/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 287 by schoenebeck, Sat Oct 16 17:38:03 2004 UTC revision 696 by persson, Sat Jul 16 19:37:52 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 22  Line 23 
23    
24  #include "EGADSR.h"  #include "EGADSR.h"
25  #include "Manipulator.h"  #include "Manipulator.h"
26    #include "../../common/Features.h"
27    #include "Synthesizer.h"
28    
29  #include "Voice.h"  #include "Voice.h"
30    
# Line 32  namespace LinuxSampler { namespace gig { Line 35  namespace LinuxSampler { namespace gig {
35      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());
36    
37      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
38          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);
39      }      }
40    
41      int Voice::CalculateFilterUpdateMask() {      int Voice::CalculateFilterUpdateMask() {
42          if (FILTER_UPDATE_PERIOD <= 0) return 0;          if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;
43          int power_of_two;          int power_of_two;
44          for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);          for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);
45          return (1 << power_of_two) - 1;          return (1 << power_of_two) - 1;
46      }      }
47    
# Line 56  namespace LinuxSampler { namespace gig { Line 59  namespace LinuxSampler { namespace gig {
59          pLFO2  = NULL;          pLFO2  = NULL;
60          pLFO3  = NULL;          pLFO3  = NULL;
61          KeyGroup = 0;          KeyGroup = 0;
62            SynthesisMode = 0; // set all mode bits to 0 first
63            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
64            #if CONFIG_ASM && ARCH_X86
65            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
66            #else
67            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
68            #endif
69            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);
70    
71            FilterLeft.Reset();
72            FilterRight.Reset();
73      }      }
74    
75      Voice::~Voice() {      Voice::~Voice() {
# Line 103  namespace LinuxSampler { namespace gig { Line 117  namespace LinuxSampler { namespace gig {
117       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
118       *  needed.       *  needed.
119       *       *
120       *  @param itNoteOnEvent       - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
121       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
122       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
123       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
124       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
125       *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
126       *  @returns 0 on success, a value < 0 if something failed       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
127         *           (either due to an error or e.g. because no region is
128         *           defined for the given key)
129       */       */
130      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
131          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
132             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
133             exit(EXIT_FAILURE);  
134            #if CONFIG_DEVMODE
135            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
136                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
137          }          }
138            #endif // CONFIG_DEVMODE
139    
140          Type            = type_normal;          Type            = VoiceType;
141          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
142          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
143          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
144          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
145          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
146          itChildVoice    = Pool<Voice>::Iterator();          KeyGroup        = iKeyGroup;
147            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
148    
149          if (!pRegion) {          // calculate volume
150              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             KillImmediately();  
             return -1;  
         }  
151    
152          KeyGroup = pRegion->KeyGroup;          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
153    
154          // get current dimension values to select the right dimension region          Volume *= pDimRgn->SampleAttenuation;
155          //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
156          uint DimValues[5] = {0,0,0,0,0};          // the volume of release triggered samples depends on note length
157          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          if (Type == type_release_trigger) {
158              switch (pRegion->pDimensionDefinitions[i].dimension) {              float noteLength = float(pEngine->FrameTime + Delay -
159                  case ::gig::dimension_samplechannel:                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
160                      DimValues[i] = 0; //TODO: we currently ignore this dimension              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
161                      break;              if (attenuation <= 0) return -1;
162                  case ::gig::dimension_layer:              Volume *= attenuation;
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
163          }          }
164          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
165            // select channel mode (mono or stereo)
166            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
167    
168          // get starting crossfade volume level          // get starting crossfade volume level
169          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
# Line 249  namespace LinuxSampler { namespace gig { Line 174  namespace LinuxSampler { namespace gig {
174                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
175                  break;                  break;
176              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
177                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
178                  break;                  break;
179              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
180              default:              default:
# Line 259  namespace LinuxSampler { namespace gig { Line 184  namespace LinuxSampler { namespace gig {
184          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
185          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
186    
         pSample = pDimRgn->pSample; // sample won't change until the voice is finished  
   
187          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
188    
189          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
# Line 268  namespace LinuxSampler { namespace gig { Line 191  namespace LinuxSampler { namespace gig {
191          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
192    
193          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
194              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
195    
196              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
197              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
# Line 297  namespace LinuxSampler { namespace gig { Line 220  namespace LinuxSampler { namespace gig {
220    
221          // calculate initial pitch value          // calculate initial pitch value
222          {          {
223              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
224              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
225              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));
226              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
227          }          }
228    
229            // the length of the decay and release curves are dependent on the velocity
230          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
231    
232          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
233          {          {
# Line 322  namespace LinuxSampler { namespace gig { Line 244  namespace LinuxSampler { namespace gig {
244                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
245                      break;                      break;
246                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
247                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
248                      break;                      break;
249              }              }
250              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
251    
252              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
253              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
254              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
255              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
256                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
257                double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
258                double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
259    
260              pEG1->Trigger(pDimRgn->EG1PreAttack,              pEG1->Trigger(pDimRgn->EG1PreAttack,
261                            pDimRgn->EG1Attack + eg1attack,                            pDimRgn->EG1Attack * eg1attack,
262                            pDimRgn->EG1Hold,                            pDimRgn->EG1Hold,
263                            pSample->LoopStart,                            pSample->LoopStart,
264                            pDimRgn->EG1Decay1 + eg1decay,                            pDimRgn->EG1Decay1 * eg1decay * velrelease,
265                            pDimRgn->EG1Decay2 + eg1decay,                            pDimRgn->EG1Decay2 * eg1decay * velrelease,
266                            pDimRgn->EG1InfiniteSustain,                            pDimRgn->EG1InfiniteSustain,
267                            pDimRgn->EG1Sustain,                            pDimRgn->EG1Sustain,
268                            pDimRgn->EG1Release + eg1release,                            pDimRgn->EG1Release * eg1release * velrelease,
269                            Delay);                            // the SSE synthesis implementation requires
270                              // the vca start to be 16 byte aligned
271                              SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?
272                              Delay & 0xfffffffc : Delay,
273                              velocityAttenuation);
274          }          }
275    
276    
     #if ENABLE_FILTER  
277          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
278          {          {
279              // get current value of EG2 controller              // get current value of EG2 controller
# Line 361  namespace LinuxSampler { namespace gig { Line 289  namespace LinuxSampler { namespace gig {
289                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
290                      break;                      break;
291                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
292                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
293                      break;                      break;
294              }              }
295              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
296    
297              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
298              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
299              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
300              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
301    
302              pEG2->Trigger(pDimRgn->EG2PreAttack,              pEG2->Trigger(pDimRgn->EG2PreAttack,
303                            pDimRgn->EG2Attack + eg2attack,                            pDimRgn->EG2Attack * eg2attack,
304                            false,                            false,
305                            pSample->LoopStart,                            pSample->LoopStart,
306                            pDimRgn->EG2Decay1 + eg2decay,                            pDimRgn->EG2Decay1 * eg2decay * velrelease,
307                            pDimRgn->EG2Decay2 + eg2decay,                            pDimRgn->EG2Decay2 * eg2decay * velrelease,
308                            pDimRgn->EG2InfiniteSustain,                            pDimRgn->EG2InfiniteSustain,
309                            pDimRgn->EG2Sustain,                            pDimRgn->EG2Sustain,
310                            pDimRgn->EG2Release + eg2release,                            pDimRgn->EG2Release * eg2release * velrelease,
311                            Delay);                            Delay,
312                              velocityAttenuation);
313          }          }
     #endif // ENABLE_FILTER  
314    
315    
316          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
# Line 399  namespace LinuxSampler { namespace gig { Line 327  namespace LinuxSampler { namespace gig {
327                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
328                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
329                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
330                        bLFO1Enabled         = (lfo1_internal_depth > 0);
331                      break;                      break;
332                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
333                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
334                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
335                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
336                      break;                      break;
337                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
338                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
339                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
340                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
341                      break;                      break;
342                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
343                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
344                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
345                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
346                      break;                      break;
347                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
348                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
349                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
350                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
351                      break;                      break;
352                  default:                  default:
353                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
354                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
355                        bLFO1Enabled         = false;
356              }              }
357              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,
358                            lfo1_internal_depth,                                               lfo1_internal_depth,
359                            pDimRgn->LFO1ControlDepth,                                               pDimRgn->LFO1ControlDepth,
360                            pEngine->ControllerTable[pLFO1->ExtController],                                               pEngineChannel->ControllerTable[pLFO1->ExtController],
361                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
362                            pEngine->SampleRate,                                               pEngine->SampleRate,
363                            Delay);                                               Delay);
364          }          }
365    
366      #if ENABLE_FILTER  
367          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
368          {          {
369              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 437  namespace LinuxSampler { namespace gig { Line 371  namespace LinuxSampler { namespace gig {
371                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
374                        bLFO2Enabled         = (lfo2_internal_depth > 0);
375                      break;                      break;
376                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
377                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
378                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
379                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
380                      break;                      break;
381                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
382                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
383                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
384                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
385                      break;                      break;
386                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
387                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
388                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
389                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
390                      break;                      break;
391                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
392                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
393                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
394                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
395                      break;                      break;
396                  default:                  default:
397                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
398                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
399                        bLFO2Enabled         = false;
400              }              }
401              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,
402                            lfo2_internal_depth,                                               lfo2_internal_depth,
403                            pDimRgn->LFO2ControlDepth,                                               pDimRgn->LFO2ControlDepth,
404                            pEngine->ControllerTable[pLFO2->ExtController],                                               pEngineChannel->ControllerTable[pLFO2->ExtController],
405                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
406                            pEngine->SampleRate,                                               pEngine->SampleRate,
407                            Delay);                                               Delay);
408          }          }
409      #endif // ENABLE_FILTER  
410    
411          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
412          {          {
# Line 475  namespace LinuxSampler { namespace gig { Line 415  namespace LinuxSampler { namespace gig {
415                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
416                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
417                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
418                        bLFO3Enabled         = (lfo3_internal_depth > 0);
419                      break;                      break;
420                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
421                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
422                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
423                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
424                      break;                      break;
425                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
426                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
427                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
428                        bLFO3Enabled         = false; // see TODO comment in line above
429                      break;                      break;
430                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
431                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
432                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
433                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
434                      break;                      break;
435                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
436                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
437                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
438                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
439                      break;                      break;
440                  default:                  default:
441                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
442                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
443                        bLFO3Enabled         = false;
444              }              }
445              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,
446                            lfo3_internal_depth,                                               lfo3_internal_depth,
447                            pDimRgn->LFO3ControlDepth,                                               pDimRgn->LFO3ControlDepth,
448                            pEngine->ControllerTable[pLFO3->ExtController],                                               pEngineChannel->ControllerTable[pLFO3->ExtController],
449                            false,                                               false,
450                            pEngine->SampleRate,                                               pEngine->SampleRate,
451                            Delay);                                               Delay);
452          }          }
453    
454      #if ENABLE_FILTER  
455          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
456          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
457          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
458          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
459          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
460          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
461              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
462              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
463                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
464              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
465              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
466                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 549  namespace LinuxSampler { namespace gig { Line 496  namespace LinuxSampler { namespace gig {
496                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
497                      break;                      break;
498              }              }
499              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
500    
501              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
502              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
503              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
504              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
505                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 571  namespace LinuxSampler { namespace gig { Line 518  namespace LinuxSampler { namespace gig {
518                  default:                  default:
519                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
520              }              }
521              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
522    
523              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
524              FilterLeft.SetType(pDimRgn->VCFType);              FilterLeft.SetType(pDimRgn->VCFType);
525              FilterRight.SetType(pDimRgn->VCFType);              FilterRight.SetType(pDimRgn->VCFType);
526              #else // override filter type              #else // override filter type
527              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
528              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
529              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
530    
531              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
532              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
533    
534              // calculate cutoff frequency              // calculate cutoff frequency
535              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = (!VCFCutoffCtrl.controller)
536                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX
537                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;
538    
539              // calculate resonance              // calculate resonance
540              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
# Line 596  namespace LinuxSampler { namespace gig { Line 543  namespace LinuxSampler { namespace gig {
543              }              }
544              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
545    
546              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;
547              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
548    
             FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);  
   
549              FilterUpdateCounter = -1;              FilterUpdateCounter = -1;
550          }          }
551          else {          else {
552              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
553              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
554          }          }
     #endif // ENABLE_FILTER  
555    
556          return 0; // success          return 0; // success
557      }      }
# Line 626  namespace LinuxSampler { namespace gig { Line 569  namespace LinuxSampler { namespace gig {
569       */       */
570      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
571    
572            // select default values for synthesis mode bits
573            SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);
574            SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);
575            SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
576    
577          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
578          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);  
579            pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);
580          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
     #if ENABLE_FILTER  
581          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
582          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);
     #endif // ENABLE_FILTER  
   
583    
584          // Apply events to the synthesis parameter matrix          // Apply events to the synthesis parameter matrix
585          ProcessEvents(Samples);          ProcessEvents(Samples);
586    
   
587          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
588          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);          pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
589      #if ENABLE_FILTER          pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
590          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          if (pEG3->Process(Samples)) { // if pitch EG is active
591      #endif // ENABLE_FILTER              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
592          pEG3->Process(Samples);              SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
593          pLFO1->Process(Samples);          }
594      #if ENABLE_FILTER          if (bLFO1Enabled) pLFO1->Process(Samples);
595          pLFO2->Process(Samples);          if (bLFO2Enabled) pLFO2->Process(Samples);
596      #endif // ENABLE_FILTER          if (bLFO3Enabled) {
597          pLFO3->Process(Samples);              if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active
598                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
599                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
600      #if ENABLE_FILTER              }
601          CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters          }
     #endif // ENABLE_FILTER  
602    
603            if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))
604                CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters
605    
606          switch (this->PlaybackState) {          switch (this->PlaybackState) {
607    
608                case playback_state_init:
609                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
610                    // no break - continue with playback_state_ram
611    
612              case playback_state_ram: {              case playback_state_ram: {
613                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
614                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
615                        // render current fragment
616                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
617    
618                      if (DiskVoice) {                      if (DiskVoice) {
619                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
620                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 684  namespace LinuxSampler { namespace gig { Line 637  namespace LinuxSampler { namespace gig {
637                              KillImmediately();                              KillImmediately();
638                              return;                              return;
639                          }                          }
640                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));
641                          Pos -= RTMath::DoubleToInt(Pos);                          Pos -= int(Pos);
642                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
643                      }                      }
644    
645                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
646    
647                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
648                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
649                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
650                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
651                                // remember how many sample words there are before any silence has been added
652                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
653                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
654                            }
655                      }                      }
656    
657                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
658                      InterpolateNoLoop(Samples, ptr, Delay);  
659                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
660                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
661    
662                        const int iPos = (int) Pos;
663                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
664                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
665                        Pos -= iPos; // just keep fractional part of Pos
666    
667                        // change state of voice to 'end' if we really reached the end of the sample data
668                        if (RealSampleWordsLeftToRead >= 0) {
669                            RealSampleWordsLeftToRead -= readSampleWords;
670                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
671                        }
672                  }                  }
673                  break;                  break;
674    
# Line 706  namespace LinuxSampler { namespace gig { Line 677  namespace LinuxSampler { namespace gig {
677                  break;                  break;
678          }          }
679    
   
680          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
681          pEngine->pSynthesisEvents[Event::destination_vca]->clear();          pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();
682      #if ENABLE_FILTER          pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();
683          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
684    
685          // Reset delay          // Reset delay
686          Delay = 0;          Delay = 0;
# Line 731  namespace LinuxSampler { namespace gig { Line 699  namespace LinuxSampler { namespace gig {
699          pLFO1->Reset();          pLFO1->Reset();
700          pLFO2->Reset();          pLFO2->Reset();
701          pLFO3->Reset();          pLFO3->Reset();
702            FilterLeft.Reset();
703            FilterRight.Reset();
704          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
705          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
706          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 750  namespace LinuxSampler { namespace gig { Line 720  namespace LinuxSampler { namespace gig {
720      void Voice::ProcessEvents(uint Samples) {      void Voice::ProcessEvents(uint Samples) {
721    
722          // dispatch control change events          // dispatch control change events
723          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();
724          if (Delay) { // skip events that happened before this voice was triggered          if (Delay) { // skip events that happened before this voice was triggered
725              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;
726          }          }
727          while (itCCEvent) {          while (itCCEvent) {
728              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
                 #if ENABLE_FILTER  
729                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
730                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
731                  }                  }
732                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
733                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
734                  }                  }
                 #endif // ENABLE_FILTER  
735                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
736                      pLFO1->SendEvent(itCCEvent);                      pLFO1->SendEvent(itCCEvent);
737                  }                  }
                 #if ENABLE_FILTER  
738                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
739                      pLFO2->SendEvent(itCCEvent);                      pLFO2->SendEvent(itCCEvent);
740                  }                  }
                 #endif // ENABLE_FILTER  
741                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
742                      pLFO3->SendEvent(itCCEvent);                      pLFO3->SendEvent(itCCEvent);
743                  }                  }
744                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
745                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
746                      *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;
747                  }                  }
748              }              }
749    
# Line 787  namespace LinuxSampler { namespace gig { Line 753  namespace LinuxSampler { namespace gig {
753    
754          // process pitch events          // process pitch events
755          {          {
756              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];
757              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();
758              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
759                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;
# Line 816  namespace LinuxSampler { namespace gig { Line 782  namespace LinuxSampler { namespace gig {
782    
783                  itVCOEvent = itNextVCOEvent;                  itVCOEvent = itNextVCOEvent;
784              }              }
785              if (!pVCOEventList->isEmpty()) this->PitchBend = pitch;              if (!pVCOEventList->isEmpty()) {
786                    this->PitchBend = pitch;
787                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
788                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
789                }
790          }          }
791    
792          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
793          {          {
794              RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];
795              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();
796              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
797                  while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;                  while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;
# Line 836  namespace LinuxSampler { namespace gig { Line 806  namespace LinuxSampler { namespace gig {
806    
807                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);
808    
809                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;                  float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;
810    
811                  // apply volume value to the volume parameter sequence                  // apply volume value to the volume parameter sequence
812                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {
# Line 848  namespace LinuxSampler { namespace gig { Line 818  namespace LinuxSampler { namespace gig {
818              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
819          }          }
820    
     #if ENABLE_FILTER  
821          // process filter cutoff events          // process filter cutoff events
822          {          {
823              RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];
824              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();
825              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
826                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;
# Line 864  namespace LinuxSampler { namespace gig { Line 833  namespace LinuxSampler { namespace gig {
833                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
834                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;
835    
836                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;
837    
838                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
839                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {
# Line 878  namespace LinuxSampler { namespace gig { Line 847  namespace LinuxSampler { namespace gig {
847    
848          // process filter resonance events          // process filter resonance events
849          {          {
850              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];
851              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();
852              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
853                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;
# Line 905  namespace LinuxSampler { namespace gig { Line 874  namespace LinuxSampler { namespace gig {
874              }              }
875              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
876          }          }
     #endif // ENABLE_FILTER  
877      }      }
878    
     #if ENABLE_FILTER  
879      /**      /**
880       * Calculate all necessary, final biquad filter parameters.       * Calculate all necessary, final biquad filter parameters.
881       *       *
882       * @param Samples - number of samples to be rendered in this audio fragment cycle       * @param Samples - number of samples to be rendered in this audio fragment cycle
883       */       */
884      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::CalculateBiquadParameters(uint Samples) {
         if (!FilterLeft.Enabled) return;  
   
885          biquad_param_t bqbase;          biquad_param_t bqbase;
886          biquad_param_t bqmain;          biquad_param_t bqmain;
887          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];
888          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];
889          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
890            FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
891          pEngine->pBasicFilterParameters[0] = bqbase;          pEngine->pBasicFilterParameters[0] = bqbase;
892          pEngine->pMainFilterParameters[0]  = bqmain;          pEngine->pMainFilterParameters[0]  = bqmain;
893    
894          float* bq;          float* bq;
895          for (int i = 1; i < Samples; i++) {          for (int i = 1; i < Samples; i++) {
896              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              // recalculate biquad parameters if cutoff or resonance differ from previous sample point
897              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||              if (!(i & FILTER_UPDATE_MASK)) {
898                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||
899                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)
900                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];                  {
901                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];
902                        prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];
903                        FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
904                        FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
905                    }
906              }              }
907    
908              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'
909              bq    = (float*) &pEngine->pBasicFilterParameters[i];              bq    = (float*) &pEngine->pBasicFilterParameters[i];
910              bq[0] = bqbase.a1;              bq[0] = bqbase.b0;
911              bq[1] = bqbase.a2;              bq[1] = bqbase.b1;
912              bq[2] = bqbase.b0;              bq[2] = bqbase.b2;
913              bq[3] = bqbase.b1;              bq[3] = bqbase.a1;
914              bq[4] = bqbase.b2;              bq[4] = bqbase.a2;
915    
916              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'
917              bq    = (float*) &pEngine->pMainFilterParameters[i];              bq    = (float*) &pEngine->pMainFilterParameters[i];
918              bq[0] = bqmain.a1;              bq[0] = bqmain.b0;
919              bq[1] = bqmain.a2;              bq[1] = bqmain.b1;
920              bq[2] = bqmain.b0;              bq[2] = bqmain.b2;
921              bq[3] = bqmain.b1;              bq[3] = bqmain.a1;
922              bq[4] = bqmain.b2;              bq[4] = bqmain.a2;
         }  
     }  
     #endif // ENABLE_FILTER  
   
     /**  
      *  Interpolates the input audio data (without looping).  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
   
         // FIXME: assuming either mono or stereo  
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) InterpolateStereo(pSrc, i);  
         }  
         else { // Mono Sample  
             while (i < Samples) InterpolateMono(pSrc, i);  
923          }          }
924      }      }
925    
926      /**      /**
927       *  Interpolates the input audio data, this method honors looping.       *  Synthesizes the current audio fragment for this voice.
928       *       *
929       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
930       *                   fragment cycle       *                   fragment cycle
931       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
932       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
933       */       */
934      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
935          int i = Skip;          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);
   
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateStereo(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateMono(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
         }  
936      }      }
937    
938      /**      /**
# Line 1057  namespace LinuxSampler { namespace gig { Line 960  namespace LinuxSampler { namespace gig {
960       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
961       */       */
962      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
963          //FIXME: just two sanity checks for debugging, can be removed          #if CONFIG_DEVMODE
964          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
965          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
966            #endif // CONFIG_DEVMODE
967    
968          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
969          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;

Legend:
Removed from v.287  
changed lines
  Added in v.696

  ViewVC Help
Powered by ViewVC