/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 287 by schoenebeck, Sat Oct 16 17:38:03 2004 UTC revision 332 by senkov, Sat Jan 1 03:06:06 2005 UTC
# Line 22  Line 22 
22    
23  #include "EGADSR.h"  #include "EGADSR.h"
24  #include "Manipulator.h"  #include "Manipulator.h"
25    #include "../../common/Features.h"
26    #include "Synthesizer.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 56  namespace LinuxSampler { namespace gig { Line 58  namespace LinuxSampler { namespace gig {
58          pLFO2  = NULL;          pLFO2  = NULL;
59          pLFO3  = NULL;          pLFO3  = NULL;
60          KeyGroup = 0;          KeyGroup = 0;
61            SynthesisMode = 0; //Set all mode bits to 0 first
62    
63            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
64            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
65            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);
66      }      }
67    
68      Voice::~Voice() {      Voice::~Voice() {
# Line 116  namespace LinuxSampler { namespace gig { Line 123  namespace LinuxSampler { namespace gig {
123             dmsg(1,("voice::trigger: !pInstrument\n"));             dmsg(1,("voice::trigger: !pInstrument\n"));
124             exit(EXIT_FAILURE);             exit(EXIT_FAILURE);
125          }          }
126            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // FIXME: should be removed before the final release (purpose: just a sanity check for debugging)
127                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
128            }
129    
130          Type            = type_normal;          Type            = type_normal;
131          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
# Line 240  namespace LinuxSampler { namespace gig { Line 250  namespace LinuxSampler { namespace gig {
250          }          }
251          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);
252    
253            pSample = pDimRgn->pSample; // sample won't change until the voice is finished
254    
255            // select channel mode (mono or stereo)
256            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
257    
258          // get starting crossfade volume level          // get starting crossfade volume level
259          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
260              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
# Line 259  namespace LinuxSampler { namespace gig { Line 274  namespace LinuxSampler { namespace gig {
274          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
275          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
276    
         pSample = pDimRgn->pSample; // sample won't change until the voice is finished  
   
277          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
278    
279          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
# Line 303  namespace LinuxSampler { namespace gig { Line 316  namespace LinuxSampler { namespace gig {
316              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
317          }          }
318    
   
319          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
320    
   
321          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
322          {          {
323              // get current value of EG1 controller              // get current value of EG1 controller
# Line 345  namespace LinuxSampler { namespace gig { Line 356  namespace LinuxSampler { namespace gig {
356          }          }
357    
358    
     #if ENABLE_FILTER  
359          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
360          {          {
361              // get current value of EG2 controller              // get current value of EG2 controller
# Line 382  namespace LinuxSampler { namespace gig { Line 392  namespace LinuxSampler { namespace gig {
392                            pDimRgn->EG2Release + eg2release,                            pDimRgn->EG2Release + eg2release,
393                            Delay);                            Delay);
394          }          }
     #endif // ENABLE_FILTER  
395    
396    
397          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
# Line 429  namespace LinuxSampler { namespace gig { Line 438  namespace LinuxSampler { namespace gig {
438                            Delay);                            Delay);
439          }          }
440    
441      #if ENABLE_FILTER  
442          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
443          {          {
444              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 466  namespace LinuxSampler { namespace gig { Line 475  namespace LinuxSampler { namespace gig {
475                            pEngine->SampleRate,                            pEngine->SampleRate,
476                            Delay);                            Delay);
477          }          }
478      #endif // ENABLE_FILTER  
479    
480          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
481          {          {
# Line 505  namespace LinuxSampler { namespace gig { Line 514  namespace LinuxSampler { namespace gig {
514                            Delay);                            Delay);
515          }          }
516    
517      #if ENABLE_FILTER  
518          #if FORCE_FILTER_USAGE          #if FORCE_FILTER_USAGE
519          FilterLeft.Enabled = FilterRight.Enabled = true;          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, true);
520          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
521          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, pDimRgn->VCFEnabled);
522          #endif // FORCE_FILTER_USAGE          #endif // FORCE_FILTER_USAGE
523          if (pDimRgn->VCFEnabled) {          if (pDimRgn->VCFEnabled) {
524              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL
# Line 599  namespace LinuxSampler { namespace gig { Line 608  namespace LinuxSampler { namespace gig {
608              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;
609              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
610    
             FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);  
   
611              FilterUpdateCounter = -1;              FilterUpdateCounter = -1;
612          }          }
613          else {          else {
614              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
615              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
616          }          }
     #endif // ENABLE_FILTER  
617    
618          return 0; // success          return 0; // success
619      }      }
# Line 626  namespace LinuxSampler { namespace gig { Line 631  namespace LinuxSampler { namespace gig {
631       */       */
632      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
633    
634            // select default values for synthesis mode bits
635            SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);
636            SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);
637            SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
638    
639          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
640    
641          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);
642          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
     #if ENABLE_FILTER  
643          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
644          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);
     #endif // ENABLE_FILTER  
   
645    
646          // Apply events to the synthesis parameter matrix          // Apply events to the synthesis parameter matrix
647          ProcessEvents(Samples);          ProcessEvents(Samples);
648    
   
649          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
650          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
     #if ENABLE_FILTER  
651          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
652      #endif // ENABLE_FILTER          if (pEG3->Process(Samples)) { // if pitch EG is active
653          pEG3->Process(Samples);              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
654                SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
655            }
656          pLFO1->Process(Samples);          pLFO1->Process(Samples);
     #if ENABLE_FILTER  
657          pLFO2->Process(Samples);          pLFO2->Process(Samples);
658      #endif // ENABLE_FILTER          if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active
659          pLFO3->Process(Samples);              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
660                SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
661            }
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
662    
663            if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))
664                    CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters
665    
666          switch (this->PlaybackState) {          switch (this->PlaybackState) {
667    
668              case playback_state_ram: {              case playback_state_ram: {
669                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
670                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
671                        // render current fragment
672                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
673    
674                      if (DiskVoice) {                      if (DiskVoice) {
675                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
676                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 684  namespace LinuxSampler { namespace gig { Line 693  namespace LinuxSampler { namespace gig {
693                              KillImmediately();                              KillImmediately();
694                              return;                              return;
695                          }                          }
696                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));
697                          Pos -= RTMath::DoubleToInt(Pos);                          Pos -= int(Pos);
698                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
699                      }                      }
700    
701                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
702    
703                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
704                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
705                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
706                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
707                                // remember how many sample words there are before any silence has been added
708                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
709                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
710                            }
711                      }                      }
712    
713                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
714                      InterpolateNoLoop(Samples, ptr, Delay);  
715                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
716                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
717    
718                        const int iPos = (int) Pos;
719                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
720                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
721                        Pos -= iPos; // just keep fractional part of Pos
722    
723                        // change state of voice to 'end' if we really reached the end of the sample data
724                        if (RealSampleWordsLeftToRead >= 0) {
725                            RealSampleWordsLeftToRead -= readSampleWords;
726                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
727                        }
728                  }                  }
729                  break;                  break;
730    
# Line 706  namespace LinuxSampler { namespace gig { Line 733  namespace LinuxSampler { namespace gig {
733                  break;                  break;
734          }          }
735    
   
736          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
737          pEngine->pSynthesisEvents[Event::destination_vca]->clear();          pEngine->pSynthesisEvents[Event::destination_vca]->clear();
     #if ENABLE_FILTER  
738          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();
739          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();
     #endif // ENABLE_FILTER  
740    
741          // Reset delay          // Reset delay
742          Delay = 0;          Delay = 0;
# Line 731  namespace LinuxSampler { namespace gig { Line 755  namespace LinuxSampler { namespace gig {
755          pLFO1->Reset();          pLFO1->Reset();
756          pLFO2->Reset();          pLFO2->Reset();
757          pLFO3->Reset();          pLFO3->Reset();
758            FilterLeft.Reset();
759            FilterRight.Reset();
760          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
761          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
762          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 756  namespace LinuxSampler { namespace gig { Line 782  namespace LinuxSampler { namespace gig {
782          }          }
783          while (itCCEvent) {          while (itCCEvent) {
784              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
                 #if ENABLE_FILTER  
785                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
786                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
787                  }                  }
788                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
789                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
790                  }                  }
                 #endif // ENABLE_FILTER  
791                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
792                      pLFO1->SendEvent(itCCEvent);                      pLFO1->SendEvent(itCCEvent);
793                  }                  }
                 #if ENABLE_FILTER  
794                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
795                      pLFO2->SendEvent(itCCEvent);                      pLFO2->SendEvent(itCCEvent);
796                  }                  }
                 #endif // ENABLE_FILTER  
797                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
798                      pLFO3->SendEvent(itCCEvent);                      pLFO3->SendEvent(itCCEvent);
799                  }                  }
# Line 816  namespace LinuxSampler { namespace gig { Line 838  namespace LinuxSampler { namespace gig {
838    
839                  itVCOEvent = itNextVCOEvent;                  itVCOEvent = itNextVCOEvent;
840              }              }
841              if (!pVCOEventList->isEmpty()) this->PitchBend = pitch;              if (!pVCOEventList->isEmpty()) {
842                    this->PitchBend = pitch;
843                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
844                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
845                }
846          }          }
847    
848          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
# Line 848  namespace LinuxSampler { namespace gig { Line 874  namespace LinuxSampler { namespace gig {
874              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
875          }          }
876    
     #if ENABLE_FILTER  
877          // process filter cutoff events          // process filter cutoff events
878          {          {
879              RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];              RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];
# Line 905  namespace LinuxSampler { namespace gig { Line 930  namespace LinuxSampler { namespace gig {
930              }              }
931              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
932          }          }
     #endif // ENABLE_FILTER  
933      }      }
934    
     #if ENABLE_FILTER  
935      /**      /**
936       * Calculate all necessary, final biquad filter parameters.       * Calculate all necessary, final biquad filter parameters.
937       *       *
938       * @param Samples - number of samples to be rendered in this audio fragment cycle       * @param Samples - number of samples to be rendered in this audio fragment cycle
939       */       */
940      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::CalculateBiquadParameters(uint Samples) {
         if (!FilterLeft.Enabled) return;  
   
941          biquad_param_t bqbase;          biquad_param_t bqbase;
942          biquad_param_t bqmain;          biquad_param_t bqmain;
943          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];
944          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];
945          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);
946            FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);
947          pEngine->pBasicFilterParameters[0] = bqbase;          pEngine->pBasicFilterParameters[0] = bqbase;
948          pEngine->pMainFilterParameters[0]  = bqmain;          pEngine->pMainFilterParameters[0]  = bqmain;
949    
950          float* bq;          float* bq;
951          for (int i = 1; i < Samples; i++) {          for (int i = 1; i < Samples; i++) {
952              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              // recalculate biquad parameters if cutoff or resonance differ from previous sample point
953              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||              if (!(i & FILTER_UPDATE_MASK)) {
954                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||
955                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)
956                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];                  {
957                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];
958                        prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];
959                        FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);
960                        FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);
961                    }
962              }              }
963    
964              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'
965              bq    = (float*) &pEngine->pBasicFilterParameters[i];              bq    = (float*) &pEngine->pBasicFilterParameters[i];
966              bq[0] = bqbase.a1;              bq[0] = bqbase.b0;
967              bq[1] = bqbase.a2;              bq[1] = bqbase.b1;
968              bq[2] = bqbase.b0;              bq[2] = bqbase.b2;
969              bq[3] = bqbase.b1;              bq[3] = bqbase.a1;
970              bq[4] = bqbase.b2;              bq[4] = bqbase.a2;
971    
972              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'
973              bq    = (float*) &pEngine->pMainFilterParameters[i];              bq    = (float*) &pEngine->pMainFilterParameters[i];
974              bq[0] = bqmain.a1;              bq[0] = bqmain.b0;
975              bq[1] = bqmain.a2;              bq[1] = bqmain.b1;
976              bq[2] = bqmain.b0;              bq[2] = bqmain.b2;
977              bq[3] = bqmain.b1;              bq[3] = bqmain.a1;
978              bq[4] = bqmain.b2;              bq[4] = bqmain.a2;
         }  
     }  
     #endif // ENABLE_FILTER  
   
     /**  
      *  Interpolates the input audio data (without looping).  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
   
         // FIXME: assuming either mono or stereo  
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) InterpolateStereo(pSrc, i);  
         }  
         else { // Mono Sample  
             while (i < Samples) InterpolateMono(pSrc, i);  
979          }          }
980      }      }
981    
982      /**      /**
983       *  Interpolates the input audio data, this method honors looping.       *  Synthesizes the current audio fragment for this voice.
984       *       *
985       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
986       *                   fragment cycle       *                   fragment cycle
987       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
988       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
989       */       */
990      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
991          int i = Skip;          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);
   
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateStereo(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateMono(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
         }  
992      }      }
993    
994      /**      /**

Legend:
Removed from v.287  
changed lines
  Added in v.332

  ViewVC Help
Powered by ViewVC