/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 285 by schoenebeck, Thu Oct 14 21:31:26 2004 UTC revision 1895 by persson, Sun May 3 12:15:40 2009 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 - 2009 Christian Schoenebeck                       *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
39          KeyGroup = 0;          KeyGroup = 0;
40            SynthesisMode = 0; // set all mode bits to 0 first
41            // select synthesis implementation (asm core is not supported ATM)
42            #if 0 // CONFIG_ASM && ARCH_X86
43            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44            #else
45            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46            #endif
47            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49            finalSynthesisParameters.filterLeft.Reset();
50            finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 103  namespace LinuxSampler { namespace gig { Line 66  namespace LinuxSampler { namespace gig {
66       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
67       *  needed.       *  needed.
68       *       *
69       *  @param itNoteOnEvent       - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
70       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
71       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
72       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
73       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
74       *  @returns 0 on success, a value < 0 if something failed       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
75         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
76         *           (either due to an error or e.g. because no region is
77         *           defined for the given key)
78       */       */
79      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
81             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
82             exit(EXIT_FAILURE);          Orphan = false;
83    
84            #if CONFIG_DEVMODE
85            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
86                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
87          }          }
88            #endif // CONFIG_DEVMODE
89    
90          Type            = type_normal;          Type            = VoiceType;
91          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
92          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
93          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
94          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
95          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
96          itChildVoice    = Pool<Voice>::Iterator();          KeyGroup        = iKeyGroup;
97            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
         if (!pRegion) {  
             std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;  
             KillImmediately();  
             return -1;  
         }  
98    
99          KeyGroup = pRegion->KeyGroup;          // calculate volume
100            const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
101    
102          // get current dimension values to select the right dimension region          // For 16 bit samples, we downscale by 32768 to convert from
103          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          // int16 value range to DSP value range (which is
104          uint DimValues[5] = {0,0,0,0,0};          // -1.0..1.0). For 24 bit, we downscale from int32.
105          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
106              switch (pRegion->pDimensionDefinitions[i].dimension) {  
107                  case ::gig::dimension_samplechannel:          volume *= pDimRgn->SampleAttenuation * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;
108                      DimValues[i] = 0; //TODO: we currently ignore this dimension  
109                      break;          // the volume of release triggered samples depends on note length
110                  case ::gig::dimension_layer:          if (Type == type_release_trigger) {
111                      DimValues[i] = iLayer;              float noteLength = float(pEngine->FrameTime + Delay -
112                      // if this is the 1st layer then spawn further voices for all the other layers                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
113                      if (iLayer == 0)              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
114                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)              if (attenuation <= 0) return -1;
115                              itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice);              volume *= attenuation;
116                      break;          }
117                  case ::gig::dimension_velocity:  
118                      DimValues[i] = itNoteOnEvent->Param.Note.Velocity;          // select channel mode (mono or stereo)
119                      break;          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
120                  case ::gig::dimension_channelaftertouch:          // select bit depth (16 or 24)
121                      DimValues[i] = 0; //TODO: we currently ignore this dimension          SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124            float crossfadeVolume;
125          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
126              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
130                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                  break;                  break;
132              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                  break;                  break;
135              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136              default:              default:
137                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
138          }          }
139    
140          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
157    
158          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
159              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              if (cachedsamples > (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH)) {
160                    MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
161                } else {
162                    // The cache is too small to fit a max sample buffer.
163                    // Setting MaxRAMPos to 0 will probably cause a click
164                    // in the audio, but it's better than not handling
165                    // this case at all, which would have caused the
166                    // unsigned MaxRAMPos to be set to a negative number.
167                    MaxRAMPos = 0;
168                }
169    
170              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
171              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
172    
173              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
174                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
175                  KillImmediately();                  KillImmediately();
176                  return -1;                  return -1;
# Line 285  namespace LinuxSampler { namespace gig { Line 179  namespace LinuxSampler { namespace gig {
179          }          }
180          else { // RAM only voice          else { // RAM only voice
181              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
182              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
183              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
184          }          }
185            if (RAMLoop) {
186                loop.uiTotalCycles = pSample->LoopPlayCount;
187                loop.uiCyclesLeft  = pSample->LoopPlayCount;
188                loop.uiStart       = loopinfo.LoopStart;
189                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
190                loop.uiSize        = loopinfo.LoopLength;
191            }
192    
193          // calculate initial pitch value          // calculate initial pitch value
194          {          {
195              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pEngineChannel->pInstrument->FineTune + pDimRgn->FineTune + pEngine->ScaleTuning[MIDIKey % 12];
             if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;  
             this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));  
             this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents  
         }  
196    
197                // GSt behaviour: maximum transpose up is 40 semitones. If
198                // MIDI key is more than 40 semitones above unity note,
199                // the transpose is not done.
200                if (pDimRgn->PitchTrack && (MIDIKey - (int) pDimRgn->UnityNote) < 40) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
201    
202          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)              this->PitchBase = RTMath::CentsToFreqRatioUnlimited(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
203                this->PitchBend = RTMath::CentsToFreqRatio(PitchBend / 8192.0 * 100.0 * pEngineChannel->pInstrument->PitchbendRange);
204            }
205    
206            // the length of the decay and release curves are dependent on the velocity
207            const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
208    
209          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
210          {          {
# Line 315  namespace LinuxSampler { namespace gig { Line 215  namespace LinuxSampler { namespace gig {
215                      eg1controllervalue = 0;                      eg1controllervalue = 0;
216                      break;                      break;
217                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
218                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
219                      break;                      break;
220                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
221                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
222                      break;                      break;
223                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
224                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
225                      break;                      break;
226              }              }
227              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
228    
229              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
230              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
231              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
232              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
233                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
234              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
235                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
236                            pDimRgn->EG1Hold,  
237                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
238                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
239                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
240                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
241                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
242                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
243                            Delay);                          pDimRgn->EG1Sustain,
244          }                          pDimRgn->EG1Release * eg1release * velrelease,
245                            velocityAttenuation,
246                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
247            }
248    
249    #ifdef CONFIG_INTERPOLATE_VOLUME
250            // setup initial volume in synthesis parameters
251    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
252            if (pEngineChannel->GetMute()) {
253                finalSynthesisParameters.fFinalVolumeLeft  = 0;
254                finalSynthesisParameters.fFinalVolumeRight = 0;
255            }
256            else
257    #else
258            {
259                float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
260    
261                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
262                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
263            }
264    #endif
265    #endif
266    
     #if ENABLE_FILTER  
267          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
268          {          {
269              // get current value of EG2 controller              // get current value of EG2 controller
# Line 354  namespace LinuxSampler { namespace gig { Line 273  namespace LinuxSampler { namespace gig {
273                      eg2controllervalue = 0;                      eg2controllervalue = 0;
274                      break;                      break;
275                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
276                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
277                      break;                      break;
278                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
279                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
280                      break;                      break;
281                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
282                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
283                      break;                      break;
284              }              }
285              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
286    
287              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
288              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
289              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
290              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
291    
292              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
293                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
294                            false,                          false,
295                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
296                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
297                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
298                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
299                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
300                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
301                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
302          }          }
     #endif // ENABLE_FILTER  
303    
304    
305          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
306          {          {
307            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
308            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
309                float eg3depth = (bPortamento)
310                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
311                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
312                float eg3time = (bPortamento)
313                                    ? pEngineChannel->PortamentoTime
314                                    : pDimRgn->EG3Attack;
315                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
316                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
317          }          }
318    
319    
# Line 398  namespace LinuxSampler { namespace gig { Line 324  namespace LinuxSampler { namespace gig {
324                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
325                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
326                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
327                        bLFO1Enabled         = (lfo1_internal_depth > 0);
328                      break;                      break;
329                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
330                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
331                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
332                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
333                      break;                      break;
334                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
335                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
336                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
337                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
338                      break;                      break;
339                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
340                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
341                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
342                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
343                      break;                      break;
344                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
345                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
346                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
347                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
348                      break;                      break;
349                  default:                  default:
350                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
351                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
352                        bLFO1Enabled         = false;
353                }
354                if (bLFO1Enabled) {
355                    pLFO1->trigger(pDimRgn->LFO1Frequency,
356                                   start_level_min,
357                                   lfo1_internal_depth,
358                                   pDimRgn->LFO1ControlDepth,
359                                   pDimRgn->LFO1FlipPhase,
360                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
361                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
362              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngine->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
363          }          }
364    
365      #if ENABLE_FILTER  
366          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
367          {          {
368              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 436  namespace LinuxSampler { namespace gig { Line 370  namespace LinuxSampler { namespace gig {
370                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
371                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
372                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
373                        bLFO2Enabled         = (lfo2_internal_depth > 0);
374                      break;                      break;
375                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
376                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
377                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
378                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
379                      break;                      break;
380                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
381                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
382                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
383                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
384                      break;                      break;
385                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
386                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
387                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
388                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
389                      break;                      break;
390                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
391                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
392                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
393                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
394                      break;                      break;
395                  default:                  default:
396                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
397                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
398                        bLFO2Enabled         = false;
399                }
400                if (bLFO2Enabled) {
401                    pLFO2->trigger(pDimRgn->LFO2Frequency,
402                                   start_level_max,
403                                   lfo2_internal_depth,
404                                   pDimRgn->LFO2ControlDepth,
405                                   pDimRgn->LFO2FlipPhase,
406                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
407                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
408              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngine->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
409          }          }
410      #endif // ENABLE_FILTER  
411    
412          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
413          {          {
# Line 474  namespace LinuxSampler { namespace gig { Line 416  namespace LinuxSampler { namespace gig {
416                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
417                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
418                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
419                        bLFO3Enabled         = (lfo3_internal_depth > 0);
420                      break;                      break;
421                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
422                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
423                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
424                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
425                      break;                      break;
426                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
427                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
428                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
429                        bLFO3Enabled         = true;
430                      break;                      break;
431                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
432                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
433                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
434                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
435                      break;                      break;
436                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
437                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
438                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
439                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
440                      break;                      break;
441                  default:                  default:
442                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
443                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
444                        bLFO3Enabled         = false;
445                }
446                if (bLFO3Enabled) {
447                    pLFO3->trigger(pDimRgn->LFO3Frequency,
448                                   start_level_mid,
449                                   lfo3_internal_depth,
450                                   pDimRgn->LFO3ControlDepth,
451                                   false,
452                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
453                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
454              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngine->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
455          }          }
456    
457      #if ENABLE_FILTER  
458          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
459          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
460          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
461          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
462          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
463          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
464              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
465              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
466                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
467              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
468              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
469                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 542  namespace LinuxSampler { namespace gig { Line 493  namespace LinuxSampler { namespace gig {
493                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
494                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
495                      break;                      break;
496                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
497                        VCFCutoffCtrl.controller = 128;
498                        break;
499                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
500                  default:                  default:
501                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
502                      break;                      break;
503              }              }
504              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
505    
506              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
507              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
508              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
509              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
510                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 570  namespace LinuxSampler { namespace gig { Line 523  namespace LinuxSampler { namespace gig {
523                  default:                  default:
524                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
525              }              }
526              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
527    
528              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
529              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
530              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
531              #else // override filter type              #else // override filter type
532              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
533              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
534              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
535    
536              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
537              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
538    
539              // calculate cutoff frequency              // calculate cutoff frequency
540              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
541              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
542                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
543              }              }
544              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
545    
546              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
547              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
548                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
549                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
550                    // VCFVelocityScale in this case means Minimum cutoff
551                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
552                }
553                else {
554                    cvalue = pDimRgn->VCFCutoff;
555                }
556                cutoff *= float(cvalue);
557                if (cutoff > 127.0f) cutoff = 127.0f;
558    
559              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
560              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
561    
562              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
563                VCFResonanceCtrl.fvalue = resonance;
564          }          }
565          else {          else {
566              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
567              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
568          }          }
     #endif // ENABLE_FILTER  
569    
570          return 0; // success          return 0; // success
571      }      }
# Line 625  namespace LinuxSampler { namespace gig { Line 583  namespace LinuxSampler { namespace gig {
583       */       */
584      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
585    
586          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
587          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
588    
589          switch (this->PlaybackState) {          switch (this->PlaybackState) {
590    
591                case playback_state_init:
592                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
593                    // no break - continue with playback_state_ram
594    
595              case playback_state_ram: {              case playback_state_ram: {
596                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
597                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
598                        // render current fragment
599                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
600    
601                      if (DiskVoice) {                      if (DiskVoice) {
602                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
603                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
604                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
605                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
606                          }                          }
607                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
608                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
609                      }                      }
610                  }                  }
# Line 683  namespace LinuxSampler { namespace gig { Line 619  namespace LinuxSampler { namespace gig {
619                              KillImmediately();                              KillImmediately();
620                              return;                              return;
621                          }                          }
622                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
623                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
624                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
625                      }                      }
626    
627                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
628    
629                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
630                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
631                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
632                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
633                                // remember how many sample words there are before any silence has been added
634                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
635                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
636                            }
637                      }                      }
638    
639                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
640                      InterpolateNoLoop(Samples, ptr, Delay);  
641                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
642                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
643    
644                        const int iPos = (int) finalSynthesisParameters.dPos;
645                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
646                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
647                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
648    
649                        // change state of voice to 'end' if we really reached the end of the sample data
650                        if (RealSampleWordsLeftToRead >= 0) {
651                            RealSampleWordsLeftToRead -= readSampleWords;
652                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
653                        }
654                  }                  }
655                  break;                  break;
656    
# Line 705  namespace LinuxSampler { namespace gig { Line 659  namespace LinuxSampler { namespace gig {
659                  break;                  break;
660          }          }
661    
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
     #if ENABLE_FILTER  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
662          // Reset delay          // Reset delay
663          Delay = 0;          Delay = 0;
664    
665          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
666    
667          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
668          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
669      }      }
670    
671      /**      /**
# Line 727  namespace LinuxSampler { namespace gig { Line 673  namespace LinuxSampler { namespace gig {
673       *  suspended / not running.       *  suspended / not running.
674       */       */
675      void Voice::Reset() {      void Voice::Reset() {
676          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
677          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
678          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
679          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
680          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 740  namespace LinuxSampler { namespace gig { Line 685  namespace LinuxSampler { namespace gig {
685      }      }
686    
687      /**      /**
688       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
689       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
690       *       *
691       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
692         * @param End     - youngest time stamp where processing should be stopped
693       */       */
694      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
695            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
696                if (itEvent->Type == Event::type_release) {
697                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
698                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
699                } else if (itEvent->Type == Event::type_cancel_release) {
700                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
701                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
702                }
703            }
704        }
705    
706          // dispatch control change events      /**
707          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
708          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
709              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
710          }       * @param itEvent - iterator pointing to the next event to be processed
711          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
712              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
713                  #if ENABLE_FILTER      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
714                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
715                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;              if (itEvent->Type == Event::type_control_change &&
716                  }                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
717                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
718                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                      processCutoffEvent(itEvent);
719                    }
720                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
721                        processResonanceEvent(itEvent);
722                  }                  }
723                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
724                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(itCCEvent);  
725                  }                  }
726                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
727                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(itCCEvent);  
728                  }                  }
729                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
730                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(itCCEvent);  
731                  }                  }
732                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
733                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
734                      *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
                 }  
             }  
   
             ++itCCEvent;  
         }  
   
   
         // process pitch events  
         {  
             RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];  
             RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
735                  }                  }
736              }                  if (itEvent->Param.CC.Controller == 7) { // volume
737              float pitch;                      VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
738              while (itVCOEvent) {                  } else if (itEvent->Param.CC.Controller == 10) { // panpot
739                  RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;                      PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
740                  ++itNextVCOEvent;                      PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
741                  }                  }
742                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
743                  itVCOEvent = itNextVCOEvent;                  processPitchEvent(itEvent);
744              }              }
             if (!pVCOEventList->isEmpty()) this->PitchBend = pitch;  
745          }          }
746        }
747    
748          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)      void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
749          {          PitchBend = RTMath::CentsToFreqRatio(itEvent->Param.Pitch.Pitch / 8192.0 * 100.0 * pEngineChannel->pInstrument->PitchbendRange);
750              RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];      }
             RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
   
                 itVCAEvent = itNextVCAEvent;  
             }  
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
   
     #if ENABLE_FILTER  
         // process filter cutoff events  
         {  
             RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 itCutoffEvent = itNextCutoffEvent;  
             }  
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
751    
752          // process filter resonance events      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
753          {          int ccvalue = itEvent->Param.CC.Value;
754              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];          if (VCFCutoffCtrl.value == ccvalue) return;
755              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();          VCFCutoffCtrl.value == ccvalue;
756              if (Delay) { // skip events that happened before this voice was triggered          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
757                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
758              }          float cutoff = CutoffBase * float(ccvalue);
759              while (itResonanceEvent) {          if (cutoff > 127.0f) cutoff = 127.0f;
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
760    
761                  itResonanceEvent = itNextResonanceEvent;          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
762              }          fFinalCutoff = cutoff;
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     #endif // ENABLE_FILTER  
763      }      }
764    
765      #if ENABLE_FILTER      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
766      /**          // convert absolute controller value to differential
767       * Calculate all necessary, final biquad filter parameters.          const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
768       *          VCFResonanceCtrl.value = itEvent->Param.CC.Value;
769       * @param Samples - number of samples to be rendered in this audio fragment cycle          const float resonancedelta = (float) ctrldelta;
770       */          fFinalResonance += resonancedelta;
771      void Voice::CalculateBiquadParameters(uint Samples) {          // needed for initialization of parameter
772          if (!FilterLeft.Enabled) return;          VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
   
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {  
                 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                 prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                 FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
             }  
   
             //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'  
             bq    = (float*) &pEngine->pBasicFilterParameters[i];  
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
773      }      }
     #endif // ENABLE_FILTER  
774    
775      /**      /**
776       *  Interpolates the input audio data (without looping).       *  Synthesizes the current audio fragment for this voice.
777       *       *
778       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
779       *                   fragment cycle       *                   fragment cycle
780       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
781       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
782       */       */
783      void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
784          int i = Skip;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];
785            finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];
786            finalSynthesisParameters.pSrc      = pSrc;
787    
788            RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
789            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
790    
791          // FIXME: assuming either mono or stereo          if (itTriggerEvent) { // skip events that happened before this voice was triggered
792          if (this->pSample->Channels == 2) { // Stereo Sample              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
793              while (i < Samples) InterpolateStereo(pSrc, i);              // we can't simply compare the timestamp here, because note events
794                // might happen on the same time stamp, so we have to deal on the
795                // actual sequence the note events arrived instead (see bug #112)
796                for (; itNoteEvent; ++itNoteEvent) {
797                    if (itTriggerEvent == itNoteEvent) {
798                        ++itNoteEvent;
799                        break;
800                    }
801                }
802          }          }
803          else { // Mono Sample  
804              while (i < Samples) InterpolateMono(pSrc, i);          uint killPos;
805            if (itKillEvent) {
806                int maxFadeOutPos = Samples - pEngine->MinFadeOutSamples;
807                if (maxFadeOutPos < 0) {
808                    // There's not enough space in buffer to do a fade out
809                    // from max volume (this can only happen for audio
810                    // drivers that use Samples < MaxSamplesPerCycle).
811                    // End the EG1 here, at pos 0, with a shorter max fade
812                    // out time.
813                    EG1.enterFadeOutStage(Samples / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
814                    itKillEvent = Pool<Event>::Iterator();
815                } else {
816                    killPos = RTMath::Min(itKillEvent->FragmentPos(), maxFadeOutPos);
817                }
818          }          }
     }  
819    
820      /**          uint i = Skip;
821       *  Interpolates the input audio data, this method honors looping.          while (i < Samples) {
822       *              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
823    
824          // FIXME: assuming either mono or stereo              // initialize all final synthesis parameters
825          if (pSample->Channels == 2) { // Stereo Sample              fFinalCutoff    = VCFCutoffCtrl.fvalue;
826              if (pSample->LoopPlayCount) {              fFinalResonance = VCFResonanceCtrl.fvalue;
827                  // render loop (loop count limited)  
828                  while (i < Samples && LoopCyclesLeft) {              // process MIDI control change and pitchbend events for this subfragment
829                      InterpolateStereo(pSrc, i);              processCCEvents(itCCEvent, iSubFragmentEnd);
830                      if (Pos > pSample->LoopEnd) {  
831                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
832                          LoopCyclesLeft--;              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
833                      }  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
834                  }              if (pEngineChannel->GetMute()) fFinalVolume = 0;
835                  // render on without loop  #endif
836                  while (i < Samples) InterpolateStereo(pSrc, i);  
837                // process transition events (note on, note off & sustain pedal)
838                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
839    
840                // if the voice was killed in this subfragment, or if the
841                // filter EG is finished, switch EG1 to fade out stage
842                if ((itKillEvent && killPos <= iSubFragmentEnd) ||
843                    (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
844                     EG2.getSegmentType() == EGADSR::segment_end)) {
845                    EG1.enterFadeOutStage();
846                    itKillEvent = Pool<Event>::Iterator();
847              }              }
848              else { // render loop (endless loop)  
849                  while (i < Samples) {              // process envelope generators
850                      InterpolateStereo(pSrc, i);              switch (EG1.getSegmentType()) {
851                      if (Pos > pSample->LoopEnd) {                  case EGADSR::segment_lin:
852                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                      fFinalVolume *= EG1.processLin();
853                      }                      break;
854                  }                  case EGADSR::segment_exp:
855                        fFinalVolume *= EG1.processExp();
856                        break;
857                    case EGADSR::segment_end:
858                        fFinalVolume *= EG1.getLevel();
859                        break; // noop
860              }              }
861          }              switch (EG2.getSegmentType()) {
862          else { // Mono Sample                  case EGADSR::segment_lin:
863              if (pSample->LoopPlayCount) {                      fFinalCutoff *= EG2.processLin();
864                  // render loop (loop count limited)                      break;
865                  while (i < Samples && LoopCyclesLeft) {                  case EGADSR::segment_exp:
866                      InterpolateMono(pSrc, i);                      fFinalCutoff *= EG2.processExp();
867                      if (Pos > pSample->LoopEnd) {                      break;
868                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                  case EGADSR::segment_end:
869                          LoopCyclesLeft--;                      fFinalCutoff *= EG2.getLevel();
870                      }                      break; // noop
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateMono(pSrc, i);  
871              }              }
872              else { // render loop (endless loop)              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
873                  while (i < Samples) {  
874                      InterpolateMono(pSrc, i);              // process low frequency oscillators
875                      if (Pos > pSample->LoopEnd) {              if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
876                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
877                      }              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
878    
879                // limit the pitch so we don't read outside the buffer
880                finalSynthesisParameters.fFinalPitch = RTMath::Min(finalSynthesisParameters.fFinalPitch, float(1 << CONFIG_MAX_PITCH));
881    
882                // if filter enabled then update filter coefficients
883                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
884                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
885                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
886                }
887    
888                // do we need resampling?
889                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
890                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
891                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
892                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
893                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
894    
895                // prepare final synthesis parameters structure
896                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
897    #ifdef CONFIG_INTERPOLATE_VOLUME
898                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
899                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
900                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
901                finalSynthesisParameters.fFinalVolumeDeltaRight =
902                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
903                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
904    #else
905                finalSynthesisParameters.fFinalVolumeLeft  =
906                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
907                finalSynthesisParameters.fFinalVolumeRight =
908                    fFinalVolume * VolumeRight * PanRightSmoother.render();
909    #endif
910                // render audio for one subfragment
911                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
912    
913                // stop the rendering if volume EG is finished
914                if (EG1.getSegmentType() == EGADSR::segment_end) break;
915    
916                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
917    
918                // increment envelopes' positions
919                if (EG1.active()) {
920    
921                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
922                    if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
923                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
924                  }                  }
925    
926                    EG1.increment(1);
927                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
928                }
929                if (EG2.active()) {
930                    EG2.increment(1);
931                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
932              }              }
933                EG3.increment(1);
934                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
935    
936                Pos = newPos;
937                i = iSubFragmentEnd;
938          }          }
939      }      }
940    
941        /** @brief Update current portamento position.
942         *
943         * Will be called when portamento mode is enabled to get the final
944         * portamento position of this active voice from where the next voice(s)
945         * might continue to slide on.
946         *
947         * @param itNoteOffEvent - event which causes this voice to die soon
948         */
949        void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
950            const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
951            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
952        }
953    
954      /**      /**
955       *  Immediately kill the voice. This method should not be used to kill       *  Immediately kill the voice. This method should not be used to kill
956       *  a normal, active voice, because it doesn't take care of things like       *  a normal, active voice, because it doesn't take care of things like
957       *  fading down the volume level to avoid clicks and regular processing       *  fading down the volume level to avoid clicks and regular processing
958       *  until the kill event actually occured!       *  until the kill event actually occured!
959       *       *
960       *  @see Kill()       * If it's necessary to know when the voice's disk stream was actually
961         * deleted, then one can set the optional @a bRequestNotification
962         * parameter and this method will then return the handle of the disk
963         * stream (unique identifier) and one can use this handle to poll the
964         * disk thread if this stream has been deleted. In any case this method
965         * will return immediately and will not block until the stream actually
966         * was deleted.
967         *
968         * @param bRequestNotification - (optional) whether the disk thread shall
969         *                                provide a notification once it deleted
970         *                               the respective disk stream
971         *                               (default=false)
972         * @returns handle to the voice's disk stream or @c Stream::INVALID_HANDLE
973         *          if the voice did not use a disk stream at all
974         * @see Kill()
975       */       */
976      void Voice::KillImmediately() {      Stream::Handle Voice::KillImmediately(bool bRequestNotification) {
977            Stream::Handle hStream = Stream::INVALID_HANDLE;
978          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
979              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef, bRequestNotification);
980                hStream = DiskStreamRef.hStream;
981          }          }
982          Reset();          Reset();
983            return hStream;
984      }      }
985    
986      /**      /**
# Line 1056  namespace LinuxSampler { namespace gig { Line 993  namespace LinuxSampler { namespace gig {
993       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
994       */       */
995      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
996            #if CONFIG_DEVMODE
997            if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
998            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
999            #endif // CONFIG_DEVMODE
1000    
1001          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
1002          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;
1003      }      }

Legend:
Removed from v.285  
changed lines
  Added in v.1895

  ViewVC Help
Powered by ViewVC