/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 287 by schoenebeck, Sat Oct 16 17:38:03 2004 UTC revision 950 by persson, Tue Nov 28 20:09:48 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
39          KeyGroup = 0;          KeyGroup = 0;
40            SynthesisMode = 0; // set all mode bits to 0 first
41            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
42            #if CONFIG_ASM && ARCH_X86
43            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44            #else
45            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46            #endif
47            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49            finalSynthesisParameters.filterLeft.Reset();
50            finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 103  namespace LinuxSampler { namespace gig { Line 66  namespace LinuxSampler { namespace gig {
66       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
67       *  needed.       *  needed.
68       *       *
69       *  @param itNoteOnEvent       - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
70       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
71       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
72       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
73       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
74       *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
75       *  @returns 0 on success, a value < 0 if something failed       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
76         *           (either due to an error or e.g. because no region is
77         *           defined for the given key)
78       */       */
79      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
81             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
82             exit(EXIT_FAILURE);  
83            #if CONFIG_DEVMODE
84            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
85                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
86          }          }
87            #endif // CONFIG_DEVMODE
88    
89          Type            = type_normal;          Type            = VoiceType;
90          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
91          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
92          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
93          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
94          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
95          itChildVoice    = Pool<Voice>::Iterator();          KeyGroup        = iKeyGroup;
96            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
97    
98          if (!pRegion) {          // calculate volume
99              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             KillImmediately();  
             return -1;  
         }  
100    
101          KeyGroup = pRegion->KeyGroup;          // For 16 bit samples, we downscale by 32768 to convert from
102            // int16 value range to DSP value range (which is
103          // get current dimension values to select the right dimension region          // -1.0..1.0). For 24 bit, we downscale from int32.
104          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
105          uint DimValues[5] = {0,0,0,0,0};  
106          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          volume *= pDimRgn->SampleAttenuation;
107              switch (pRegion->pDimensionDefinitions[i].dimension) {  
108                  case ::gig::dimension_samplechannel:          // the volume of release triggered samples depends on note length
109                      DimValues[i] = 0; //TODO: we currently ignore this dimension          if (Type == type_release_trigger) {
110                      break;              float noteLength = float(pEngine->FrameTime + Delay -
111                  case ::gig::dimension_layer:                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
112                      DimValues[i] = iLayer;              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
113                      // if this is the 1st layer then spawn further voices for all the other layers              if (attenuation <= 0) return -1;
114                      if (iLayer == 0)              volume *= attenuation;
115                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)          }
116                              itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);  
117                      break;          // select channel mode (mono or stereo)
118                  case ::gig::dimension_velocity:          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
119                      DimValues[i] = itNoteOnEvent->Param.Note.Velocity;          // select bit depth (16 or 24)
120                      break;          SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
121    
122          // get starting crossfade volume level          // get starting crossfade volume level
123            float crossfadeVolume;
124          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
125              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
126                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
127                  break;                  break;
128              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
129                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
130                  break;                  break;
131              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
132                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
133                  break;                  break;
134              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
135              default:              default:
136                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
137          }          }
138    
139          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
140          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
141    
142          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
143            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
144            VolumeSmoother.trigger(pEngineChannel->GlobalVolume * pEngineChannel->MidiVolume, subfragmentRate);
145            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
146            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
147    
148          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
149            Pos = pDimRgn->SampleStartOffset;
150    
151          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
152          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
153          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
154    
155            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
156    
157          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
158              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
159    
160              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
161              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
162    
163              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
164                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
165                  KillImmediately();                  KillImmediately();
166                  return -1;                  return -1;
# Line 286  namespace LinuxSampler { namespace gig { Line 169  namespace LinuxSampler { namespace gig {
169          }          }
170          else { // RAM only voice          else { // RAM only voice
171              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
172              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
173              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
174          }          }
175            if (RAMLoop) {
176                loop.uiTotalCycles = pSample->LoopPlayCount;
177                loop.uiCyclesLeft  = pSample->LoopPlayCount;
178                loop.uiStart       = loopinfo.LoopStart;
179                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
180                loop.uiSize        = loopinfo.LoopLength;
181            }
182    
183          // calculate initial pitch value          // calculate initial pitch value
184          {          {
185              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
186              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
187              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
188              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
189          }          }
190    
191            // the length of the decay and release curves are dependent on the velocity
192          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
193    
194          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
195          {          {
# Line 316  namespace LinuxSampler { namespace gig { Line 200  namespace LinuxSampler { namespace gig {
200                      eg1controllervalue = 0;                      eg1controllervalue = 0;
201                      break;                      break;
202                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
203                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
204                      break;                      break;
205                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
206                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
207                      break;                      break;
208                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
209                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
210                      break;                      break;
211              }              }
212              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
213    
214              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
215              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
216              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
217              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
218                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
219              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
220                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
221                            pDimRgn->EG1Hold,  
222                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
223                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
224                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
225                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
226                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
227                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
228                            Delay);                          pDimRgn->EG1Sustain,
229          }                          pDimRgn->EG1Release * eg1release * velrelease,
230                            velocityAttenuation,
231                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
232            }
233    
234    #ifdef CONFIG_INTERPOLATE_VOLUME
235            // setup initial volume in synthesis parameters
236    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
237            if (pEngineChannel->GetMute()) {
238                finalSynthesisParameters.fFinalVolumeLeft  = 0;
239                finalSynthesisParameters.fFinalVolumeRight = 0;
240            }
241            else
242    #else
243            {
244                float finalVolume = pEngineChannel->GlobalVolume * pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
245    
246                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
247                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
248            }
249    #endif
250    #endif
251    
     #if ENABLE_FILTER  
252          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
253          {          {
254              // get current value of EG2 controller              // get current value of EG2 controller
# Line 355  namespace LinuxSampler { namespace gig { Line 258  namespace LinuxSampler { namespace gig {
258                      eg2controllervalue = 0;                      eg2controllervalue = 0;
259                      break;                      break;
260                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
261                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
262                      break;                      break;
263                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
264                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
265                      break;                      break;
266                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
267                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
268                      break;                      break;
269              }              }
270              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
271    
272              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
273              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
274              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
275              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
276    
277              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
278                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
279                            false,                          false,
280                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
281                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
282                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
283                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
284                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
285                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
286                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
287          }          }
     #endif // ENABLE_FILTER  
288    
289    
290          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
291          {          {
292            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
293            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
294                float eg3depth = (bPortamento)
295                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
296                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
297                float eg3time = (bPortamento)
298                                    ? pEngineChannel->PortamentoTime
299                                    : pDimRgn->EG3Attack;
300                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
301                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
302          }          }
303    
304    
# Line 399  namespace LinuxSampler { namespace gig { Line 309  namespace LinuxSampler { namespace gig {
309                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
310                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
311                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
312                        bLFO1Enabled         = (lfo1_internal_depth > 0);
313                      break;                      break;
314                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
315                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
316                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
317                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
318                      break;                      break;
319                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
320                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
321                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
322                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
323                      break;                      break;
324                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
325                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
326                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
327                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
328                      break;                      break;
329                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
330                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
331                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
332                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
333                      break;                      break;
334                  default:                  default:
335                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
336                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
337                        bLFO1Enabled         = false;
338                }
339                if (bLFO1Enabled) {
340                    pLFO1->trigger(pDimRgn->LFO1Frequency,
341                                   start_level_min,
342                                   lfo1_internal_depth,
343                                   pDimRgn->LFO1ControlDepth,
344                                   pDimRgn->LFO1FlipPhase,
345                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
346                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
347              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngine->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
348          }          }
349    
350      #if ENABLE_FILTER  
351          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
352          {          {
353              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 437  namespace LinuxSampler { namespace gig { Line 355  namespace LinuxSampler { namespace gig {
355                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
356                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
357                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
358                        bLFO2Enabled         = (lfo2_internal_depth > 0);
359                      break;                      break;
360                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
361                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
362                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
363                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
364                      break;                      break;
365                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
366                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
367                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
368                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
369                      break;                      break;
370                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
371                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
372                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
373                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
374                      break;                      break;
375                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
376                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
377                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
378                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
379                      break;                      break;
380                  default:                  default:
381                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
382                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
383                        bLFO2Enabled         = false;
384                }
385                if (bLFO2Enabled) {
386                    pLFO2->trigger(pDimRgn->LFO2Frequency,
387                                   start_level_max,
388                                   lfo2_internal_depth,
389                                   pDimRgn->LFO2ControlDepth,
390                                   pDimRgn->LFO2FlipPhase,
391                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
392                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
393              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngine->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
394          }          }
395      #endif // ENABLE_FILTER  
396    
397          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
398          {          {
# Line 475  namespace LinuxSampler { namespace gig { Line 401  namespace LinuxSampler { namespace gig {
401                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
402                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
403                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
404                        bLFO3Enabled         = (lfo3_internal_depth > 0);
405                      break;                      break;
406                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
407                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
408                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
409                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
410                      break;                      break;
411                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
412                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
413                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
414                        bLFO3Enabled         = true;
415                      break;                      break;
416                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
417                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
418                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
419                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
420                      break;                      break;
421                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
422                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
423                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
424                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
425                      break;                      break;
426                  default:                  default:
427                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
428                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
429                        bLFO3Enabled         = false;
430                }
431                if (bLFO3Enabled) {
432                    pLFO3->trigger(pDimRgn->LFO3Frequency,
433                                   start_level_mid,
434                                   lfo3_internal_depth,
435                                   pDimRgn->LFO3ControlDepth,
436                                   false,
437                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
438                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
439              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngine->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
440          }          }
441    
442      #if ENABLE_FILTER  
443          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
444          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
445          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
446          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
447          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
448          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
449              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
450              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
451                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
452              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
453              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
454                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 543  namespace LinuxSampler { namespace gig { Line 478  namespace LinuxSampler { namespace gig {
478                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
479                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
480                      break;                      break;
481                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
482                        VCFCutoffCtrl.controller = 128;
483                        break;
484                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
485                  default:                  default:
486                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
487                      break;                      break;
488              }              }
489              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
490    
491              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
492              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
493              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
494              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
495                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 571  namespace LinuxSampler { namespace gig { Line 508  namespace LinuxSampler { namespace gig {
508                  default:                  default:
509                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
510              }              }
511              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
512    
513              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
514              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
515              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
516              #else // override filter type              #else // override filter type
517              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
518              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
519              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
520    
521              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
522              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
523    
524              // calculate cutoff frequency              // calculate cutoff frequency
525              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
526              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
527                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
528              }              }
529              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
530    
531              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
532              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
533                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
534                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
535                    // VCFVelocityScale in this case means Minimum cutoff
536                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
537                }
538                else {
539                    cvalue = pDimRgn->VCFCutoff;
540                }
541                cutoff *= float(cvalue);
542                if (cutoff > 127.0f) cutoff = 127.0f;
543    
544              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
545              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
546    
547              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
548                VCFResonanceCtrl.fvalue = resonance;
549          }          }
550          else {          else {
551              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
552              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
553          }          }
     #endif // ENABLE_FILTER  
554    
555          return 0; // success          return 0; // success
556      }      }
# Line 626  namespace LinuxSampler { namespace gig { Line 568  namespace LinuxSampler { namespace gig {
568       */       */
569      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
570    
571          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
572          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
573    
574          switch (this->PlaybackState) {          switch (this->PlaybackState) {
575    
576                case playback_state_init:
577                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
578                    // no break - continue with playback_state_ram
579    
580              case playback_state_ram: {              case playback_state_ram: {
581                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
582                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
583                        // render current fragment
584                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
585    
586                      if (DiskVoice) {                      if (DiskVoice) {
587                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
588                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
589                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
590                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
591                          }                          }
592                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
593                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
594                      }                      }
595                  }                  }
# Line 684  namespace LinuxSampler { namespace gig { Line 604  namespace LinuxSampler { namespace gig {
604                              KillImmediately();                              KillImmediately();
605                              return;                              return;
606                          }                          }
607                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
608                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
609                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
610                      }                      }
611    
612                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
613    
614                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
615                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
616                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
617                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
618                                // remember how many sample words there are before any silence has been added
619                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
620                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
621                            }
622                      }                      }
623    
624                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
625                      InterpolateNoLoop(Samples, ptr, Delay);  
626                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
627                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
628    
629                        const int iPos = (int) finalSynthesisParameters.dPos;
630                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
631                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
632                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
633    
634                        // change state of voice to 'end' if we really reached the end of the sample data
635                        if (RealSampleWordsLeftToRead >= 0) {
636                            RealSampleWordsLeftToRead -= readSampleWords;
637                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
638                        }
639                  }                  }
640                  break;                  break;
641    
# Line 706  namespace LinuxSampler { namespace gig { Line 644  namespace LinuxSampler { namespace gig {
644                  break;                  break;
645          }          }
646    
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
     #if ENABLE_FILTER  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
647          // Reset delay          // Reset delay
648          Delay = 0;          Delay = 0;
649    
650          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
651    
652          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
653          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
654      }      }
655    
656      /**      /**
# Line 728  namespace LinuxSampler { namespace gig { Line 658  namespace LinuxSampler { namespace gig {
658       *  suspended / not running.       *  suspended / not running.
659       */       */
660      void Voice::Reset() {      void Voice::Reset() {
661          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
662          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
663          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
664          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
665          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 741  namespace LinuxSampler { namespace gig { Line 670  namespace LinuxSampler { namespace gig {
670      }      }
671    
672      /**      /**
673       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
674       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
675       *       *
676       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
677         * @param End     - youngest time stamp where processing should be stopped
678       */       */
679      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
680            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
681                if (itEvent->Type == Event::type_release) {
682                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
683                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
684                } else if (itEvent->Type == Event::type_cancel_release) {
685                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
686                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
687                }
688            }
689        }
690    
691          // dispatch control change events      /**
692          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
693          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
694              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
695          }       * @param itEvent - iterator pointing to the next event to be processed
696          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
697              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
698                  #if ENABLE_FILTER      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
699                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
700                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;              if (itEvent->Type == Event::type_control_change &&
701                  }                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
702                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
703                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                      processCutoffEvent(itEvent);
704                    }
705                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
706                        processResonanceEvent(itEvent);
707                  }                  }
708                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
709                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(itCCEvent);  
710                  }                  }
711                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
712                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(itCCEvent);  
713                  }                  }
714                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
715                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(itCCEvent);  
716                  }                  }
717                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
718                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
719                      *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
                 }  
             }  
   
             ++itCCEvent;  
         }  
   
   
         // process pitch events  
         {  
             RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];  
             RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
720                  }                  }
721              }                  if (itEvent->Param.CC.Controller == 7) { // volume
722              float pitch;                      VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
723              while (itVCOEvent) {                  } else if (itEvent->Param.CC.Controller == 10) { // panpot
724                  RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;                      PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
725                  ++itNextVCOEvent;                      PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
726                  }                  }
727                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
728                  itVCOEvent = itNextVCOEvent;                  processPitchEvent(itEvent);
729              }              }
             if (!pVCOEventList->isEmpty()) this->PitchBend = pitch;  
730          }          }
731        }
732    
733          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)      void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
734          {          const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
735              RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];          finalSynthesisParameters.fFinalPitch *= pitch;
736              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();          PitchBend = pitch;
737              if (Delay) { // skip events that happened before this voice was triggered      }
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
   
                 itVCAEvent = itNextVCAEvent;  
             }  
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
   
     #if ENABLE_FILTER  
         // process filter cutoff events  
         {  
             RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 itCutoffEvent = itNextCutoffEvent;  
             }  
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
738    
739          // process filter resonance events      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
740          {          int ccvalue = itEvent->Param.CC.Value;
741              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];          if (VCFCutoffCtrl.value == ccvalue) return;
742              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();          VCFCutoffCtrl.value == ccvalue;
743              if (Delay) { // skip events that happened before this voice was triggered          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
744                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
745              }          float cutoff = CutoffBase * float(ccvalue);
746              while (itResonanceEvent) {          if (cutoff > 127.0f) cutoff = 127.0f;
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
747    
748                  itResonanceEvent = itNextResonanceEvent;          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
749              }          fFinalCutoff = cutoff;
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     #endif // ENABLE_FILTER  
750      }      }
751    
752      #if ENABLE_FILTER      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
753      /**          // convert absolute controller value to differential
754       * Calculate all necessary, final biquad filter parameters.          const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
755       *          VCFResonanceCtrl.value = itEvent->Param.CC.Value;
756       * @param Samples - number of samples to be rendered in this audio fragment cycle          const float resonancedelta = (float) ctrldelta;
757       */          fFinalResonance += resonancedelta;
758      void Voice::CalculateBiquadParameters(uint Samples) {          // needed for initialization of parameter
759          if (!FilterLeft.Enabled) return;          VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
   
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {  
                 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                 prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                 FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
             }  
   
             //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'  
             bq    = (float*) &pEngine->pBasicFilterParameters[i];  
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
760      }      }
     #endif // ENABLE_FILTER  
761    
762      /**      /**
763       *  Interpolates the input audio data (without looping).       *  Synthesizes the current audio fragment for this voice.
764       *       *
765       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
766       *                   fragment cycle       *                   fragment cycle
767       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
768       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
769       */       */
770      void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
771          int i = Skip;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
772            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
773            finalSynthesisParameters.pSrc      = pSrc;
774    
775          // FIXME: assuming either mono or stereo          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
776          if (this->pSample->Channels == 2) { // Stereo Sample          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
777              while (i < Samples) InterpolateStereo(pSrc, i);  
778          }          if (Skip) { // skip events that happened before this voice was triggered
779          else { // Mono Sample              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
780              while (i < Samples) InterpolateMono(pSrc, i);              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
781          }          }
     }  
782    
783      /**          uint killPos;
784       *  Interpolates the input audio data, this method honors looping.          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
785    
786          // FIXME: assuming either mono or stereo          uint i = Skip;
787          if (pSample->Channels == 2) { // Stereo Sample          while (i < Samples) {
788              if (pSample->LoopPlayCount) {              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
789                  // render loop (loop count limited)  
790                  while (i < Samples && LoopCyclesLeft) {              // initialize all final synthesis parameters
791                      InterpolateStereo(pSrc, i);              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
792                      if (Pos > pSample->LoopEnd) {              fFinalCutoff    = VCFCutoffCtrl.fvalue;
793                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              fFinalResonance = VCFResonanceCtrl.fvalue;
794                          LoopCyclesLeft--;  
795                      }              // process MIDI control change and pitchbend events for this subfragment
796                  }              processCCEvents(itCCEvent, iSubFragmentEnd);
797                  // render on without loop  
798                  while (i < Samples) InterpolateStereo(pSrc, i);              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
799    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
800                if (pEngineChannel->GetMute()) fFinalVolume = 0;
801    #endif
802    
803                // process transition events (note on, note off & sustain pedal)
804                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
805    
806                // if the voice was killed in this subfragment, or if the
807                // filter EG is finished, switch EG1 to fade out stage
808                if ((itKillEvent && killPos <= iSubFragmentEnd) ||
809                    (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
810                     EG2.getSegmentType() == EGADSR::segment_end)) {
811                    EG1.enterFadeOutStage();
812                    itKillEvent = Pool<Event>::Iterator();
813              }              }
814              else { // render loop (endless loop)  
815                  while (i < Samples) {              // process envelope generators
816                      InterpolateStereo(pSrc, i);              switch (EG1.getSegmentType()) {
817                      if (Pos > pSample->LoopEnd) {                  case EGADSR::segment_lin:
818                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                      fFinalVolume *= EG1.processLin();
819                      }                      break;
820                  }                  case EGADSR::segment_exp:
821                        fFinalVolume *= EG1.processExp();
822                        break;
823                    case EGADSR::segment_end:
824                        fFinalVolume *= EG1.getLevel();
825                        break; // noop
826              }              }
827          }              switch (EG2.getSegmentType()) {
828          else { // Mono Sample                  case EGADSR::segment_lin:
829              if (pSample->LoopPlayCount) {                      fFinalCutoff *= EG2.processLin();
830                  // render loop (loop count limited)                      break;
831                  while (i < Samples && LoopCyclesLeft) {                  case EGADSR::segment_exp:
832                      InterpolateMono(pSrc, i);                      fFinalCutoff *= EG2.processExp();
833                      if (Pos > pSample->LoopEnd) {                      break;
834                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                  case EGADSR::segment_end:
835                          LoopCyclesLeft--;                      fFinalCutoff *= EG2.getLevel();
836                      }                      break; // noop
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateMono(pSrc, i);  
837              }              }
838              else { // render loop (endless loop)              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
839                  while (i < Samples) {  
840                      InterpolateMono(pSrc, i);              // process low frequency oscillators
841                      if (Pos > pSample->LoopEnd) {              if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
842                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
843                      }              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
844    
845                // if filter enabled then update filter coefficients
846                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
847                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
848                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
849                }
850    
851                // do we need resampling?
852                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
853                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
854                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
855                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
856                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
857    
858                // prepare final synthesis parameters structure
859                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
860    #ifdef CONFIG_INTERPOLATE_VOLUME
861                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
862                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
863                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
864                finalSynthesisParameters.fFinalVolumeDeltaRight =
865                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
866                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
867    #else
868                finalSynthesisParameters.fFinalVolumeLeft  =
869                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
870                finalSynthesisParameters.fFinalVolumeRight =
871                    fFinalVolume * VolumeRight * PanRightSmoother.render();
872    #endif
873                // render audio for one subfragment
874                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
875    
876                // stop the rendering if volume EG is finished
877                if (EG1.getSegmentType() == EGADSR::segment_end) break;
878    
879                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
880    
881                // increment envelopes' positions
882                if (EG1.active()) {
883    
884                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
885                    if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
886                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
887                  }                  }
888    
889                    EG1.increment(1);
890                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
891              }              }
892                if (EG2.active()) {
893                    EG2.increment(1);
894                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
895                }
896                EG3.increment(1);
897                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
898    
899                Pos = newPos;
900                i = iSubFragmentEnd;
901          }          }
902      }      }
903    
904        /** @brief Update current portamento position.
905         *
906         * Will be called when portamento mode is enabled to get the final
907         * portamento position of this active voice from where the next voice(s)
908         * might continue to slide on.
909         *
910         * @param itNoteOffEvent - event which causes this voice to die soon
911         */
912        void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
913            const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
914            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
915        }
916    
917      /**      /**
918       *  Immediately kill the voice. This method should not be used to kill       *  Immediately kill the voice. This method should not be used to kill
919       *  a normal, active voice, because it doesn't take care of things like       *  a normal, active voice, because it doesn't take care of things like
# Line 1057  namespace LinuxSampler { namespace gig { Line 939  namespace LinuxSampler { namespace gig {
939       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
940       */       */
941      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
942          //FIXME: just two sanity checks for debugging, can be removed          #if CONFIG_DEVMODE
943          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
944          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
945            #endif // CONFIG_DEVMODE
946    
947          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
948          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;

Legend:
Removed from v.287  
changed lines
  Added in v.950

  ViewVC Help
Powered by ViewVC