/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 287 by schoenebeck, Sat Oct 16 17:38:03 2004 UTC revision 832 by persson, Sun Feb 5 10:24:05 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 29  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46            SynthesisMode = 0; // set all mode bits to 0 first
47            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48            #if CONFIG_ASM && ARCH_X86
49            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50            #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 103  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param itNoteOnEvent       - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
80       *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81       *  @returns 0 on success, a value < 0 if something failed       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89            #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          }          }
93            #endif // CONFIG_DEVMODE
94    
95          Type            = type_normal;          Type            = VoiceType;
96          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
98          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
99          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
100          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
101          itChildVoice    = Pool<Voice>::Iterator();          KeyGroup        = iKeyGroup;
102            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104          if (!pRegion) {          // calculate volume
105              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             KillImmediately();  
             return -1;  
         }  
106    
107          KeyGroup = pRegion->KeyGroup;          float volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109          // get current dimension values to select the right dimension region          volume *= pDimRgn->SampleAttenuation;
110          //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
111          uint DimValues[5] = {0,0,0,0,0};          // the volume of release triggered samples depends on note length
112          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          if (Type == type_release_trigger) {
113              switch (pRegion->pDimensionDefinitions[i].dimension) {              float noteLength = float(pEngine->FrameTime + Delay -
114                  case ::gig::dimension_samplechannel:                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                      DimValues[i] = 0; //TODO: we currently ignore this dimension              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                      break;              if (attenuation <= 0) return -1;
117                  case ::gig::dimension_layer:              volume *= attenuation;
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
118          }          }
119          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
120            // select channel mode (mono or stereo)
121            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124            float crossfadeVolume;
125          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
126              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
130                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                  break;                  break;
132              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                  break;                  break;
135              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136              default:              default:
137                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
138          }          }
139    
140          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->GlobalVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
157              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
158    
159              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
160              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
161    
162              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
163                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
# Line 286  namespace LinuxSampler { namespace gig { Line 168  namespace LinuxSampler { namespace gig {
168          }          }
169          else { // RAM only voice          else { // RAM only voice
170              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
171              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
172              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
173          }          }
174            if (RAMLoop) {
175                loop.uiTotalCycles = pSample->LoopPlayCount;
176                loop.uiCyclesLeft  = pSample->LoopPlayCount;
177                loop.uiStart       = pSample->LoopStart;
178                loop.uiEnd         = pSample->LoopEnd;
179                loop.uiSize        = pSample->LoopSize;
180            }
181    
182          // calculate initial pitch value          // calculate initial pitch value
183          {          {
184              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
185              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
186              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
187              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
188          }          }
189    
190            // the length of the decay and release curves are dependent on the velocity
191          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
192    
193          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
194          {          {
# Line 322  namespace LinuxSampler { namespace gig { Line 205  namespace LinuxSampler { namespace gig {
205                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
206                      break;                      break;
207                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
208                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
209                      break;                      break;
210              }              }
211              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
212    
213              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
214              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
215              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
216              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
217                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
218              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
219                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
220                            pDimRgn->EG1Hold,  
221                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
222                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
223                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
224                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
225                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
226                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
227                            Delay);                          pDimRgn->EG1Sustain,
228          }                          pDimRgn->EG1Release * eg1release * velrelease,
229                            velocityAttenuation,
230                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
231            }
232    
233    #ifdef CONFIG_INTERPOLATE_VOLUME
234            // setup initial volume in synthesis parameters
235    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
236            if (pEngineChannel->GetMute()) {
237                finalSynthesisParameters.fFinalVolumeLeft  = 0;
238                finalSynthesisParameters.fFinalVolumeRight = 0;
239            }
240            else
241    #else
242            {
243                float finalVolume = pEngineChannel->GlobalVolume * crossfadeVolume * EG1.getLevel();
244    
245                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
246                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
247            }
248    #endif
249    #endif
250    
     #if ENABLE_FILTER  
251          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
252          {          {
253              // get current value of EG2 controller              // get current value of EG2 controller
# Line 361  namespace LinuxSampler { namespace gig { Line 263  namespace LinuxSampler { namespace gig {
263                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
264                      break;                      break;
265                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
266                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
267                      break;                      break;
268              }              }
269              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
270    
271              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
272              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
273              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
274              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
275    
276              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
277                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
278                            false,                          false,
279                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
280                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
281                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
282                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
283                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
284                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
285                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
286          }          }
     #endif // ENABLE_FILTER  
287    
288    
289          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
290          {          {
291            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
292            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
293                float eg3depth = (bPortamento)
294                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
295                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
296                float eg3time = (bPortamento)
297                                    ? pEngineChannel->PortamentoTime
298                                    : pDimRgn->EG3Attack;
299                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
300                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
301          }          }
302    
303    
# Line 399  namespace LinuxSampler { namespace gig { Line 308  namespace LinuxSampler { namespace gig {
308                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
309                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
310                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
311                        bLFO1Enabled         = (lfo1_internal_depth > 0);
312                      break;                      break;
313                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
314                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
315                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
316                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
317                      break;                      break;
318                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
319                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
320                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
321                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
322                      break;                      break;
323                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
324                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
325                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
326                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
327                      break;                      break;
328                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
329                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
330                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
331                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
332                      break;                      break;
333                  default:                  default:
334                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
335                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
336                        bLFO1Enabled         = false;
337              }              }
338              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
339                            lfo1_internal_depth,                                               start_level_max,
340                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
341                            pEngine->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
342                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
343                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
344          }          }
345    
346      #if ENABLE_FILTER  
347          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
348          {          {
349              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 437  namespace LinuxSampler { namespace gig { Line 351  namespace LinuxSampler { namespace gig {
351                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
352                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
353                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
354                        bLFO2Enabled         = (lfo2_internal_depth > 0);
355                      break;                      break;
356                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
357                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
358                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
359                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
360                      break;                      break;
361                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
362                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
363                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
364                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
365                      break;                      break;
366                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
367                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
368                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
369                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
370                      break;                      break;
371                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
374                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
375                      break;                      break;
376                  default:                  default:
377                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
378                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
379                        bLFO2Enabled         = false;
380              }              }
381              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
382                            lfo2_internal_depth,                                               start_level_max,
383                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
384                            pEngine->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
385                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
386                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
387          }          }
388      #endif // ENABLE_FILTER  
389    
390          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
391          {          {
# Line 475  namespace LinuxSampler { namespace gig { Line 394  namespace LinuxSampler { namespace gig {
394                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
395                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
396                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
397                        bLFO3Enabled         = (lfo3_internal_depth > 0);
398                      break;                      break;
399                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
400                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
401                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
402                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
403                      break;                      break;
404                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
405                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
406                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
407                        bLFO3Enabled         = false; // see TODO comment in line above
408                      break;                      break;
409                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
410                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
411                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
412                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
413                      break;                      break;
414                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
415                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
416                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
417                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
418                      break;                      break;
419                  default:                  default:
420                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
421                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
422                        bLFO3Enabled         = false;
423              }              }
424              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
425                            lfo3_internal_depth,                                               start_level_mid,
426                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
427                            pEngine->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
428                            false,                                               false,
429                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
430          }          }
431    
432      #if ENABLE_FILTER  
433          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
434          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
435          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
436          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
437          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
438          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
439              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
440              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
441                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
442              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
443              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
444                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 549  namespace LinuxSampler { namespace gig { Line 474  namespace LinuxSampler { namespace gig {
474                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
475                      break;                      break;
476              }              }
477              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
478    
479              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
480              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
481              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
482              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
483                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 571  namespace LinuxSampler { namespace gig { Line 496  namespace LinuxSampler { namespace gig {
496                  default:                  default:
497                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
498              }              }
499              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
500    
501              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
502              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
503              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
504              #else // override filter type              #else // override filter type
505              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
506              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
507              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
508    
509              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
510              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
511    
512              // calculate cutoff frequency              // calculate cutoff frequency
513              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
514              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
515                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
516              }              }
517              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
518    
519              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
520              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
521                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
522                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
523                    // VCFVelocityScale in this case means Minimum cutoff
524                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
525                }
526                else {
527                    cvalue = pDimRgn->VCFCutoff;
528                }
529                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
530                if (cutoff > 1.0) cutoff = 1.0;
531                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
532                if (cutoff < 1.0) cutoff = 1.0;
533    
534              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
535              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
536    
537              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
538                VCFResonanceCtrl.fvalue = resonance;
539          }          }
540          else {          else {
541              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
542              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
543          }          }
     #endif // ENABLE_FILTER  
544    
545          return 0; // success          return 0; // success
546      }      }
# Line 626  namespace LinuxSampler { namespace gig { Line 558  namespace LinuxSampler { namespace gig {
558       */       */
559      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
560    
561          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
562          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
563    
564          switch (this->PlaybackState) {          switch (this->PlaybackState) {
565    
566                case playback_state_init:
567                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
568                    // no break - continue with playback_state_ram
569    
570              case playback_state_ram: {              case playback_state_ram: {
571                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
572                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
573                        // render current fragment
574                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
575    
576                      if (DiskVoice) {                      if (DiskVoice) {
577                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
578                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
579                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
580                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
581                          }                          }
582                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
583                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
584                      }                      }
585                  }                  }
# Line 684  namespace LinuxSampler { namespace gig { Line 594  namespace LinuxSampler { namespace gig {
594                              KillImmediately();                              KillImmediately();
595                              return;                              return;
596                          }                          }
597                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
598                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
599                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
600                      }                      }
601    
602                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
603    
604                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
605                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
606                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
607                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
608                                // remember how many sample words there are before any silence has been added
609                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
610                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
611                            }
612                      }                      }
613    
614                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
615                      InterpolateNoLoop(Samples, ptr, Delay);  
616                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
617                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
618    
619                        const int iPos = (int) finalSynthesisParameters.dPos;
620                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
621                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
622                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
623    
624                        // change state of voice to 'end' if we really reached the end of the sample data
625                        if (RealSampleWordsLeftToRead >= 0) {
626                            RealSampleWordsLeftToRead -= readSampleWords;
627                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
628                        }
629                  }                  }
630                  break;                  break;
631    
# Line 706  namespace LinuxSampler { namespace gig { Line 634  namespace LinuxSampler { namespace gig {
634                  break;                  break;
635          }          }
636    
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
     #if ENABLE_FILTER  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
637          // Reset delay          // Reset delay
638          Delay = 0;          Delay = 0;
639    
640          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
641    
642          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
643          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
644      }      }
645    
646      /**      /**
# Line 728  namespace LinuxSampler { namespace gig { Line 648  namespace LinuxSampler { namespace gig {
648       *  suspended / not running.       *  suspended / not running.
649       */       */
650      void Voice::Reset() {      void Voice::Reset() {
651          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
652          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
653          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
654          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
655          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 741  namespace LinuxSampler { namespace gig { Line 660  namespace LinuxSampler { namespace gig {
660      }      }
661    
662      /**      /**
663       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
664       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
665       *       *
666       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
667         * @param End     - youngest time stamp where processing should be stopped
668       */       */
669      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
670            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
671                if (itEvent->Type == Event::type_release) {
672                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
673                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
674                } else if (itEvent->Type == Event::type_cancel_release) {
675                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
676                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
677                }
678            }
679        }
680    
681          // dispatch control change events      /**
682          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
683          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
684              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
685          }       * @param itEvent - iterator pointing to the next event to be processed
686          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
687              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
688                  #if ENABLE_FILTER      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
689                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
690                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;              if (itEvent->Type == Event::type_control_change &&
691                  }                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
692                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
693                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                      processCutoffEvent(itEvent);
694                    }
695                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
696                        processResonanceEvent(itEvent);
697                  }                  }
698                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
699                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(itCCEvent);  
700                  }                  }
701                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
702                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(itCCEvent);  
703                  }                  }
704                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
705                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(itCCEvent);  
706                  }                  }
707                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
708                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
709                      *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
710                  }                  }
711                    if (itEvent->Param.CC.Controller == 7) { // volume
712                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value] * CONFIG_GLOBAL_ATTENUATION);
713                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
714                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
715                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
716                    }
717                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
718                    processPitchEvent(itEvent);
719              }              }
   
             ++itCCEvent;  
720          }          }
721        }
722    
723        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
724            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
725            finalSynthesisParameters.fFinalPitch *= pitch;
726            PitchBend = pitch;
727        }
728    
729        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
730            int ccvalue = itEvent->Param.CC.Value;
731            if (VCFCutoffCtrl.value == ccvalue) return;
732            VCFCutoffCtrl.value == ccvalue;
733            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
734            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
735            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
736            if (cutoff > 1.0) cutoff = 1.0;
737            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
738            if (cutoff < 1.0) cutoff = 1.0;
739    
740            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
741            fFinalCutoff = cutoff;
742        }
743    
744        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
745            // convert absolute controller value to differential
746            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
747            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
748            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
749            fFinalResonance += resonancedelta;
750            // needed for initialization of parameter
751            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
752        }
753    
754          // process pitch events      /**
755          {       *  Synthesizes the current audio fragment for this voice.
756              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];       *
757              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();       *  @param Samples - number of sample points to be rendered in this audio
758              if (Delay) { // skip events that happened before this voice was triggered       *                   fragment cycle
759                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;       *  @param pSrc    - pointer to input sample data
760              }       *  @param Skip    - number of sample points to skip in output buffer
761              // apply old pitchbend value until first pitch event occurs       */
762              if (this->PitchBend != 1.0) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
763                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
764                  for (uint i = Delay; i < end; i++) {          finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
765                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;          finalSynthesisParameters.pSrc      = pSrc;
                 }  
             }  
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
766    
767                  itVCOEvent = itNextVCOEvent;          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
768              }          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
             if (!pVCOEventList->isEmpty()) this->PitchBend = pitch;  
         }  
769    
770          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          if (Skip) { // skip events that happened before this voice was triggered
771          {              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
772              RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
773              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();          }
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
774    
775                  // calculate the influence length of this event (in sample points)          uint killPos;
776                  uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
777    
778                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);          uint i = Skip;
779            while (i < Samples) {
780                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
781    
782                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;              // initialize all final synthesis parameters
783                finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
784                fFinalCutoff    = VCFCutoffCtrl.fvalue;
785                fFinalResonance = VCFResonanceCtrl.fvalue;
786    
787                  // apply volume value to the volume parameter sequence              // process MIDI control change and pitchbend events for this subfragment
788                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {              processCCEvents(itCCEvent, iSubFragmentEnd);
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
789    
790                  itVCAEvent = itNextVCAEvent;              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
791              }  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
792              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;              if (pEngineChannel->GetMute()) fFinalVolume = 0;
793          }  #endif
794    
795      #if ENABLE_FILTER              // process transition events (note on, note off & sustain pedal)
796          // process filter cutoff events              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
         {  
             RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
797    
798                  itCutoffEvent = itNextCutoffEvent;              // if the voice was killed in this subfragment switch EG1 to fade out stage
799                if (itKillEvent && killPos <= iSubFragmentEnd) {
800                    EG1.enterFadeOutStage();
801                    itKillEvent = Pool<Event>::Iterator();
802              }              }
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
803    
804          // process filter resonance events              // process envelope generators
805          {              switch (EG1.getSegmentType()) {
806              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];                  case EGADSR::segment_lin:
807              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();                      fFinalVolume *= EG1.processLin();
808              if (Delay) { // skip events that happened before this voice was triggered                      break;
809                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;                  case EGADSR::segment_exp:
810                        fFinalVolume *= EG1.processExp();
811                        break;
812                    case EGADSR::segment_end:
813                        fFinalVolume *= EG1.getLevel();
814                        break; // noop
815              }              }
816              while (itResonanceEvent) {              switch (EG2.getSegmentType()) {
817                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;                  case EGADSR::segment_lin:
818                  ++itNextResonanceEvent;                      fFinalCutoff *= EG2.processLin();
819                        break;
820                  // calculate the influence length of this event (in sample points)                  case EGADSR::segment_exp:
821                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;                      fFinalCutoff *= EG2.processExp();
822                        break;
823                  // convert absolute controller value to differential                  case EGADSR::segment_end:
824                  int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;                      fFinalCutoff *= EG2.getLevel();
825                  VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;                      break; // noop
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
   
                 itResonanceEvent = itNextResonanceEvent;  
826              }              }
827              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
         }  
     #endif // ENABLE_FILTER  
     }  
828    
829      #if ENABLE_FILTER              // process low frequency oscillators
830      /**              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
831       * Calculate all necessary, final biquad filter parameters.              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
832       *              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
      * @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::CalculateBiquadParameters(uint Samples) {  
         if (!FilterLeft.Enabled) return;  
833    
834          biquad_param_t bqbase;              // if filter enabled then update filter coefficients
835          biquad_param_t bqmain;              if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
836          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];                  finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
837          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];                  finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
         FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {  
                 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                 prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                 FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
838              }              }
839    
840              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              // do we need resampling?
841              bq    = (float*) &pEngine->pBasicFilterParameters[i];              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
842              bq[0] = bqbase.a1;              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
843              bq[1] = bqbase.a2;              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
844              bq[2] = bqbase.b0;                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
845              bq[3] = bqbase.b1;              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
     }  
     #endif // ENABLE_FILTER  
846    
847      /**              // prepare final synthesis parameters structure
848       *  Interpolates the input audio data (without looping).              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
849       *  #ifdef CONFIG_INTERPOLATE_VOLUME
850       *  @param Samples - number of sample points to be rendered in this audio              finalSynthesisParameters.fFinalVolumeDeltaLeft  =
851       *                   fragment cycle                  (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
852       *  @param pSrc    - pointer to input sample data                   finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
853       *  @param Skip    - number of sample points to skip in output buffer              finalSynthesisParameters.fFinalVolumeDeltaRight =
854       */                  (fFinalVolume * VolumeRight * PanRightSmoother.render() -
855      void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {                   finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
856          int i = Skip;  #else
857                finalSynthesisParameters.fFinalVolumeLeft  =
858                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
859                finalSynthesisParameters.fFinalVolumeRight =
860                    fFinalVolume * VolumeRight * PanRightSmoother.render();
861    #endif
862                // render audio for one subfragment
863                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
864    
865          // FIXME: assuming either mono or stereo              // stop the rendering if volume EG is finished
866          if (this->pSample->Channels == 2) { // Stereo Sample              if (EG1.getSegmentType() == EGADSR::segment_end) break;
             while (i < Samples) InterpolateStereo(pSrc, i);  
         }  
         else { // Mono Sample  
             while (i < Samples) InterpolateMono(pSrc, i);  
         }  
     }  
867    
868      /**              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
      *  Interpolates the input audio data, this method honors looping.  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
869    
870          // FIXME: assuming either mono or stereo              // increment envelopes' positions
871          if (pSample->Channels == 2) { // Stereo Sample              if (EG1.active()) {
872              if (pSample->LoopPlayCount) {  
873                  // render loop (loop count limited)                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
874                  while (i < Samples && LoopCyclesLeft) {                  if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
875                      InterpolateStereo(pSrc, i);                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateStereo(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
876                  }                  }
877                  // render on without loop  
878                  while (i < Samples) InterpolateMono(pSrc, i);                  EG1.increment(1);
879                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
880              }              }
881              else { // render loop (endless loop)              if (EG2.active()) {
882                  while (i < Samples) {                  EG2.increment(1);
883                      InterpolateMono(pSrc, i);                  if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
884              }              }
885                EG3.increment(1);
886                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
887    
888                Pos = newPos;
889                i = iSubFragmentEnd;
890          }          }
891      }      }
892    
893        /** @brief Update current portamento position.
894         *
895         * Will be called when portamento mode is enabled to get the final
896         * portamento position of this active voice from where the next voice(s)
897         * might continue to slide on.
898         *
899         * @param itNoteOffEvent - event which causes this voice to die soon
900         */
901        void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
902            const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
903            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
904        }
905    
906      /**      /**
907       *  Immediately kill the voice. This method should not be used to kill       *  Immediately kill the voice. This method should not be used to kill
908       *  a normal, active voice, because it doesn't take care of things like       *  a normal, active voice, because it doesn't take care of things like
# Line 1057  namespace LinuxSampler { namespace gig { Line 928  namespace LinuxSampler { namespace gig {
928       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
929       */       */
930      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
931          //FIXME: just two sanity checks for debugging, can be removed          #if CONFIG_DEVMODE
932          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
933          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
934            #endif // CONFIG_DEVMODE
935    
936          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
937          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;

Legend:
Removed from v.287  
changed lines
  Added in v.832

  ViewVC Help
Powered by ViewVC