355          }          }
356      #endif // ENABLE_FILTER  
357    
358          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
359          {          {
# Line 474  namespace LinuxSampler { namespace gig { Line 362  namespace LinuxSampler { namespace gig {
362                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
363                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
364                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
365                        bLFO3Enabled         = (lfo3_internal_depth > 0);
366                      break;                      break;
367                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
368                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
369                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
370                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
371                      break;                      break;
372                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
373                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
374                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
375                        bLFO3Enabled         = false; // see TODO comment in line above
376                      break;                      break;
377                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
378                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
379                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
380                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
381                      break;                      break;
382                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
383                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
384                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
385                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
386                      break;                      break;
387                  default:                  default:
388                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
389                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
390                        bLFO3Enabled         = false;
391              }              }
392              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
393                            lfo3_internal_depth,                                               start_level_mid,
394                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
395                            pEngine->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
396                            false,                                               false,
397                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
398          }          }
399    
400      #if ENABLE_FILTER  
401          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
402          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
403          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
404          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
405          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
406          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
407              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
408              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
409                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
410              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
411              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
412                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 548  namespace LinuxSampler { namespace gig { Line 442  namespace LinuxSampler { namespace gig {
442                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
443                      break;                      break;
444              }              }
445              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
446    
447              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
448              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
449              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
450              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
451                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 570  namespace LinuxSampler { namespace gig { Line 464  namespace LinuxSampler { namespace gig {
464                  default:                  default:
465                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
466              }              }
467              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
468    
469              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
470              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
471              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
472              #else // override filter type              #else // override filter type
473              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
474              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
475              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
476    
477              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
478              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
479    
480              // calculate cutoff frequency              // calculate cutoff frequency
481              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - pNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
482              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
483                  resonance += (float) (pNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
484              }              }
485              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
486    
487              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
488              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
489                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
490                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
491                    // VCFVelocityScale in this case means Minimum cutoff
492                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
493                }
494                else {
495                    cvalue = pDimRgn->VCFCutoff;
496                }
497                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
498                if (cutoff > 1.0) cutoff = 1.0;
499                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
500                if (cutoff < 1.0) cutoff = 1.0;
501    
502              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
503              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
504    
505              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
506                VCFResonanceCtrl.fvalue = resonance;
507          }          }
508          else {          else {
509              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
510              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
511          }          }
     #endif // ENABLE_FILTER  
512    
513          return 0; // success          return 0; // success
514      }      }
# Line 625  namespace LinuxSampler { namespace gig { Line 526  namespace LinuxSampler { namespace gig {
526       */       */
527      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
528    
529          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
530          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, pKillEvent);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
531    
532          switch (this->PlaybackState) {          switch (this->PlaybackState) {
533    
534                case playback_state_init:
535                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
536                    // no break - continue with playback_state_ram
537    
538              case playback_state_ram: {              case playback_state_ram: {
539                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
540                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
541                        // render current fragment
542                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
543    
544                      if (DiskVoice) {                      if (DiskVoice) {
545                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
546                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
547                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
548                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
549                          }                          }
550                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
551                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
552                      }                      }
553                  }                  }
# Line 683  namespace LinuxSampler { namespace gig { Line 562  namespace LinuxSampler { namespace gig {
562                              KillImmediately();                              KillImmediately();
563                              return;                              return;
564                          }                          }
565                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
566                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
567                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
568                      }                      }
569    
570                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
571    
572                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
573                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
574                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
575                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
576                                // remember how many sample words there are before any silence has been added
577                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
578                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
579                            }
580                      }                      }
581    
582                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
583                      InterpolateNoLoop(Samples, ptr, Delay);  
584                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
585                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
586    
587                        const int iPos = (int) finalSynthesisParameters.dPos;
588                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
589                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
590                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
591    
592                        // change state of voice to 'end' if we really reached the end of the sample data
593                        if (RealSampleWordsLeftToRead >= 0) {
594                            RealSampleWordsLeftToRead -= readSampleWords;
595                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
596                        }
597                  }                  }
598                  break;                  break;
599    
600              case playback_state_end:              case playback_state_end:
601                  KillImmediately(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
602                  break;                  break;
603          }          }
604    
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
     #if ENABLE_FILTER  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
605          // Reset delay          // Reset delay
606          Delay = 0;          Delay = 0;
607    
608          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
609    
610          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
611          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
612      }      }
613    
614      /**      /**
# Line 727  namespace LinuxSampler { namespace gig { Line 616  namespace LinuxSampler { namespace gig {
616       *  suspended / not running.       *  suspended / not running.
617       */       */
618      void Voice::Reset() {      void Voice::Reset() {
619          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
620          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
621          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
622          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
623          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
624          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
625          Active = false;          PlaybackState = playback_state_end;
626            itTriggerEvent = Pool<Event>::Iterator();
627            itKillEvent    = Pool<Event>::Iterator();
628      }      }
629    
630      /**      /**
631       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
632       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
633       *       *
634       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
635         * @param End     - youngest time stamp where processing should be stopped
636       */       */
637      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
638            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
639                if (itEvent->Type == Event::type_release) {
640                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
641                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
642                } else if (itEvent->Type == Event::type_cancel_release) {
643                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
644                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
645                }
646            }
647        }
648    
649          // dispatch control change events      /**
650          Event* pCCEvent = pEngine->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
651          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
652              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();       *
653          }       * @param itEvent - iterator pointing to the next event to be processed
654          while (pCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
655              if (pCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
656                  #if ENABLE_FILTER      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
657                  if (pCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
658                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);              if (itEvent->Type == Event::type_control_change &&
659                  }                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
660                  if (pCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
661                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      processCutoffEvent(itEvent);
662                    }
663                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
664                        processResonanceEvent(itEvent);
665                  }                  }
666                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
667                  if (pCCEvent->Param.CC.Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(pCCEvent);  
668                  }                  }
669                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
670                  if (pCCEvent->Param.CC.Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(pCCEvent);  
671                  }                  }
672                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
673                  if (pCCEvent->Param.CC.Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(pCCEvent);  
674                  }                  }
675                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
676                      pCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
677                      pEngine->pSynthesisEvents[Event::destination_vca]->alloc_assign(*pCCEvent);                      processCrossFadeEvent(itEvent);
678                  }                  }
679                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
680                    processPitchEvent(itEvent);
681              }              }
   
             pCCEvent = pEngine->pCCEvents->next();  
682          }          }
683        }
684    
685        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
686            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
687            finalSynthesisParameters.fFinalPitch *= pitch;
688            PitchBend = pitch;
689        }
690    
691        void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
692            CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
693            #if CONFIG_PROCESS_MUTED_CHANNELS
694            const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
695            #else
696            const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
697            #endif
698            fFinalVolume = effectiveVolume;
699        }
700    
701        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
702            int ccvalue = itEvent->Param.CC.Value;
703            if (VCFCutoffCtrl.value == ccvalue) return;
704            VCFCutoffCtrl.value == ccvalue;
705            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
706            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
707            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
708            if (cutoff > 1.0) cutoff = 1.0;
709            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
710            if (cutoff < 1.0) cutoff = 1.0;
711    
712            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
713            fFinalCutoff = cutoff;
714        }
715    
716        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
717            // convert absolute controller value to differential
718            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
719            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
720            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
721            fFinalResonance += resonancedelta;
722            // needed for initialization of parameter
723            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
724        }
725    
726          // process pitch events      /**
727          {       *  Synthesizes the current audio fragment for this voice.
728              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];       *
729              Event* pVCOEvent = pVCOEventList->first();       *  @param Samples - number of sample points to be rendered in this audio
730              if (Delay) { // skip events that happened before this voice was triggered       *                   fragment cycle
731                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();       *  @param pSrc    - pointer to input sample data
732              }       *  @param Skip    - number of sample points to skip in output buffer
733              // apply old pitchbend value until first pitch event occurs       */
734              if (this->PitchBend != 1.0) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
735                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
736                  for (uint i = Delay; i < end; i++) {          finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
737                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;          finalSynthesisParameters.pSrc      = pSrc;
                 }  
             }  
             float pitch;  
             while (pVCOEvent) {  
                 Event* pNextVCOEvent = pVCOEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
738    
739                  pVCOEvent = pNextVCOEvent;          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
740              }          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
             if (pVCOEventList->last()) this->PitchBend = pitch;  
         }  
741    
742          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          if (Skip) { // skip events that happened before this voice was triggered
743          {              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
744              RTEList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
745              Event* pVCAEvent = pVCAEventList->first();          }
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCAEvent && pVCAEvent->FragmentPos() <= Delay) pVCAEvent = pVCAEventList->next();  
             }  
             float crossfadevolume;  
             while (pVCAEvent) {  
                 Event* pNextVCAEvent = pVCAEventList->next();  
746    
747                  // calculate the influence length of this event (in sample points)          uint killPos;
748                  uint end = (pNextVCAEvent) ? pNextVCAEvent->FragmentPos() : Samples;          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
749    
750                  crossfadevolume = CrossfadeAttenuation(pVCAEvent->Param.CC.Value);          uint i = Skip;
751            while (i < Samples) {
752                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
753    
754                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;              // initialize all final synthesis parameters
755                finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
756                #if CONFIG_PROCESS_MUTED_CHANNELS
757                fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
758                #else
759                fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
760                #endif
761                fFinalCutoff    = VCFCutoffCtrl.fvalue;
762                fFinalResonance = VCFResonanceCtrl.fvalue;
763    
764                  // apply volume value to the volume parameter sequence              // process MIDI control change and pitchbend events for this subfragment
765                  for (uint i = pVCAEvent->FragmentPos(); i < end; i++) {              processCCEvents(itCCEvent, iSubFragmentEnd);
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
766    
767                  pVCAEvent = pNextVCAEvent;              // process transition events (note on, note off & sustain pedal)
768              }              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
             if (pVCAEventList->last()) this->CrossfadeVolume = crossfadevolume;  
         }  
769    
770      #if ENABLE_FILTER              // if the voice was killed in this subfragment switch EG1 to fade out stage
771          // process filter cutoff events              if (itKillEvent && killPos <= iSubFragmentEnd) {
772          {                  EG1.enterFadeOutStage();
773              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];                  itKillEvent = Pool<Event>::Iterator();
             Event* pCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();  
774              }              }
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) pCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
775    
776                  pCutoffEvent = pNextCutoffEvent;              // process envelope generators
777                switch (EG1.getSegmentType()) {
778                    case EGADSR::segment_lin:
779                        fFinalVolume *= EG1.processLin();
780                        break;
781                    case EGADSR::segment_exp:
782                        fFinalVolume *= EG1.processExp();
783                        break;
784                    case EGADSR::segment_end:
785                        fFinalVolume *= EG1.getLevel();
786                        break; // noop
787              }              }
788              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              switch (EG2.getSegmentType()) {
789          }                  case EGADSR::segment_lin:
790                        fFinalCutoff *= EG2.processLin();
791          // process filter resonance events                      break;
792          {                  case EGADSR::segment_exp:
793              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];                      fFinalCutoff *= EG2.processExp();
794              Event* pResonanceEvent = pResonanceEventList->first();                      break;
795              if (Delay) { // skip events that happened before this voice was triggered                  case EGADSR::segment_end:
796                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();                      fFinalCutoff *= EG2.getLevel();
797                        break; // noop
798              }              }
799              while (pResonanceEvent) {              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(EG3.render());
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = pResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = pResonanceEvent->Param.CC.Value;  
800    
801                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0              // process low frequency oscillators
802                if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
803                  // apply cutoff frequency to the cutoff parameter sequence              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
804                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
805    
806                  pResonanceEvent = pNextResonanceEvent;              // if filter enabled then update filter coefficients
807                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
808                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
809                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
810              }              }
             if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     #endif // ENABLE_FILTER  
     }  
811    
812      #if ENABLE_FILTER              // do we need resampling?
813      /**              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
814       * Calculate all necessary, final biquad filter parameters.              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
815       *              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
816       * @param Samples - number of samples to be rendered in this audio fragment cycle                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
817       */              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
     void Voice::CalculateBiquadParameters(uint Samples) {  
         if (!FilterLeft.Enabled) return;  
818    
819          biquad_param_t bqbase;              // prepare final synthesis parameters structure
820          biquad_param_t bqmain;              finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
821          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];              finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
822          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
         FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {  
                 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                 prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                 FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
             }  
823    
824              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              // render audio for one subfragment
825              bq    = (float*) &pEngine->pBasicFilterParameters[i];              RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
     }  
     #endif // ENABLE_FILTER  
826    
827      /**              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
      *  Interpolates the input audio data (without looping).  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
828    
829          // FIXME: assuming either mono or stereo              // increment envelopes' positions
830          if (this->pSample->Channels == 2) { // Stereo Sample              if (EG1.active()) {
             while (i < Samples) InterpolateStereo(pSrc, i);  
         }  
         else { // Mono Sample  
             while (i < Samples) InterpolateMono(pSrc, i);  
         }  
     }  
831    
832      /**                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
833       *  Interpolates the input audio data, this method honors looping.                  if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
834       *                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
   
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateStereo(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
835                  }                  }
836    
837                    EG1.increment(1);
838                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
839              }              }
840          }              if (EG2.active()) {
841          else { // Mono Sample                  EG2.increment(1);
842              if (pSample->LoopPlayCount) {                  if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateMono(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
843              }              }
844                EG3.increment(1);
845                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
846    
847                Pos = newPos;
848                i = iSubFragmentEnd;
849          }          }
850      }      }
851    
# Line 1047  namespace LinuxSampler { namespace gig { Line 871  namespace LinuxSampler { namespace gig {
871       *  of a voice, a kill process cannot be cancalled and is therefore       *  of a voice, a kill process cannot be cancalled and is therefore
872       *  usually used for voice stealing and key group conflicts.       *  usually used for voice stealing and key group conflicts.
873       *       *
874       *  @param pKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
875       */       */
876      void Voice::Kill(Event* pKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
877          if (pTriggerEvent && pKillEvent->FragmentPos() <= pTriggerEvent->FragmentPos()) return;          #if CONFIG_DEVMODE
878          this->pKillEvent = pKillEvent;          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
879            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
880            #endif // CONFIG_DEVMODE
881    
882            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
883            this->itKillEvent = itKillEvent;
884      }      }
885    
886  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.246  
changed lines
  Added in v.799

  ViewVC Help
Powered by ViewVC