/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 287 by schoenebeck, Sat Oct 16 17:38:03 2004 UTC revision 865 by persson, Sun May 14 07:15:52 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 29  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46            SynthesisMode = 0; // set all mode bits to 0 first
47            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48            #if CONFIG_ASM && ARCH_X86
49            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50            #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 103  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param itNoteOnEvent       - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
80       *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81       *  @returns 0 on success, a value < 0 if something failed       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89            #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          }          }
93            #endif // CONFIG_DEVMODE
94    
95          Type            = type_normal;          Type            = VoiceType;
96          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
98          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
99          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
100          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
101          itChildVoice    = Pool<Voice>::Iterator();          KeyGroup        = iKeyGroup;
102            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104          if (!pRegion) {          // calculate volume
105              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             KillImmediately();  
             return -1;  
         }  
106    
107          KeyGroup = pRegion->KeyGroup;          float volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109          // get current dimension values to select the right dimension region          volume *= pDimRgn->SampleAttenuation;
110          //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
111          uint DimValues[5] = {0,0,0,0,0};          // the volume of release triggered samples depends on note length
112          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          if (Type == type_release_trigger) {
113              switch (pRegion->pDimensionDefinitions[i].dimension) {              float noteLength = float(pEngine->FrameTime + Delay -
114                  case ::gig::dimension_samplechannel:                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                      DimValues[i] = 0; //TODO: we currently ignore this dimension              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                      break;              if (attenuation <= 0) return -1;
117                  case ::gig::dimension_layer:              volume *= attenuation;
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
118          }          }
119          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
120            // select channel mode (mono or stereo)
121            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124            float crossfadeVolume;
125          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
126              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
130                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                  break;                  break;
132              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                  break;                  break;
135              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136              default:              default:
137                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
138          }          }
139    
140          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->GlobalVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
157    
158          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
159              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
160    
161              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
162              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
163    
164              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
165                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
166                  KillImmediately();                  KillImmediately();
167                  return -1;                  return -1;
# Line 286  namespace LinuxSampler { namespace gig { Line 170  namespace LinuxSampler { namespace gig {
170          }          }
171          else { // RAM only voice          else { // RAM only voice
172              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
173              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
174              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
175          }          }
176            if (RAMLoop) {
177                loop.uiTotalCycles = pSample->LoopPlayCount;
178                loop.uiCyclesLeft  = pSample->LoopPlayCount;
179                loop.uiStart       = loopinfo.LoopStart;
180                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
181                loop.uiSize        = loopinfo.LoopLength;
182            }
183    
184          // calculate initial pitch value          // calculate initial pitch value
185          {          {
186              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
187              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
188              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
189              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
190          }          }
191    
192            // the length of the decay and release curves are dependent on the velocity
193          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
194    
195          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
196          {          {
# Line 322  namespace LinuxSampler { namespace gig { Line 207  namespace LinuxSampler { namespace gig {
207                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
208                      break;                      break;
209                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
210                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
211                      break;                      break;
212              }              }
213              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
214    
215              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
216              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
217              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
218              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
219                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
220              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
221                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
222                            pDimRgn->EG1Hold,  
223                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
224                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
225                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
226                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
227                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
228                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
229                            Delay);                          pDimRgn->EG1Sustain,
230          }                          pDimRgn->EG1Release * eg1release * velrelease,
231                            velocityAttenuation,
232                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
233            }
234    
235    #ifdef CONFIG_INTERPOLATE_VOLUME
236            // setup initial volume in synthesis parameters
237    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
238            if (pEngineChannel->GetMute()) {
239                finalSynthesisParameters.fFinalVolumeLeft  = 0;
240                finalSynthesisParameters.fFinalVolumeRight = 0;
241            }
242            else
243    #else
244            {
245                float finalVolume = pEngineChannel->GlobalVolume * crossfadeVolume * EG1.getLevel();
246    
247                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
248                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
249            }
250    #endif
251    #endif
252    
     #if ENABLE_FILTER  
253          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
254          {          {
255              // get current value of EG2 controller              // get current value of EG2 controller
# Line 361  namespace LinuxSampler { namespace gig { Line 265  namespace LinuxSampler { namespace gig {
265                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
266                      break;                      break;
267                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
268                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
269                      break;                      break;
270              }              }
271              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
272    
273              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
274              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
275              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
276              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
277    
278              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
279                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
280                            false,                          false,
281                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
282                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
283                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
284                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
285                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
286                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
287                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
288          }          }
     #endif // ENABLE_FILTER  
289    
290    
291          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
292          {          {
293            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
294            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
295                float eg3depth = (bPortamento)
296                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
297                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
298                float eg3time = (bPortamento)
299                                    ? pEngineChannel->PortamentoTime
300                                    : pDimRgn->EG3Attack;
301                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
302                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
303          }          }
304    
305    
# Line 399  namespace LinuxSampler { namespace gig { Line 310  namespace LinuxSampler { namespace gig {
310                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
311                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
312                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
313                        bLFO1Enabled         = (lfo1_internal_depth > 0);
314                      break;                      break;
315                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
316                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
317                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
318                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
319                      break;                      break;
320                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
321                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
322                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
323                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
324                      break;                      break;
325                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
326                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
327                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
328                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
329                      break;                      break;
330                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
331                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
332                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
333                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
334                      break;                      break;
335                  default:                  default:
336                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
337                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
338                        bLFO1Enabled         = false;
339                }
340                if (bLFO1Enabled) {
341                    pLFO1->trigger(pDimRgn->LFO1Frequency,
342                                   start_level_max,
343                                   lfo1_internal_depth,
344                                   pDimRgn->LFO1ControlDepth,
345                                   pDimRgn->LFO1FlipPhase,
346                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
347                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
348              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngine->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
349          }          }
350    
351      #if ENABLE_FILTER  
352          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
353          {          {
354              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 437  namespace LinuxSampler { namespace gig { Line 356  namespace LinuxSampler { namespace gig {
356                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
357                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
358                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
359                        bLFO2Enabled         = (lfo2_internal_depth > 0);
360                      break;                      break;
361                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
362                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
363                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
364                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
365                      break;                      break;
366                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
367                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
368                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
369                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
370                      break;                      break;
371                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
374                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
375                      break;                      break;
376                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
377                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
378                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
379                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
380                      break;                      break;
381                  default:                  default:
382                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
383                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
384                        bLFO2Enabled         = false;
385                }
386                if (bLFO2Enabled) {
387                    pLFO2->trigger(pDimRgn->LFO2Frequency,
388                                   start_level_max,
389                                   lfo2_internal_depth,
390                                   pDimRgn->LFO2ControlDepth,
391                                   pDimRgn->LFO2FlipPhase,
392                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
393                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
394              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngine->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
395          }          }
396      #endif // ENABLE_FILTER  
397    
398          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
399          {          {
# Line 475  namespace LinuxSampler { namespace gig { Line 402  namespace LinuxSampler { namespace gig {
402                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
403                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
404                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
405                        bLFO3Enabled         = (lfo3_internal_depth > 0);
406                      break;                      break;
407                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
408                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
409                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
410                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
411                      break;                      break;
412                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
413                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
414                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
415                        bLFO3Enabled         = false; // see TODO comment in line above
416                      break;                      break;
417                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
418                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
419                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
420                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
421                      break;                      break;
422                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
423                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
424                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
425                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
426                      break;                      break;
427                  default:                  default:
428                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
429                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
430                        bLFO3Enabled         = false;
431                }
432                if (bLFO3Enabled) {
433                    pLFO3->trigger(pDimRgn->LFO3Frequency,
434                                   start_level_mid,
435                                   lfo3_internal_depth,
436                                   pDimRgn->LFO3ControlDepth,
437                                   false,
438                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
439                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
440              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngine->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
441          }          }
442    
443      #if ENABLE_FILTER  
444          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
445          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
446          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
447          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
448          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
449          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
450              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
451              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
452                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
453              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
454              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
455                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 549  namespace LinuxSampler { namespace gig { Line 485  namespace LinuxSampler { namespace gig {
485                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
486                      break;                      break;
487              }              }
488              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
489    
490              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
491              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
492              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
493              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
494                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 571  namespace LinuxSampler { namespace gig { Line 507  namespace LinuxSampler { namespace gig {
507                  default:                  default:
508                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
509              }              }
510              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
511    
512              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
513              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
514              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
515              #else // override filter type              #else // override filter type
516              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
517              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
518              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
519    
520              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
521              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
522    
523              // calculate cutoff frequency              // calculate cutoff frequency
524              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
525              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
526                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
527              }              }
528              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
529    
530              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
531              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
532                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
533                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
534                    // VCFVelocityScale in this case means Minimum cutoff
535                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
536                }
537                else {
538                    cvalue = pDimRgn->VCFCutoff;
539                }
540                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
541                if (cutoff > 1.0) cutoff = 1.0;
542                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
543                if (cutoff < 1.0) cutoff = 1.0;
544    
545              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
546              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
547    
548              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
549                VCFResonanceCtrl.fvalue = resonance;
550          }          }
551          else {          else {
552              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
553              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
554          }          }
     #endif // ENABLE_FILTER  
555    
556          return 0; // success          return 0; // success
557      }      }
# Line 626  namespace LinuxSampler { namespace gig { Line 569  namespace LinuxSampler { namespace gig {
569       */       */
570      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
571    
572          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
573          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
574    
575          switch (this->PlaybackState) {          switch (this->PlaybackState) {
576    
577                case playback_state_init:
578                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
579                    // no break - continue with playback_state_ram
580    
581              case playback_state_ram: {              case playback_state_ram: {
582                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
583                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
584                        // render current fragment
585                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
586    
587                      if (DiskVoice) {                      if (DiskVoice) {
588                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
589                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
590                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
591                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
592                          }                          }
593                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
594                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
595                      }                      }
596                  }                  }
# Line 684  namespace LinuxSampler { namespace gig { Line 605  namespace LinuxSampler { namespace gig {
605                              KillImmediately();                              KillImmediately();
606                              return;                              return;
607                          }                          }
608                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
609                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
610                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
611                      }                      }
612    
613                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
614    
615                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
616                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
617                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
618                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
619                                // remember how many sample words there are before any silence has been added
620                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
621                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
622                            }
623                      }                      }
624    
625                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
626                      InterpolateNoLoop(Samples, ptr, Delay);  
627                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
628                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
629    
630                        const int iPos = (int) finalSynthesisParameters.dPos;
631                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
632                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
633                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
634    
635                        // change state of voice to 'end' if we really reached the end of the sample data
636                        if (RealSampleWordsLeftToRead >= 0) {
637                            RealSampleWordsLeftToRead -= readSampleWords;
638                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
639                        }
640                  }                  }
641                  break;                  break;
642    
# Line 706  namespace LinuxSampler { namespace gig { Line 645  namespace LinuxSampler { namespace gig {
645                  break;                  break;
646          }          }
647    
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
     #if ENABLE_FILTER  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
648          // Reset delay          // Reset delay
649          Delay = 0;          Delay = 0;
650    
651          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
652    
653          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
654          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
655      }      }
656    
657      /**      /**
# Line 728  namespace LinuxSampler { namespace gig { Line 659  namespace LinuxSampler { namespace gig {
659       *  suspended / not running.       *  suspended / not running.
660       */       */
661      void Voice::Reset() {      void Voice::Reset() {
662          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
663          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
664          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
665          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
666          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 741  namespace LinuxSampler { namespace gig { Line 671  namespace LinuxSampler { namespace gig {
671      }      }
672    
673      /**      /**
674       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
675       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
676       *       *
677       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
678         * @param End     - youngest time stamp where processing should be stopped
679       */       */
680      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
681            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
682          // dispatch control change events              if (itEvent->Type == Event::type_release) {
683          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
684          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
685              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;              } else if (itEvent->Type == Event::type_cancel_release) {
686          }                  EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
687          while (itCCEvent) {                  EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
             if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
                 #if ENABLE_FILTER  
                 if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {  
                     *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {  
                     *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;  
                 }  
                 #endif // ENABLE_FILTER  
                 if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(itCCEvent);  
                 }  
                 #if ENABLE_FILTER  
                 if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(itCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(itCCEvent);  
                 }  
                 if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&  
                     itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event  
                     *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;  
                 }  
688              }              }
   
             ++itCCEvent;  
689          }          }
690        }
691    
692        /**
693          // process pitch events       * Process given list of MIDI control change and pitch bend events for
694          {       * the given time.
695              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];       *
696              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();       * @param itEvent - iterator pointing to the next event to be processed
697              if (Delay) { // skip events that happened before this voice was triggered       * @param End     - youngest time stamp where processing should be stopped
698                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;       */
699              }      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
700              // apply old pitchbend value until first pitch event occurs          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
701              if (this->PitchBend != 1.0) {              if (itEvent->Type == Event::type_control_change &&
702                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
703                  for (uint i = Delay; i < end; i++) {                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
704                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      processCutoffEvent(itEvent);
705                    }
706                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
707                        processResonanceEvent(itEvent);
708                  }                  }
709              }                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
710              float pitch;                      pLFO1->update(itEvent->Param.CC.Value);
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
711                  }                  }
712                    if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
713                  itVCOEvent = itNextVCOEvent;                      pLFO2->update(itEvent->Param.CC.Value);
             }  
             if (!pVCOEventList->isEmpty()) this->PitchBend = pitch;  
         }  
   
         // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)  
         {  
             RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];  
             RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
714                  }                  }
715                    if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
716                  itVCAEvent = itNextVCAEvent;                      pLFO3->update(itEvent->Param.CC.Value);
             }  
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
   
     #if ENABLE_FILTER  
         // process filter cutoff events  
         {  
             RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
717                  }                  }
718                    if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
719                  itCutoffEvent = itNextCutoffEvent;                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
720              }                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
   
         // process filter resonance events  
         {  
             RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
721                  }                  }
722                    if (itEvent->Param.CC.Controller == 7) { // volume
723                  itResonanceEvent = itNextResonanceEvent;                      VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value] * CONFIG_GLOBAL_ATTENUATION);
724                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
725                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
726                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
727                    }
728                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
729                    processPitchEvent(itEvent);
730              }              }
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
731          }          }
     #endif // ENABLE_FILTER  
732      }      }
733    
734      #if ENABLE_FILTER      void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
735      /**          const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
736       * Calculate all necessary, final biquad filter parameters.          finalSynthesisParameters.fFinalPitch *= pitch;
737       *          PitchBend = pitch;
738       * @param Samples - number of samples to be rendered in this audio fragment cycle      }
739       */  
740      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
741          if (!FilterLeft.Enabled) return;          int ccvalue = itEvent->Param.CC.Value;
742            if (VCFCutoffCtrl.value == ccvalue) return;
743          biquad_param_t bqbase;          VCFCutoffCtrl.value == ccvalue;
744          biquad_param_t bqmain;          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
745          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
746          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];          float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
747          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          if (cutoff > 1.0) cutoff = 1.0;
748          pEngine->pBasicFilterParameters[0] = bqbase;          cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
749          pEngine->pMainFilterParameters[0]  = bqmain;          if (cutoff < 1.0) cutoff = 1.0;
750    
751          float* bq;          VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
752          for (int i = 1; i < Samples; i++) {          fFinalCutoff = cutoff;
753              // recalculate biquad parameters if cutoff or resonance differ from previous sample point      }
754              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
755                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
756                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];          // convert absolute controller value to differential
757                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];          const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
758                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          VCFResonanceCtrl.value = itEvent->Param.CC.Value;
759              }          const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
760            fFinalResonance += resonancedelta;
761              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'          // needed for initialization of parameter
762              bq    = (float*) &pEngine->pBasicFilterParameters[i];          VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
763      }      }
     #endif // ENABLE_FILTER  
764    
765      /**      /**
766       *  Interpolates the input audio data (without looping).       *  Synthesizes the current audio fragment for this voice.
767       *       *
768       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
769       *                   fragment cycle       *                   fragment cycle
770       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
771       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
772       */       */
773      void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
774          int i = Skip;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
775            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
776            finalSynthesisParameters.pSrc      = pSrc;
777    
778          // FIXME: assuming either mono or stereo          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
779          if (this->pSample->Channels == 2) { // Stereo Sample          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
780              while (i < Samples) InterpolateStereo(pSrc, i);  
781          }          if (Skip) { // skip events that happened before this voice was triggered
782          else { // Mono Sample              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
783              while (i < Samples) InterpolateMono(pSrc, i);              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
784          }          }
     }  
785    
786      /**          uint killPos;
787       *  Interpolates the input audio data, this method honors looping.          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
788    
789          // FIXME: assuming either mono or stereo          uint i = Skip;
790          if (pSample->Channels == 2) { // Stereo Sample          while (i < Samples) {
791              if (pSample->LoopPlayCount) {              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
792                  // render loop (loop count limited)  
793                  while (i < Samples && LoopCyclesLeft) {              // initialize all final synthesis parameters
794                      InterpolateStereo(pSrc, i);              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
795                      if (Pos > pSample->LoopEnd) {              fFinalCutoff    = VCFCutoffCtrl.fvalue;
796                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              fFinalResonance = VCFResonanceCtrl.fvalue;
797                          LoopCyclesLeft--;  
798                      }              // process MIDI control change and pitchbend events for this subfragment
799                  }              processCCEvents(itCCEvent, iSubFragmentEnd);
800                  // render on without loop  
801                  while (i < Samples) InterpolateStereo(pSrc, i);              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
802    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
803                if (pEngineChannel->GetMute()) fFinalVolume = 0;
804    #endif
805    
806                // process transition events (note on, note off & sustain pedal)
807                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
808    
809                // if the voice was killed in this subfragment switch EG1 to fade out stage
810                if (itKillEvent && killPos <= iSubFragmentEnd) {
811                    EG1.enterFadeOutStage();
812                    itKillEvent = Pool<Event>::Iterator();
813              }              }
814              else { // render loop (endless loop)  
815                  while (i < Samples) {              // process envelope generators
816                      InterpolateStereo(pSrc, i);              switch (EG1.getSegmentType()) {
817                      if (Pos > pSample->LoopEnd) {                  case EGADSR::segment_lin:
818                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                      fFinalVolume *= EG1.processLin();
819                      }                      break;
820                  }                  case EGADSR::segment_exp:
821                        fFinalVolume *= EG1.processExp();
822                        break;
823                    case EGADSR::segment_end:
824                        fFinalVolume *= EG1.getLevel();
825                        break; // noop
826              }              }
827          }              switch (EG2.getSegmentType()) {
828          else { // Mono Sample                  case EGADSR::segment_lin:
829              if (pSample->LoopPlayCount) {                      fFinalCutoff *= EG2.processLin();
830                  // render loop (loop count limited)                      break;
831                  while (i < Samples && LoopCyclesLeft) {                  case EGADSR::segment_exp:
832                      InterpolateMono(pSrc, i);                      fFinalCutoff *= EG2.processExp();
833                      if (Pos > pSample->LoopEnd) {                      break;
834                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                  case EGADSR::segment_end:
835                          LoopCyclesLeft--;                      fFinalCutoff *= EG2.getLevel();
836                      }                      break; // noop
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateMono(pSrc, i);  
837              }              }
838              else { // render loop (endless loop)              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
839                  while (i < Samples) {  
840                      InterpolateMono(pSrc, i);              // process low frequency oscillators
841                      if (Pos > pSample->LoopEnd) {              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
842                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
843                      }              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
844    
845                // if filter enabled then update filter coefficients
846                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
847                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
848                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
849                }
850    
851                // do we need resampling?
852                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
853                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
854                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
855                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
856                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
857    
858                // prepare final synthesis parameters structure
859                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
860    #ifdef CONFIG_INTERPOLATE_VOLUME
861                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
862                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
863                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
864                finalSynthesisParameters.fFinalVolumeDeltaRight =
865                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
866                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
867    #else
868                finalSynthesisParameters.fFinalVolumeLeft  =
869                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
870                finalSynthesisParameters.fFinalVolumeRight =
871                    fFinalVolume * VolumeRight * PanRightSmoother.render();
872    #endif
873                // render audio for one subfragment
874                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
875    
876                // stop the rendering if volume EG is finished
877                if (EG1.getSegmentType() == EGADSR::segment_end) break;
878    
879                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
880    
881                // increment envelopes' positions
882                if (EG1.active()) {
883    
884                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
885                    if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
886                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
887                  }                  }
888    
889                    EG1.increment(1);
890                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
891              }              }
892                if (EG2.active()) {
893                    EG2.increment(1);
894                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
895                }
896                EG3.increment(1);
897                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
898    
899                Pos = newPos;
900                i = iSubFragmentEnd;
901          }          }
902      }      }
903    
904        /** @brief Update current portamento position.
905         *
906         * Will be called when portamento mode is enabled to get the final
907         * portamento position of this active voice from where the next voice(s)
908         * might continue to slide on.
909         *
910         * @param itNoteOffEvent - event which causes this voice to die soon
911         */
912        void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
913            const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
914            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
915        }
916    
917      /**      /**
918       *  Immediately kill the voice. This method should not be used to kill       *  Immediately kill the voice. This method should not be used to kill
919       *  a normal, active voice, because it doesn't take care of things like       *  a normal, active voice, because it doesn't take care of things like
# Line 1057  namespace LinuxSampler { namespace gig { Line 939  namespace LinuxSampler { namespace gig {
939       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
940       */       */
941      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
942          //FIXME: just two sanity checks for debugging, can be removed          #if CONFIG_DEVMODE
943          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
944          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
945            #endif // CONFIG_DEVMODE
946    
947          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
948          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;

Legend:
Removed from v.287  
changed lines
  Added in v.865

  ViewVC Help
Powered by ViewVC