/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 287 by schoenebeck, Sat Oct 16 17:38:03 2004 UTC revision 791 by persson, Sun Oct 16 14:50:20 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 29  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46            SynthesisMode = 0; // set all mode bits to 0 first
47            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48            #if CONFIG_ASM && ARCH_X86
49            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50            #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 103  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param itNoteOnEvent       - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
80       *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81       *  @returns 0 on success, a value < 0 if something failed       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89            #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          }          }
93            #endif // CONFIG_DEVMODE
94    
95          Type            = type_normal;          Type            = VoiceType;
96          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
98          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
99          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
100          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
101          itChildVoice    = Pool<Voice>::Iterator();          KeyGroup        = iKeyGroup;
102            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104          if (!pRegion) {          // calculate volume
105              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             KillImmediately();  
             return -1;  
         }  
106    
107          KeyGroup = pRegion->KeyGroup;          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109          // get current dimension values to select the right dimension region          Volume *= pDimRgn->SampleAttenuation;
110          //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
111          uint DimValues[5] = {0,0,0,0,0};          // the volume of release triggered samples depends on note length
112          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          if (Type == type_release_trigger) {
113              switch (pRegion->pDimensionDefinitions[i].dimension) {              float noteLength = float(pEngine->FrameTime + Delay -
114                  case ::gig::dimension_samplechannel:                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                      DimValues[i] = 0; //TODO: we currently ignore this dimension              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                      break;              if (attenuation <= 0) return -1;
117                  case ::gig::dimension_layer:              Volume *= attenuation;
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
118          }          }
119          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
120            // select channel mode (mono or stereo)
121            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
# Line 249  namespace LinuxSampler { namespace gig { Line 129  namespace LinuxSampler { namespace gig {
129                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
130                  break;                  break;
131              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
132                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
133                  break;                  break;
134              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
135              default:              default:
# Line 259  namespace LinuxSampler { namespace gig { Line 139  namespace LinuxSampler { namespace gig {
139          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
141    
142          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143            Pos = pDimRgn->SampleStartOffset;
         Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)  
144    
145          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
146          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
147          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
148    
149          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
150              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
151    
152              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
153              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
154                  RAMLoop        = true;                  RAMLoop            = true;
155                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiTotalCycles = pSample->LoopPlayCount;
156                    loop.uiCyclesLeft  = pSample->LoopPlayCount;
157                    loop.uiStart       = pSample->LoopStart;
158                    loop.uiEnd         = pSample->LoopEnd;
159                    loop.uiSize        = pSample->LoopSize;
160              }              }
161              else RAMLoop = false;              else RAMLoop = false;
162    
# Line 287  namespace LinuxSampler { namespace gig { Line 170  namespace LinuxSampler { namespace gig {
170          else { // RAM only voice          else { // RAM only voice
171              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
172              if (pSample->Loops) {              if (pSample->Loops) {
173                  RAMLoop        = true;                  RAMLoop           = true;
174                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiCyclesLeft = pSample->LoopPlayCount;
175              }              }
176              else RAMLoop = false;              else RAMLoop = false;
177              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
# Line 297  namespace LinuxSampler { namespace gig { Line 180  namespace LinuxSampler { namespace gig {
180    
181          // calculate initial pitch value          // calculate initial pitch value
182          {          {
183              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
184              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
185              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
186              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
187          }          }
188    
189            // the length of the decay and release curves are dependent on the velocity
190          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
191    
192          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
193          {          {
# Line 322  namespace LinuxSampler { namespace gig { Line 204  namespace LinuxSampler { namespace gig {
204                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
205                      break;                      break;
206                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
207                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
208                      break;                      break;
209              }              }
210              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
211    
212              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
213              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
214              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
215              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
216                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
217              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
218                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
219                            pDimRgn->EG1Hold,  
220                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
221                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
222                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
223                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
224                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
225                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
226                            Delay);                          pDimRgn->EG1Sustain,
227                            pDimRgn->EG1Release * eg1release * velrelease,
228                            velocityAttenuation,
229                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
230          }          }
231    
232    
     #if ENABLE_FILTER  
233          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
234          {          {
235              // get current value of EG2 controller              // get current value of EG2 controller
# Line 361  namespace LinuxSampler { namespace gig { Line 245  namespace LinuxSampler { namespace gig {
245                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
246                      break;                      break;
247                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
248                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
249                      break;                      break;
250              }              }
251              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
252    
253              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
254              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
255              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
256              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
257    
258              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
259                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
260                            false,                          false,
261                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
262                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
263                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
264                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
265                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
266                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
267                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
268          }          }
     #endif // ENABLE_FILTER  
269    
270    
271          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
272          {          {
273            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
274            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);            EG3.trigger(eg3depth, pDimRgn->EG3Attack, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
275          }          }
276    
277    
# Line 399  namespace LinuxSampler { namespace gig { Line 282  namespace LinuxSampler { namespace gig {
282                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
283                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
284                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
285                        bLFO1Enabled         = (lfo1_internal_depth > 0);
286                      break;                      break;
287                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
288                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
289                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
290                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
291                      break;                      break;
292                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
293                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
294                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
295                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
296                      break;                      break;
297                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
298                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
299                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
300                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
301                      break;                      break;
302                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
303                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
304                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
305                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
306                      break;                      break;
307                  default:                  default:
308                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
309                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
310                        bLFO1Enabled         = false;
311              }              }
312              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
313                            lfo1_internal_depth,                                               start_level_max,
314                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
315                            pEngine->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
316                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
317                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
318          }          }
319    
320      #if ENABLE_FILTER  
321          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
322          {          {
323              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 437  namespace LinuxSampler { namespace gig { Line 325  namespace LinuxSampler { namespace gig {
325                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
326                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
327                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
328                        bLFO2Enabled         = (lfo2_internal_depth > 0);
329                      break;                      break;
330                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
331                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
332                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
333                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
334                      break;                      break;
335                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
336                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
337                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
338                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
339                      break;                      break;
340                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
341                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
342                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
343                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
344                      break;                      break;
345                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
346                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
347                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
348                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
349                      break;                      break;
350                  default:                  default:
351                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
352                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
353                        bLFO2Enabled         = false;
354              }              }
355              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
356                            lfo2_internal_depth,                                               start_level_max,
357                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
358                            pEngine->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
359                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
360                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
361          }          }
362      #endif // ENABLE_FILTER  
363    
364          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
365          {          {
# Line 475  namespace LinuxSampler { namespace gig { Line 368  namespace LinuxSampler { namespace gig {
368                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
369                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
370                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
371                        bLFO3Enabled         = (lfo3_internal_depth > 0);
372                      break;                      break;
373                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
374                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
375                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
376                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
377                      break;                      break;
378                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
379                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
380                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
381                        bLFO3Enabled         = false; // see TODO comment in line above
382                      break;                      break;
383                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
384                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
385                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
386                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
387                      break;                      break;
388                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
389                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
390                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
391                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
392                      break;                      break;
393                  default:                  default:
394                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
395                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
396                        bLFO3Enabled         = false;
397              }              }
398              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
399                            lfo3_internal_depth,                                               start_level_mid,
400                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
401                            pEngine->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
402                            false,                                               false,
403                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
404          }          }
405    
406      #if ENABLE_FILTER  
407          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
408          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
409          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
410          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
411          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
412          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
413              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
414              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
415                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
416              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
417              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
418                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 549  namespace LinuxSampler { namespace gig { Line 448  namespace LinuxSampler { namespace gig {
448                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
449                      break;                      break;
450              }              }
451              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
452    
453              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
454              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
455              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
456              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
457                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 571  namespace LinuxSampler { namespace gig { Line 470  namespace LinuxSampler { namespace gig {
470                  default:                  default:
471                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
472              }              }
473              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
474    
475              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
476              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
477              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
478              #else // override filter type              #else // override filter type
479              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
480              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
481              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
482    
483              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
484              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
485    
486              // calculate cutoff frequency              // calculate cutoff frequency
487              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
488              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
489                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
490              }              }
491              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
492    
493              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
494              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
495                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
496                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
497                    // VCFVelocityScale in this case means Minimum cutoff
498                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
499                }
500                else {
501                    cvalue = pDimRgn->VCFCutoff;
502                }
503                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
504                if (cutoff > 1.0) cutoff = 1.0;
505                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
506                if (cutoff < 1.0) cutoff = 1.0;
507    
508              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
509              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
510    
511              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
512                VCFResonanceCtrl.fvalue = resonance;
513          }          }
514          else {          else {
515              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
516              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
517          }          }
     #endif // ENABLE_FILTER  
518    
519          return 0; // success          return 0; // success
520      }      }
# Line 626  namespace LinuxSampler { namespace gig { Line 532  namespace LinuxSampler { namespace gig {
532       */       */
533      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
534    
535          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
536          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
537    
538          switch (this->PlaybackState) {          switch (this->PlaybackState) {
539    
540                case playback_state_init:
541                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
542                    // no break - continue with playback_state_ram
543    
544              case playback_state_ram: {              case playback_state_ram: {
545                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
546                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
547                        // render current fragment
548                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
549    
550                      if (DiskVoice) {                      if (DiskVoice) {
551                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
552                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
553                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
554                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
555                          }                          }
556                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
557                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
558                      }                      }
559                  }                  }
# Line 684  namespace LinuxSampler { namespace gig { Line 568  namespace LinuxSampler { namespace gig {
568                              KillImmediately();                              KillImmediately();
569                              return;                              return;
570                          }                          }
571                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
572                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
573                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
574                      }                      }
575    
576                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
577    
578                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
579                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
580                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
581                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
582                                // remember how many sample words there are before any silence has been added
583                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
584                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
585                            }
586                      }                      }
587    
588                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
589                      InterpolateNoLoop(Samples, ptr, Delay);  
590                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
591                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
592    
593                        const int iPos = (int) finalSynthesisParameters.dPos;
594                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
595                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
596                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
597    
598                        // change state of voice to 'end' if we really reached the end of the sample data
599                        if (RealSampleWordsLeftToRead >= 0) {
600                            RealSampleWordsLeftToRead -= readSampleWords;
601                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
602                        }
603                  }                  }
604                  break;                  break;
605    
# Line 706  namespace LinuxSampler { namespace gig { Line 608  namespace LinuxSampler { namespace gig {
608                  break;                  break;
609          }          }
610    
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
     #if ENABLE_FILTER  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
611          // Reset delay          // Reset delay
612          Delay = 0;          Delay = 0;
613    
614          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
615    
616          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
617          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
618      }      }
619    
620      /**      /**
# Line 728  namespace LinuxSampler { namespace gig { Line 622  namespace LinuxSampler { namespace gig {
622       *  suspended / not running.       *  suspended / not running.
623       */       */
624      void Voice::Reset() {      void Voice::Reset() {
625          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
626          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
627          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
628          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
629          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 741  namespace LinuxSampler { namespace gig { Line 634  namespace LinuxSampler { namespace gig {
634      }      }
635    
636      /**      /**
637       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
638       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
639       *       *
640       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
641         * @param End     - youngest time stamp where processing should be stopped
642       */       */
643      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
644            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
645          // dispatch control change events              if (itEvent->Type == Event::type_release) {
646          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
647          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
648              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;              } else if (itEvent->Type == Event::type_cancel_release) {
649                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
650                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
651                }
652          }          }
653          while (itCCEvent) {      }
654              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
655                  #if ENABLE_FILTER      /**
656                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {       * Process given list of MIDI control change and pitch bend events for
657                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;       * the given time.
658                  }       *
659                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {       * @param itEvent - iterator pointing to the next event to be processed
660                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;       * @param End     - youngest time stamp where processing should be stopped
661         */
662        void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
663            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
664                if (itEvent->Type == Event::type_control_change &&
665                    itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
666                    if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
667                        processCutoffEvent(itEvent);
668                    }
669                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
670                        processResonanceEvent(itEvent);
671                  }                  }
672                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
673                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(itCCEvent);  
674                  }                  }
675                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
676                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(itCCEvent);  
677                  }                  }
678                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
679                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(itCCEvent);  
680                  }                  }
681                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
682                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
683                      *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      processCrossFadeEvent(itEvent);
684                  }                  }
685                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
686                    processPitchEvent(itEvent);
687              }              }
   
             ++itCCEvent;  
688          }          }
689        }
690    
691        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
692            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
693            finalSynthesisParameters.fFinalPitch *= pitch;
694            PitchBend = pitch;
695        }
696    
697        void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
698            CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
699            #if CONFIG_PROCESS_MUTED_CHANNELS
700            const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
701            #else
702            const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
703            #endif
704            fFinalVolume = effectiveVolume;
705        }
706    
707        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
708            int ccvalue = itEvent->Param.CC.Value;
709            if (VCFCutoffCtrl.value == ccvalue) return;
710            VCFCutoffCtrl.value == ccvalue;
711            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
712            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
713            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
714            if (cutoff > 1.0) cutoff = 1.0;
715            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
716            if (cutoff < 1.0) cutoff = 1.0;
717    
718            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
719            fFinalCutoff = cutoff;
720        }
721    
722        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
723            // convert absolute controller value to differential
724            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
725            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
726            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
727            fFinalResonance += resonancedelta;
728            // needed for initialization of parameter
729            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
730        }
731    
732          // process pitch events      /**
733          {       *  Synthesizes the current audio fragment for this voice.
734              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];       *
735              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();       *  @param Samples - number of sample points to be rendered in this audio
736              if (Delay) { // skip events that happened before this voice was triggered       *                   fragment cycle
737                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;       *  @param pSrc    - pointer to input sample data
738              }       *  @param Skip    - number of sample points to skip in output buffer
739              // apply old pitchbend value until first pitch event occurs       */
740              if (this->PitchBend != 1.0) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
741                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
742                  for (uint i = Delay; i < end; i++) {          finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
743                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;          finalSynthesisParameters.pSrc      = pSrc;
                 }  
             }  
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
   
                 itVCOEvent = itNextVCOEvent;  
             }  
             if (!pVCOEventList->isEmpty()) this->PitchBend = pitch;  
         }  
744    
745          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
746          {          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
             RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];  
             RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
747    
748                  // calculate the influence length of this event (in sample points)          if (Skip) { // skip events that happened before this voice was triggered
749                  uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
750                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
751            }
752    
753                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);          uint i = Skip;
754            while (i < Samples) {
755                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
756    
757                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;              // initialize all final synthesis parameters
758                finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
759                #if CONFIG_PROCESS_MUTED_CHANNELS
760                fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
761                #else
762                fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
763                #endif
764                fFinalCutoff    = VCFCutoffCtrl.fvalue;
765                fFinalResonance = VCFResonanceCtrl.fvalue;
766    
767                  // apply volume value to the volume parameter sequence              // process MIDI control change and pitchbend events for this subfragment
768                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {              processCCEvents(itCCEvent, iSubFragmentEnd);
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
769    
770                  itVCAEvent = itNextVCAEvent;              // process transition events (note on, note off & sustain pedal)
771              }              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
772    
773      #if ENABLE_FILTER              // process envelope generators
774          // process filter cutoff events              switch (EG1.getSegmentType()) {
775          {                  case EGADSR::segment_lin:
776              RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];                      fFinalVolume *= EG1.processLin();
777              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();                      break;
778              if (Delay) { // skip events that happened before this voice was triggered                  case EGADSR::segment_exp:
779                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;                      fFinalVolume *= EG1.processExp();
780                        break;
781                    case EGADSR::segment_end:
782                        fFinalVolume *= EG1.getLevel();
783                        break; // noop
784              }              }
785              float cutoff;              switch (EG2.getSegmentType()) {
786              while (itCutoffEvent) {                  case EGADSR::segment_lin:
787                  RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;                      fFinalCutoff *= EG2.processLin();
788                  ++itNextCutoffEvent;                      break;
789                    case EGADSR::segment_exp:
790                  // calculate the influence length of this event (in sample points)                      fFinalCutoff *= EG2.processExp();
791                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;                      break;
792                    case EGADSR::segment_end:
793                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                      fFinalCutoff *= EG2.getLevel();
794                        break; // noop
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 itCutoffEvent = itNextCutoffEvent;  
795              }              }
796              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(EG3.render());
         }  
797    
798          // process filter resonance events              // process low frequency oscillators
799          {              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
800              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
801              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
802    
803                  itResonanceEvent = itNextResonanceEvent;              // if filter enabled then update filter coefficients
804                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
805                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
806                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
807              }              }
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     #endif // ENABLE_FILTER  
     }  
808    
809      #if ENABLE_FILTER              // do we need resampling?
810      /**              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
811       * Calculate all necessary, final biquad filter parameters.              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
812       *              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
813       * @param Samples - number of samples to be rendered in this audio fragment cycle                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
814       */              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
     void Voice::CalculateBiquadParameters(uint Samples) {  
         if (!FilterLeft.Enabled) return;  
815    
816          biquad_param_t bqbase;              // prepare final synthesis parameters structure
817          biquad_param_t bqmain;              finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
818          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];              finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
819          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
         FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {  
                 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                 prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                 FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
             }  
820    
821              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              // render audio for one subfragment
822              bq    = (float*) &pEngine->pBasicFilterParameters[i];              RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
     }  
     #endif // ENABLE_FILTER  
823    
824      /**              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
      *  Interpolates the input audio data (without looping).  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
   
         // FIXME: assuming either mono or stereo  
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) InterpolateStereo(pSrc, i);  
         }  
         else { // Mono Sample  
             while (i < Samples) InterpolateMono(pSrc, i);  
         }  
     }  
825    
826      /**              // increment envelopes' positions
827       *  Interpolates the input audio data, this method honors looping.              if (EG1.active()) {
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
828    
829          // FIXME: assuming either mono or stereo                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
830          if (pSample->Channels == 2) { // Stereo Sample                  if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
831              if (pSample->LoopPlayCount) {                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
832                  }                  }
833                  // render on without loop  
834                  while (i < Samples) InterpolateStereo(pSrc, i);                  EG1.increment(1);
835              }                  if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateMono(pSrc, i);  
836              }              }
837              else { // render loop (endless loop)              if (EG2.active()) {
838                  while (i < Samples) {                  EG2.increment(1);
839                      InterpolateMono(pSrc, i);                  if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
840              }              }
841                EG3.increment(1);
842                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
843    
844                Pos = newPos;
845                i = iSubFragmentEnd;
846          }          }
847      }      }
848    
# Line 1057  namespace LinuxSampler { namespace gig { Line 871  namespace LinuxSampler { namespace gig {
871       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
872       */       */
873      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
874          //FIXME: just two sanity checks for debugging, can be removed          #if CONFIG_DEVMODE
875          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
876          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
877            #endif // CONFIG_DEVMODE
878    
879          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
880          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;

Legend:
Removed from v.287  
changed lines
  Added in v.791

  ViewVC Help
Powered by ViewVC