/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 287 by schoenebeck, Sat Oct 16 17:38:03 2004 UTC revision 729 by persson, Tue Jul 26 11:18:46 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 22  Line 23 
23    
24  #include "EGADSR.h"  #include "EGADSR.h"
25  #include "Manipulator.h"  #include "Manipulator.h"
26    #include "../../common/Features.h"
27    #include "Synthesizer.h"
28    
29  #include "Voice.h"  #include "Voice.h"
30    
# Line 32  namespace LinuxSampler { namespace gig { Line 35  namespace LinuxSampler { namespace gig {
35      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());
36    
37      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
38          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
39      }      }
40    
41      int Voice::CalculateFilterUpdateMask() {      int Voice::CalculateFilterUpdateMask() {
42          if (FILTER_UPDATE_PERIOD <= 0) return 0;          if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;
43          int power_of_two;          int power_of_two;
44          for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);          for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);
45          return (1 << power_of_two) - 1;          return (1 << power_of_two) - 1;
46      }      }
47    
# Line 56  namespace LinuxSampler { namespace gig { Line 59  namespace LinuxSampler { namespace gig {
59          pLFO2  = NULL;          pLFO2  = NULL;
60          pLFO3  = NULL;          pLFO3  = NULL;
61          KeyGroup = 0;          KeyGroup = 0;
62            SynthesisMode = 0; // set all mode bits to 0 first
63            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
64            #if CONFIG_ASM && ARCH_X86
65            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
66            #else
67            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
68            #endif
69            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);
70    
71            FilterLeft.Reset();
72            FilterRight.Reset();
73      }      }
74    
75      Voice::~Voice() {      Voice::~Voice() {
# Line 103  namespace LinuxSampler { namespace gig { Line 117  namespace LinuxSampler { namespace gig {
117       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
118       *  needed.       *  needed.
119       *       *
120       *  @param itNoteOnEvent       - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
121       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
122       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
123       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
124       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
125       *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
126       *  @returns 0 on success, a value < 0 if something failed       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
127         *           (either due to an error or e.g. because no region is
128         *           defined for the given key)
129       */       */
130      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
131          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
132             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
133             exit(EXIT_FAILURE);  
134            #if CONFIG_DEVMODE
135            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
136                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
137          }          }
138            #endif // CONFIG_DEVMODE
139    
140          Type            = type_normal;          Type            = VoiceType;
141          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
142          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
143          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
144          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
145          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
146          itChildVoice    = Pool<Voice>::Iterator();          KeyGroup        = iKeyGroup;
147            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
148    
149          if (!pRegion) {          // calculate volume
150              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             KillImmediately();  
             return -1;  
         }  
151    
152          KeyGroup = pRegion->KeyGroup;          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
153    
154          // get current dimension values to select the right dimension region          Volume *= pDimRgn->SampleAttenuation;
155          //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
156          uint DimValues[5] = {0,0,0,0,0};          // the volume of release triggered samples depends on note length
157          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          if (Type == type_release_trigger) {
158              switch (pRegion->pDimensionDefinitions[i].dimension) {              float noteLength = float(pEngine->FrameTime + Delay -
159                  case ::gig::dimension_samplechannel:                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
160                      DimValues[i] = 0; //TODO: we currently ignore this dimension              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
161                      break;              if (attenuation <= 0) return -1;
162                  case ::gig::dimension_layer:              Volume *= attenuation;
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
163          }          }
164          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
165            // select channel mode (mono or stereo)
166            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
167    
168          // get starting crossfade volume level          // get starting crossfade volume level
169          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
# Line 249  namespace LinuxSampler { namespace gig { Line 174  namespace LinuxSampler { namespace gig {
174                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
175                  break;                  break;
176              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
177                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
178                  break;                  break;
179              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
180              default:              default:
# Line 259  namespace LinuxSampler { namespace gig { Line 184  namespace LinuxSampler { namespace gig {
184          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
185          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
186    
         pSample = pDimRgn->pSample; // sample won't change until the voice is finished  
   
187          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
188    
189          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
# Line 268  namespace LinuxSampler { namespace gig { Line 191  namespace LinuxSampler { namespace gig {
191          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
192    
193          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
194              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
195    
196              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
197              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
# Line 297  namespace LinuxSampler { namespace gig { Line 220  namespace LinuxSampler { namespace gig {
220    
221          // calculate initial pitch value          // calculate initial pitch value
222          {          {
223              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
224              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
225              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));
226              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
227          }          }
228    
229            // the length of the decay and release curves are dependent on the velocity
230          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
231    
232          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
233          {          {
# Line 322  namespace LinuxSampler { namespace gig { Line 244  namespace LinuxSampler { namespace gig {
244                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
245                      break;                      break;
246                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
247                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
248                      break;                      break;
249              }              }
250              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
251    
252              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
253              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
254              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
255              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
256                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
257                double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
258                double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
259    
260              pEG1->Trigger(pDimRgn->EG1PreAttack,              pEG1->Trigger(pDimRgn->EG1PreAttack,
261                            pDimRgn->EG1Attack + eg1attack,                            pDimRgn->EG1Attack * eg1attack,
262                            pDimRgn->EG1Hold,                            pDimRgn->EG1Hold,
263                            pSample->LoopStart,                            pSample->LoopStart,
264                            pDimRgn->EG1Decay1 + eg1decay,                            pDimRgn->EG1Decay1 * eg1decay * velrelease,
265                            pDimRgn->EG1Decay2 + eg1decay,                            pDimRgn->EG1Decay2 * eg1decay * velrelease,
266                            pDimRgn->EG1InfiniteSustain,                            pDimRgn->EG1InfiniteSustain,
267                            pDimRgn->EG1Sustain,                            pDimRgn->EG1Sustain,
268                            pDimRgn->EG1Release + eg1release,                            pDimRgn->EG1Release * eg1release * velrelease,
269                            Delay);                            // the SSE synthesis implementation requires
270                              // the vca start to be 16 byte aligned
271                              SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?
272                              Delay & 0xfffffffc : Delay,
273                              velocityAttenuation);
274          }          }
275    
276    
     #if ENABLE_FILTER  
277          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
278          {          {
279              // get current value of EG2 controller              // get current value of EG2 controller
# Line 361  namespace LinuxSampler { namespace gig { Line 289  namespace LinuxSampler { namespace gig {
289                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
290                      break;                      break;
291                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
292                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
293                      break;                      break;
294              }              }
295              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
296    
297              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
298              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
299              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
300              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
301    
302              pEG2->Trigger(pDimRgn->EG2PreAttack,              pEG2->Trigger(pDimRgn->EG2PreAttack,
303                            pDimRgn->EG2Attack + eg2attack,                            pDimRgn->EG2Attack * eg2attack,
304                            false,                            false,
305                            pSample->LoopStart,                            pSample->LoopStart,
306                            pDimRgn->EG2Decay1 + eg2decay,                            pDimRgn->EG2Decay1 * eg2decay * velrelease,
307                            pDimRgn->EG2Decay2 + eg2decay,                            pDimRgn->EG2Decay2 * eg2decay * velrelease,
308                            pDimRgn->EG2InfiniteSustain,                            pDimRgn->EG2InfiniteSustain,
309                            pDimRgn->EG2Sustain,                            pDimRgn->EG2Sustain,
310                            pDimRgn->EG2Release + eg2release,                            pDimRgn->EG2Release * eg2release * velrelease,
311                            Delay);                            Delay,
312                              velocityAttenuation);
313          }          }
     #endif // ENABLE_FILTER  
314    
315    
316          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
# Line 399  namespace LinuxSampler { namespace gig { Line 327  namespace LinuxSampler { namespace gig {
327                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
328                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
329                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
330                        bLFO1Enabled         = (lfo1_internal_depth > 0);
331                      break;                      break;
332                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
333                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
334                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
335                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
336                      break;                      break;
337                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
338                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
339                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
340                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
341                      break;                      break;
342                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
343                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
344                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
345                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
346                      break;                      break;
347                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
348                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
349                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
350                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
351                      break;                      break;
352                  default:                  default:
353                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
354                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
355                        bLFO1Enabled         = false;
356              }              }
357              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,
358                            lfo1_internal_depth,                                               lfo1_internal_depth,
359                            pDimRgn->LFO1ControlDepth,                                               pDimRgn->LFO1ControlDepth,
360                            pEngine->ControllerTable[pLFO1->ExtController],                                               pEngineChannel->ControllerTable[pLFO1->ExtController],
361                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
362                            pEngine->SampleRate,                                               pEngine->SampleRate,
363                            Delay);                                               Delay);
364          }          }
365    
366      #if ENABLE_FILTER  
367          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
368          {          {
369              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 437  namespace LinuxSampler { namespace gig { Line 371  namespace LinuxSampler { namespace gig {
371                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
374                        bLFO2Enabled         = (lfo2_internal_depth > 0);
375                      break;                      break;
376                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
377                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
378                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
379                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
380                      break;                      break;
381                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
382                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
383                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
384                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
385                      break;                      break;
386                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
387                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
388                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
389                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
390                      break;                      break;
391                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
392                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
393                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
394                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
395                      break;                      break;
396                  default:                  default:
397                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
398                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
399                        bLFO2Enabled         = false;
400              }              }
401              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,
402                            lfo2_internal_depth,                                               lfo2_internal_depth,
403                            pDimRgn->LFO2ControlDepth,                                               pDimRgn->LFO2ControlDepth,
404                            pEngine->ControllerTable[pLFO2->ExtController],                                               pEngineChannel->ControllerTable[pLFO2->ExtController],
405                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
406                            pEngine->SampleRate,                                               pEngine->SampleRate,
407                            Delay);                                               Delay);
408          }          }
409      #endif // ENABLE_FILTER  
410    
411          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
412          {          {
# Line 475  namespace LinuxSampler { namespace gig { Line 415  namespace LinuxSampler { namespace gig {
415                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
416                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
417                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
418                        bLFO3Enabled         = (lfo3_internal_depth > 0);
419                      break;                      break;
420                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
421                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
422                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
423                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
424                      break;                      break;
425                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
426                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
427                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
428                        bLFO3Enabled         = false; // see TODO comment in line above
429                      break;                      break;
430                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
431                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
432                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
433                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
434                      break;                      break;
435                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
436                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
437                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
438                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
439                      break;                      break;
440                  default:                  default:
441                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
442                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
443                        bLFO3Enabled         = false;
444              }              }
445              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,
446                            lfo3_internal_depth,                                               lfo3_internal_depth,
447                            pDimRgn->LFO3ControlDepth,                                               pDimRgn->LFO3ControlDepth,
448                            pEngine->ControllerTable[pLFO3->ExtController],                                               pEngineChannel->ControllerTable[pLFO3->ExtController],
449                            false,                                               false,
450                            pEngine->SampleRate,                                               pEngine->SampleRate,
451                            Delay);                                               Delay);
452          }          }
453    
454      #if ENABLE_FILTER  
455          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
456          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
457          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
458          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
459          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
460          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
461              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
462              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
463                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
464              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
465              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
466                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 549  namespace LinuxSampler { namespace gig { Line 496  namespace LinuxSampler { namespace gig {
496                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
497                      break;                      break;
498              }              }
499              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
500    
501              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
502              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
503              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
504              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
505                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 571  namespace LinuxSampler { namespace gig { Line 518  namespace LinuxSampler { namespace gig {
518                  default:                  default:
519                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
520              }              }
521              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
522    
523              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
524              FilterLeft.SetType(pDimRgn->VCFType);              FilterLeft.SetType(pDimRgn->VCFType);
525              FilterRight.SetType(pDimRgn->VCFType);              FilterRight.SetType(pDimRgn->VCFType);
526              #else // override filter type              #else // override filter type
527              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
528              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
529              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
530    
531              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
532              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
533    
534              // calculate cutoff frequency              // calculate cutoff frequency
535              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
536                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX              if (pDimRgn->VCFKeyboardTracking) {
537                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
538                }
539                CutoffBase = cutoff;
540    
541                int cvalue;
542                if (VCFCutoffCtrl.controller) {
543                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
544                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
545                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
546                }
547                else {
548                    cvalue = pDimRgn->VCFCutoff;
549                }
550                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
551                if (cutoff > 1.0) cutoff = 1.0;
552                cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN;
553    
554              // calculate resonance              // calculate resonance
555              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
# Line 596  namespace LinuxSampler { namespace gig { Line 558  namespace LinuxSampler { namespace gig {
558              }              }
559              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
560    
561              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;
562              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
563    
             FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);  
   
564              FilterUpdateCounter = -1;              FilterUpdateCounter = -1;
565          }          }
566          else {          else {
567              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
568              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
569          }          }
     #endif // ENABLE_FILTER  
570    
571          return 0; // success          return 0; // success
572      }      }
# Line 626  namespace LinuxSampler { namespace gig { Line 584  namespace LinuxSampler { namespace gig {
584       */       */
585      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
586    
587            // select default values for synthesis mode bits
588            SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);
589            SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);
590            SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
591    
592          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
593          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);  
594            #if CONFIG_PROCESS_MUTED_CHANNELS
595            pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume));
596            #else
597            pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);
598            #endif
599          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
     #if ENABLE_FILTER  
600          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
601          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);
     #endif // ENABLE_FILTER  
   
602    
603          // Apply events to the synthesis parameter matrix          // Apply events to the synthesis parameter matrix
604          ProcessEvents(Samples);          ProcessEvents(Samples);
605    
   
606          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
607          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);          pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
608      #if ENABLE_FILTER          pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
609          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          if (pEG3->Process(Samples)) { // if pitch EG is active
610      #endif // ENABLE_FILTER              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
611          pEG3->Process(Samples);              SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
612          pLFO1->Process(Samples);          }
613      #if ENABLE_FILTER          if (bLFO1Enabled) pLFO1->Process(Samples);
614          pLFO2->Process(Samples);          if (bLFO2Enabled) pLFO2->Process(Samples);
615      #endif // ENABLE_FILTER          if (bLFO3Enabled) {
616          pLFO3->Process(Samples);              if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active
617                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
618                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
619      #if ENABLE_FILTER              }
620          CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters          }
     #endif // ENABLE_FILTER  
621    
622            if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))
623                CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters
624    
625          switch (this->PlaybackState) {          switch (this->PlaybackState) {
626    
627                case playback_state_init:
628                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
629                    // no break - continue with playback_state_ram
630    
631              case playback_state_ram: {              case playback_state_ram: {
632                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
633                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
634                        // render current fragment
635                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
636    
637                      if (DiskVoice) {                      if (DiskVoice) {
638                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
639                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 684  namespace LinuxSampler { namespace gig { Line 656  namespace LinuxSampler { namespace gig {
656                              KillImmediately();                              KillImmediately();
657                              return;                              return;
658                          }                          }
659                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));
660                          Pos -= RTMath::DoubleToInt(Pos);                          Pos -= int(Pos);
661                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
662                      }                      }
663    
664                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
665    
666                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
667                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
668                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
669                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
670                                // remember how many sample words there are before any silence has been added
671                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
672                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
673                            }
674                      }                      }
675    
676                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
677                      InterpolateNoLoop(Samples, ptr, Delay);  
678                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
679                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
680    
681                        const int iPos = (int) Pos;
682                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
683                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
684                        Pos -= iPos; // just keep fractional part of Pos
685    
686                        // change state of voice to 'end' if we really reached the end of the sample data
687                        if (RealSampleWordsLeftToRead >= 0) {
688                            RealSampleWordsLeftToRead -= readSampleWords;
689                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
690                        }
691                  }                  }
692                  break;                  break;
693    
# Line 706  namespace LinuxSampler { namespace gig { Line 696  namespace LinuxSampler { namespace gig {
696                  break;                  break;
697          }          }
698    
   
699          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
700          pEngine->pSynthesisEvents[Event::destination_vca]->clear();          pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();
701      #if ENABLE_FILTER          pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();
702          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
703    
704          // Reset delay          // Reset delay
705          Delay = 0;          Delay = 0;
# Line 731  namespace LinuxSampler { namespace gig { Line 718  namespace LinuxSampler { namespace gig {
718          pLFO1->Reset();          pLFO1->Reset();
719          pLFO2->Reset();          pLFO2->Reset();
720          pLFO3->Reset();          pLFO3->Reset();
721            FilterLeft.Reset();
722            FilterRight.Reset();
723          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
724          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
725          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 750  namespace LinuxSampler { namespace gig { Line 739  namespace LinuxSampler { namespace gig {
739      void Voice::ProcessEvents(uint Samples) {      void Voice::ProcessEvents(uint Samples) {
740    
741          // dispatch control change events          // dispatch control change events
742          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();
743          if (Delay) { // skip events that happened before this voice was triggered          if (Delay) { // skip events that happened before this voice was triggered
744              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;
745          }          }
746          while (itCCEvent) {          while (itCCEvent) {
747              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
                 #if ENABLE_FILTER  
748                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
749                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
750                  }                  }
751                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
752                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
753                  }                  }
                 #endif // ENABLE_FILTER  
754                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
755                      pLFO1->SendEvent(itCCEvent);                      pLFO1->SendEvent(itCCEvent);
756                  }                  }
                 #if ENABLE_FILTER  
757                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
758                      pLFO2->SendEvent(itCCEvent);                      pLFO2->SendEvent(itCCEvent);
759                  }                  }
                 #endif // ENABLE_FILTER  
760                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
761                      pLFO3->SendEvent(itCCEvent);                      pLFO3->SendEvent(itCCEvent);
762                  }                  }
763                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
764                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
765                      *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;
766                  }                  }
767              }              }
768    
# Line 787  namespace LinuxSampler { namespace gig { Line 772  namespace LinuxSampler { namespace gig {
772    
773          // process pitch events          // process pitch events
774          {          {
775              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];
776              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();
777              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
778                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;
# Line 816  namespace LinuxSampler { namespace gig { Line 801  namespace LinuxSampler { namespace gig {
801    
802                  itVCOEvent = itNextVCOEvent;                  itVCOEvent = itNextVCOEvent;
803              }              }
804              if (!pVCOEventList->isEmpty()) this->PitchBend = pitch;              if (!pVCOEventList->isEmpty()) {
805                    this->PitchBend = pitch;
806                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
807                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
808                }
809          }          }
810    
811          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
812          {          {
813              RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];
814              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();
815              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
816                  while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;                  while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;
# Line 836  namespace LinuxSampler { namespace gig { Line 825  namespace LinuxSampler { namespace gig {
825    
826                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);
827    
828                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;                  #if CONFIG_PROCESS_MUTED_CHANNELS
829                    float effective_volume = crossfadevolume * this->Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
830                    #else
831                    float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;
832                    #endif
833    
834                  // apply volume value to the volume parameter sequence                  // apply volume value to the volume parameter sequence
835                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {
# Line 848  namespace LinuxSampler { namespace gig { Line 841  namespace LinuxSampler { namespace gig {
841              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
842          }          }
843    
     #if ENABLE_FILTER  
844          // process filter cutoff events          // process filter cutoff events
845          {          {
846              RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];
847              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();
848              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
849                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;
# Line 864  namespace LinuxSampler { namespace gig { Line 856  namespace LinuxSampler { namespace gig {
856                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
857                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;
858    
859                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  int cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
860                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
861                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
862                    cutoff = CutoffBase * float(cvalue) * 0.00787402f; // (1 / 127)
863                    if (cutoff > 1.0) cutoff = 1.0;
864                    cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN - CONFIG_FILTER_CUTOFF_MIN;
865    
866                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
867                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {
# Line 878  namespace LinuxSampler { namespace gig { Line 875  namespace LinuxSampler { namespace gig {
875    
876          // process filter resonance events          // process filter resonance events
877          {          {
878              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];
879              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();
880              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
881                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;
# Line 905  namespace LinuxSampler { namespace gig { Line 902  namespace LinuxSampler { namespace gig {
902              }              }
903              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
904          }          }
     #endif // ENABLE_FILTER  
905      }      }
906    
     #if ENABLE_FILTER  
907      /**      /**
908       * Calculate all necessary, final biquad filter parameters.       * Calculate all necessary, final biquad filter parameters.
909       *       *
910       * @param Samples - number of samples to be rendered in this audio fragment cycle       * @param Samples - number of samples to be rendered in this audio fragment cycle
911       */       */
912      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::CalculateBiquadParameters(uint Samples) {
         if (!FilterLeft.Enabled) return;  
   
913          biquad_param_t bqbase;          biquad_param_t bqbase;
914          biquad_param_t bqmain;          biquad_param_t bqmain;
915          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];
916          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];
917          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
918            FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
919          pEngine->pBasicFilterParameters[0] = bqbase;          pEngine->pBasicFilterParameters[0] = bqbase;
920          pEngine->pMainFilterParameters[0]  = bqmain;          pEngine->pMainFilterParameters[0]  = bqmain;
921    
922          float* bq;          float* bq;
923          for (int i = 1; i < Samples; i++) {          for (int i = 1; i < Samples; i++) {
924              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              // recalculate biquad parameters if cutoff or resonance differ from previous sample point
925              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||              if (!(i & FILTER_UPDATE_MASK)) {
926                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||
927                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)
928                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];                  {
929                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];
930                        prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];
931                        FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
932                        FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
933                    }
934              }              }
935    
936              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'
937              bq    = (float*) &pEngine->pBasicFilterParameters[i];              bq    = (float*) &pEngine->pBasicFilterParameters[i];
938              bq[0] = bqbase.a1;              bq[0] = bqbase.b0;
939              bq[1] = bqbase.a2;              bq[1] = bqbase.b1;
940              bq[2] = bqbase.b0;              bq[2] = bqbase.b2;
941              bq[3] = bqbase.b1;              bq[3] = bqbase.a1;
942              bq[4] = bqbase.b2;              bq[4] = bqbase.a2;
943    
944              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'
945              bq    = (float*) &pEngine->pMainFilterParameters[i];              bq    = (float*) &pEngine->pMainFilterParameters[i];
946              bq[0] = bqmain.a1;              bq[0] = bqmain.b0;
947              bq[1] = bqmain.a2;              bq[1] = bqmain.b1;
948              bq[2] = bqmain.b0;              bq[2] = bqmain.b2;
949              bq[3] = bqmain.b1;              bq[3] = bqmain.a1;
950              bq[4] = bqmain.b2;              bq[4] = bqmain.a2;
         }  
     }  
     #endif // ENABLE_FILTER  
   
     /**  
      *  Interpolates the input audio data (without looping).  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
   
         // FIXME: assuming either mono or stereo  
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) InterpolateStereo(pSrc, i);  
         }  
         else { // Mono Sample  
             while (i < Samples) InterpolateMono(pSrc, i);  
951          }          }
952      }      }
953    
954      /**      /**
955       *  Interpolates the input audio data, this method honors looping.       *  Synthesizes the current audio fragment for this voice.
956       *       *
957       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
958       *                   fragment cycle       *                   fragment cycle
959       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
960       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
961       */       */
962      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
963          int i = Skip;          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);
   
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateStereo(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateMono(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
         }  
964      }      }
965    
966      /**      /**
# Line 1057  namespace LinuxSampler { namespace gig { Line 988  namespace LinuxSampler { namespace gig {
988       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
989       */       */
990      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
991          //FIXME: just two sanity checks for debugging, can be removed          #if CONFIG_DEVMODE
992          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
993          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
994            #endif // CONFIG_DEVMODE
995    
996          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
997          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;

Legend:
Removed from v.287  
changed lines
  Added in v.729

  ViewVC Help
Powered by ViewVC