/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 287 by schoenebeck, Sat Oct 16 17:38:03 2004 UTC revision 830 by persson, Sun Jan 15 18:23:11 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 29  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46            SynthesisMode = 0; // set all mode bits to 0 first
47            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48            #if CONFIG_ASM && ARCH_X86
49            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50            #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 103  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param itNoteOnEvent       - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
80       *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81       *  @returns 0 on success, a value < 0 if something failed       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89            #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          }          }
93            #endif // CONFIG_DEVMODE
94    
95          Type            = type_normal;          Type            = VoiceType;
96          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
98          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
99          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
100          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
101          itChildVoice    = Pool<Voice>::Iterator();          KeyGroup        = iKeyGroup;
102            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104          if (!pRegion) {          // calculate volume
105              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             KillImmediately();  
             return -1;  
         }  
106    
107          KeyGroup = pRegion->KeyGroup;          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109          // get current dimension values to select the right dimension region          Volume *= pDimRgn->SampleAttenuation;
110          //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
111          uint DimValues[5] = {0,0,0,0,0};          // the volume of release triggered samples depends on note length
112          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          if (Type == type_release_trigger) {
113              switch (pRegion->pDimensionDefinitions[i].dimension) {              float noteLength = float(pEngine->FrameTime + Delay -
114                  case ::gig::dimension_samplechannel:                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                      DimValues[i] = 0; //TODO: we currently ignore this dimension              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                      break;              if (attenuation <= 0) return -1;
117                  case ::gig::dimension_layer:              Volume *= attenuation;
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
118          }          }
119          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
120            // select channel mode (mono or stereo)
121            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
# Line 249  namespace LinuxSampler { namespace gig { Line 129  namespace LinuxSampler { namespace gig {
129                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
130                  break;                  break;
131              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
132                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
133                  break;                  break;
134              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
135              default:              default:
# Line 259  namespace LinuxSampler { namespace gig { Line 139  namespace LinuxSampler { namespace gig {
139          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
141    
142          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143            Pos = pDimRgn->SampleStartOffset;
         Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)  
144    
145          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
146          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
147          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
148    
149          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
150              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
151    
152              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
153              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
154    
155              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
156                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
# Line 286  namespace LinuxSampler { namespace gig { Line 161  namespace LinuxSampler { namespace gig {
161          }          }
162          else { // RAM only voice          else { // RAM only voice
163              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
164              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
165              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
166          }          }
167            if (RAMLoop) {
168                loop.uiTotalCycles = pSample->LoopPlayCount;
169                loop.uiCyclesLeft  = pSample->LoopPlayCount;
170                loop.uiStart       = pSample->LoopStart;
171                loop.uiEnd         = pSample->LoopEnd;
172                loop.uiSize        = pSample->LoopSize;
173            }
174    
175          // calculate initial pitch value          // calculate initial pitch value
176          {          {
177              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
178              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
179              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
180              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
181          }          }
182    
183            // the length of the decay and release curves are dependent on the velocity
184          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
185    
186          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
187          {          {
# Line 322  namespace LinuxSampler { namespace gig { Line 198  namespace LinuxSampler { namespace gig {
198                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
199                      break;                      break;
200                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
201                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
202                      break;                      break;
203              }              }
204              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
205    
206              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
207              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
208              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
209              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
210                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
211              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
212                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
213                            pDimRgn->EG1Hold,  
214                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
215                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
216                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
217                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
218                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
219                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
220                            Delay);                          pDimRgn->EG1Sustain,
221          }                          pDimRgn->EG1Release * eg1release * velrelease,
222                            velocityAttenuation,
223                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
224            }
225    
226            // setup initial volume in synthesis parameters
227            fFinalVolume = getVolume() * EG1.getLevel();
228            finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
229            finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
230    
231    
     #if ENABLE_FILTER  
232          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
233          {          {
234              // get current value of EG2 controller              // get current value of EG2 controller
# Line 361  namespace LinuxSampler { namespace gig { Line 244  namespace LinuxSampler { namespace gig {
244                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
245                      break;                      break;
246                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
247                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
248                      break;                      break;
249              }              }
250              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
251    
252              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
253              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
254              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
255              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
256    
257              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
258                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
259                            false,                          false,
260                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
261                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
262                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
263                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
264                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
265                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
266                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
267          }          }
     #endif // ENABLE_FILTER  
268    
269    
270          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
271          {          {
272            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
273            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
274                float eg3depth = (bPortamento)
275                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
276                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
277                float eg3time = (bPortamento)
278                                    ? pEngineChannel->PortamentoTime
279                                    : pDimRgn->EG3Attack;
280                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
281                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
282          }          }
283    
284    
# Line 399  namespace LinuxSampler { namespace gig { Line 289  namespace LinuxSampler { namespace gig {
289                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
290                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
291                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
292                        bLFO1Enabled         = (lfo1_internal_depth > 0);
293                      break;                      break;
294                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
295                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
296                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
297                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
298                      break;                      break;
299                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
300                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
301                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
302                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
303                      break;                      break;
304                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
305                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
306                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
307                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
308                      break;                      break;
309                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
310                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
311                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
312                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
313                      break;                      break;
314                  default:                  default:
315                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
316                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
317                        bLFO1Enabled         = false;
318              }              }
319              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
320                            lfo1_internal_depth,                                               start_level_max,
321                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
322                            pEngine->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
323                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
324                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
325          }          }
326    
327      #if ENABLE_FILTER  
328          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
329          {          {
330              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 437  namespace LinuxSampler { namespace gig { Line 332  namespace LinuxSampler { namespace gig {
332                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
333                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
334                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
335                        bLFO2Enabled         = (lfo2_internal_depth > 0);
336                      break;                      break;
337                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
338                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
339                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
340                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
341                      break;                      break;
342                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
343                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
344                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
345                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
346                      break;                      break;
347                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
348                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
349                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
350                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
351                      break;                      break;
352                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
353                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
354                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
355                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
356                      break;                      break;
357                  default:                  default:
358                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
359                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
360                        bLFO2Enabled         = false;
361              }              }
362              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
363                            lfo2_internal_depth,                                               start_level_max,
364                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
365                            pEngine->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
366                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
367                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
368          }          }
369      #endif // ENABLE_FILTER  
370    
371          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
372          {          {
# Line 475  namespace LinuxSampler { namespace gig { Line 375  namespace LinuxSampler { namespace gig {
375                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
376                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
377                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
378                        bLFO3Enabled         = (lfo3_internal_depth > 0);
379                      break;                      break;
380                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
381                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
382                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
383                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
384                      break;                      break;
385                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
386                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
387                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
388                        bLFO3Enabled         = false; // see TODO comment in line above
389                      break;                      break;
390                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
391                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
392                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
393                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
394                      break;                      break;
395                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
396                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
397                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
398                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
399                      break;                      break;
400                  default:                  default:
401                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
402                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
403                        bLFO3Enabled         = false;
404              }              }
405              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
406                            lfo3_internal_depth,                                               start_level_mid,
407                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
408                            pEngine->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
409                            false,                                               false,
410                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
411          }          }
412    
413      #if ENABLE_FILTER  
414          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
415          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
416          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
417          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
418          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
419          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
420              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
421              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
422                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
423              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
424              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
425                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 549  namespace LinuxSampler { namespace gig { Line 455  namespace LinuxSampler { namespace gig {
455                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
456                      break;                      break;
457              }              }
458              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
459    
460              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
461              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
462              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
463              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
464                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 571  namespace LinuxSampler { namespace gig { Line 477  namespace LinuxSampler { namespace gig {
477                  default:                  default:
478                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
479              }              }
480              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
481    
482              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
483              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
484              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
485              #else // override filter type              #else // override filter type
486              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
487              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
488              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
489    
490              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
491              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
492    
493              // calculate cutoff frequency              // calculate cutoff frequency
494              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
495              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
496                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
497              }              }
498              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
499    
500              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
501              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
502                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
503                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
504                    // VCFVelocityScale in this case means Minimum cutoff
505                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
506                }
507                else {
508                    cvalue = pDimRgn->VCFCutoff;
509                }
510                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
511                if (cutoff > 1.0) cutoff = 1.0;
512                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
513                if (cutoff < 1.0) cutoff = 1.0;
514    
515              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
516              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
517    
518              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
519                VCFResonanceCtrl.fvalue = resonance;
520          }          }
521          else {          else {
522              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
523              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
524          }          }
     #endif // ENABLE_FILTER  
525    
526          return 0; // success          return 0; // success
527      }      }
# Line 626  namespace LinuxSampler { namespace gig { Line 539  namespace LinuxSampler { namespace gig {
539       */       */
540      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
541    
542          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
543          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
544    
545          switch (this->PlaybackState) {          switch (this->PlaybackState) {
546    
547                case playback_state_init:
548                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
549                    // no break - continue with playback_state_ram
550    
551              case playback_state_ram: {              case playback_state_ram: {
552                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
553                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
554                        // render current fragment
555                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
556    
557                      if (DiskVoice) {                      if (DiskVoice) {
558                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
559                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
560                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
561                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
562                          }                          }
563                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
564                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
565                      }                      }
566                  }                  }
# Line 684  namespace LinuxSampler { namespace gig { Line 575  namespace LinuxSampler { namespace gig {
575                              KillImmediately();                              KillImmediately();
576                              return;                              return;
577                          }                          }
578                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
579                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
580                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
581                      }                      }
582    
583                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
584    
585                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
586                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
587                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
588                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
589                                // remember how many sample words there are before any silence has been added
590                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
591                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
592                            }
593                      }                      }
594    
595                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
596                      InterpolateNoLoop(Samples, ptr, Delay);  
597                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
598                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
599    
600                        const int iPos = (int) finalSynthesisParameters.dPos;
601                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
602                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
603                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
604    
605                        // change state of voice to 'end' if we really reached the end of the sample data
606                        if (RealSampleWordsLeftToRead >= 0) {
607                            RealSampleWordsLeftToRead -= readSampleWords;
608                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
609                        }
610                  }                  }
611                  break;                  break;
612    
# Line 706  namespace LinuxSampler { namespace gig { Line 615  namespace LinuxSampler { namespace gig {
615                  break;                  break;
616          }          }
617    
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
     #if ENABLE_FILTER  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
618          // Reset delay          // Reset delay
619          Delay = 0;          Delay = 0;
620    
621          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
622    
623          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
624          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
625      }      }
626    
627      /**      /**
# Line 728  namespace LinuxSampler { namespace gig { Line 629  namespace LinuxSampler { namespace gig {
629       *  suspended / not running.       *  suspended / not running.
630       */       */
631      void Voice::Reset() {      void Voice::Reset() {
632          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
633          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
634          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
635          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
636          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 741  namespace LinuxSampler { namespace gig { Line 641  namespace LinuxSampler { namespace gig {
641      }      }
642    
643      /**      /**
644       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
645       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
646       *       *
647       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
648         * @param End     - youngest time stamp where processing should be stopped
649       */       */
650      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
651            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
652                if (itEvent->Type == Event::type_release) {
653                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
654                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
655                } else if (itEvent->Type == Event::type_cancel_release) {
656                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
657                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
658                }
659            }
660        }
661    
662          // dispatch control change events      /**
663          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
664          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
665              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
666          }       * @param itEvent - iterator pointing to the next event to be processed
667          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
668              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
669                  #if ENABLE_FILTER      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
670                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
671                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;              if (itEvent->Type == Event::type_control_change &&
672                  }                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
673                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
674                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                      processCutoffEvent(itEvent);
675                    }
676                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
677                        processResonanceEvent(itEvent);
678                  }                  }
679                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
680                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(itCCEvent);  
681                  }                  }
682                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
683                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(itCCEvent);  
684                  }                  }
685                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
686                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(itCCEvent);  
687                  }                  }
688                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
689                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
690                      *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      processCrossFadeEvent(itEvent);
691                  }                  }
692                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
693                    processPitchEvent(itEvent);
694              }              }
   
             ++itCCEvent;  
695          }          }
696        }
697    
698        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
699            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
700            finalSynthesisParameters.fFinalPitch *= pitch;
701            PitchBend = pitch;
702        }
703    
704          // process pitch events      void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
705          {          CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
706              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];          fFinalVolume = getVolume();
707              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();      }
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
708    
709                  itVCOEvent = itNextVCOEvent;      float Voice::getVolume() {
710              }          #if CONFIG_PROCESS_MUTED_CHANNELS
711              if (!pVCOEventList->isEmpty()) this->PitchBend = pitch;          return pEngineChannel->GetMute() ? 0 : (Volume * CrossfadeVolume * pEngineChannel->GlobalVolume);
712          }          #else
713            return Volume * CrossfadeVolume * pEngineChannel->GlobalVolume;
714            #endif
715        }
716    
717          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
718          {          int ccvalue = itEvent->Param.CC.Value;
719              RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];          if (VCFCutoffCtrl.value == ccvalue) return;
720              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();          VCFCutoffCtrl.value == ccvalue;
721              if (Delay) { // skip events that happened before this voice was triggered          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
722                  while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
723              }          float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
724              float crossfadevolume;          if (cutoff > 1.0) cutoff = 1.0;
725              while (itVCAEvent) {          cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
726                  RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;          if (cutoff < 1.0) cutoff = 1.0;
                 ++itNextVCAEvent;  
727    
728                  // calculate the influence length of this event (in sample points)          VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
729                  uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;          fFinalCutoff = cutoff;
730        }
731    
732                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
733            // convert absolute controller value to differential
734            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
735            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
736            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
737            fFinalResonance += resonancedelta;
738            // needed for initialization of parameter
739            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
740        }
741    
742                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;      /**
743         *  Synthesizes the current audio fragment for this voice.
744         *
745         *  @param Samples - number of sample points to be rendered in this audio
746         *                   fragment cycle
747         *  @param pSrc    - pointer to input sample data
748         *  @param Skip    - number of sample points to skip in output buffer
749         */
750        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
751            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
752            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
753            finalSynthesisParameters.pSrc      = pSrc;
754    
755                  // apply volume value to the volume parameter sequence          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
756                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
757    
758                  itVCAEvent = itNextVCAEvent;          if (Skip) { // skip events that happened before this voice was triggered
759              }              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
760              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
761          }          }
762    
763      #if ENABLE_FILTER          uint killPos;
764          // process filter cutoff events          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
         {  
             RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
765    
766                  itCutoffEvent = itNextCutoffEvent;          uint i = Skip;
767              }          while (i < Samples) {
768              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
         }  
769    
770          // process filter resonance events              // initialize all final synthesis parameters
771          {              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
772              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              fFinalVolume    = getVolume();
773              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();              fFinalCutoff    = VCFCutoffCtrl.fvalue;
774              if (Delay) { // skip events that happened before this voice was triggered              fFinalResonance = VCFResonanceCtrl.fvalue;
775                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
776                // process MIDI control change and pitchbend events for this subfragment
777                processCCEvents(itCCEvent, iSubFragmentEnd);
778    
779                // process transition events (note on, note off & sustain pedal)
780                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
781    
782                // if the voice was killed in this subfragment switch EG1 to fade out stage
783                if (itKillEvent && killPos <= iSubFragmentEnd) {
784                    EG1.enterFadeOutStage();
785                    itKillEvent = Pool<Event>::Iterator();
786              }              }
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
787    
788                  itResonanceEvent = itNextResonanceEvent;              // process envelope generators
789                switch (EG1.getSegmentType()) {
790                    case EGADSR::segment_lin:
791                        fFinalVolume *= EG1.processLin();
792                        break;
793                    case EGADSR::segment_exp:
794                        fFinalVolume *= EG1.processExp();
795                        break;
796                    case EGADSR::segment_end:
797                        fFinalVolume *= EG1.getLevel();
798                        break; // noop
799              }              }
800              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time              switch (EG2.getSegmentType()) {
801          }                  case EGADSR::segment_lin:
802      #endif // ENABLE_FILTER                      fFinalCutoff *= EG2.processLin();
803      }                      break;
804                    case EGADSR::segment_exp:
805                        fFinalCutoff *= EG2.processExp();
806                        break;
807                    case EGADSR::segment_end:
808                        fFinalCutoff *= EG2.getLevel();
809                        break; // noop
810                }
811                if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
812    
813      #if ENABLE_FILTER              // process low frequency oscillators
814      /**              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
815       * Calculate all necessary, final biquad filter parameters.              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
816       *              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
      * @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::CalculateBiquadParameters(uint Samples) {  
         if (!FilterLeft.Enabled) return;  
817    
818          biquad_param_t bqbase;              // if filter enabled then update filter coefficients
819          biquad_param_t bqmain;              if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
820          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];                  finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
821          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];                  finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
         FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {  
                 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                 prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                 FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
822              }              }
823    
824              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              // do we need resampling?
825              bq    = (float*) &pEngine->pBasicFilterParameters[i];              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
826              bq[0] = bqbase.a1;              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
827              bq[1] = bqbase.a2;              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
828              bq[2] = bqbase.b0;                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
829              bq[3] = bqbase.b1;              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
     }  
     #endif // ENABLE_FILTER  
830    
831      /**              // prepare final synthesis parameters structure
832       *  Interpolates the input audio data (without looping).              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
833       *  #ifdef CONFIG_INTERPOLATE_VOLUME
834       *  @param Samples - number of sample points to be rendered in this audio              finalSynthesisParameters.fFinalVolumeDeltaLeft  =
835       *                   fragment cycle                  (fFinalVolume * PanLeft - finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
836       *  @param pSrc    - pointer to input sample data              finalSynthesisParameters.fFinalVolumeDeltaRight =
837       *  @param Skip    - number of sample points to skip in output buffer                  (fFinalVolume * PanRight - finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
838       */  #else
839      void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {              finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
840          int i = Skip;              finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
841    #endif
842                // render audio for one subfragment
843                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
844    
845          // FIXME: assuming either mono or stereo              // stop the rendering if volume EG is finished
846          if (this->pSample->Channels == 2) { // Stereo Sample              if (EG1.getSegmentType() == EGADSR::segment_end) break;
             while (i < Samples) InterpolateStereo(pSrc, i);  
         }  
         else { // Mono Sample  
             while (i < Samples) InterpolateMono(pSrc, i);  
         }  
     }  
847    
848      /**              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
      *  Interpolates the input audio data, this method honors looping.  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
849    
850          // FIXME: assuming either mono or stereo              // increment envelopes' positions
851          if (pSample->Channels == 2) { // Stereo Sample              if (EG1.active()) {
852              if (pSample->LoopPlayCount) {  
853                  // render loop (loop count limited)                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
854                  while (i < Samples && LoopCyclesLeft) {                  if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
855                      InterpolateStereo(pSrc, i);                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateStereo(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
856                  }                  }
857                  // render on without loop  
858                  while (i < Samples) InterpolateMono(pSrc, i);                  EG1.increment(1);
859                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
860              }              }
861              else { // render loop (endless loop)              if (EG2.active()) {
862                  while (i < Samples) {                  EG2.increment(1);
863                      InterpolateMono(pSrc, i);                  if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
864              }              }
865                EG3.increment(1);
866                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
867    
868                Pos = newPos;
869                i = iSubFragmentEnd;
870          }          }
871      }      }
872    
873        /** @brief Update current portamento position.
874         *
875         * Will be called when portamento mode is enabled to get the final
876         * portamento position of this active voice from where the next voice(s)
877         * might continue to slide on.
878         *
879         * @param itNoteOffEvent - event which causes this voice to die soon
880         */
881        void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
882            const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
883            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
884        }
885    
886      /**      /**
887       *  Immediately kill the voice. This method should not be used to kill       *  Immediately kill the voice. This method should not be used to kill
888       *  a normal, active voice, because it doesn't take care of things like       *  a normal, active voice, because it doesn't take care of things like
# Line 1057  namespace LinuxSampler { namespace gig { Line 908  namespace LinuxSampler { namespace gig {
908       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
909       */       */
910      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
911          //FIXME: just two sanity checks for debugging, can be removed          #if CONFIG_DEVMODE
912          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
913          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
914            #endif // CONFIG_DEVMODE
915    
916          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
917          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;

Legend:
Removed from v.287  
changed lines
  Added in v.830

  ViewVC Help
Powered by ViewVC