/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 246 by schoenebeck, Sun Sep 19 14:12:55 2004 UTC revision 332 by senkov, Sat Jan 1 03:06:06 2005 UTC
# Line 22  Line 22 
22    
23  #include "EGADSR.h"  #include "EGADSR.h"
24  #include "Manipulator.h"  #include "Manipulator.h"
25    #include "../../common/Features.h"
26    #include "Synthesizer.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 45  namespace LinuxSampler { namespace gig { Line 47  namespace LinuxSampler { namespace gig {
47      Voice::Voice() {      Voice::Voice() {
48          pEngine     = NULL;          pEngine     = NULL;
49          pDiskThread = NULL;          pDiskThread = NULL;
50          Active = false;          PlaybackState = playback_state_end;
51          pEG1   = NULL;          pEG1   = NULL;
52          pEG2   = NULL;          pEG2   = NULL;
53          pEG3   = NULL;          pEG3   = NULL;
# Line 56  namespace LinuxSampler { namespace gig { Line 58  namespace LinuxSampler { namespace gig {
58          pLFO2  = NULL;          pLFO2  = NULL;
59          pLFO3  = NULL;          pLFO3  = NULL;
60          KeyGroup = 0;          KeyGroup = 0;
61            SynthesisMode = 0; //Set all mode bits to 0 first
62    
63            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
64            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
65            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);
66      }      }
67    
68      Voice::~Voice() {      Voice::~Voice() {
# Line 103  namespace LinuxSampler { namespace gig { Line 110  namespace LinuxSampler { namespace gig {
110       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
111       *  needed.       *  needed.
112       *       *
113       *  @param pNoteOnEvent        - event that caused triggering of this voice       *  @param itNoteOnEvent       - event that caused triggering of this voice
114       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)
115       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data
116       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)
117       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)
118         *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices
119       *  @returns 0 on success, a value < 0 if something failed       *  @returns 0 on success, a value < 0 if something failed
120       */       */
121      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice) {      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {
122          if (!pInstrument) {          if (!pInstrument) {
123             dmsg(1,("voice::trigger: !pInstrument\n"));             dmsg(1,("voice::trigger: !pInstrument\n"));
124             exit(EXIT_FAILURE);             exit(EXIT_FAILURE);
125          }          }
126            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // FIXME: should be removed before the final release (purpose: just a sanity check for debugging)
127                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
128            }
129    
130          Type            = type_normal;          Type            = type_normal;
131          Active          = true;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
         MIDIKey         = pNoteOnEvent->Param.Note.Key;  
132          pRegion         = pInstrument->GetRegion(MIDIKey);          pRegion         = pInstrument->GetRegion(MIDIKey);
133          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
134          Delay           = pNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
135          pTriggerEvent   = pNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
136          pKillEvent      = NULL;          itKillEvent     = Pool<Event>::Iterator();
137            itChildVoice    = Pool<Voice>::Iterator();
138    
139          if (!pRegion) {          if (!pRegion) {
140              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;
# Line 146  namespace LinuxSampler { namespace gig { Line 157  namespace LinuxSampler { namespace gig {
157                      // if this is the 1st layer then spawn further voices for all the other layers                      // if this is the 1st layer then spawn further voices for all the other layers
158                      if (iLayer == 0)                      if (iLayer == 0)
159                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)                          for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)
160                              pEngine->LaunchVoice(pNoteOnEvent, iNewLayer, ReleaseTriggerVoice);                              itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);
161                      break;                      break;
162                  case ::gig::dimension_velocity:                  case ::gig::dimension_velocity:
163                      DimValues[i] = pNoteOnEvent->Param.Note.Velocity;                      DimValues[i] = itNoteOnEvent->Param.Note.Velocity;
164                      break;                      break;
165                  case ::gig::dimension_channelaftertouch:                  case ::gig::dimension_channelaftertouch:
166                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      DimValues[i] = 0; //TODO: we currently ignore this dimension
# Line 159  namespace LinuxSampler { namespace gig { Line 170  namespace LinuxSampler { namespace gig {
170                      DimValues[i] = (uint) ReleaseTriggerVoice;                      DimValues[i] = (uint) ReleaseTriggerVoice;
171                      break;                      break;
172                  case ::gig::dimension_keyboard:                  case ::gig::dimension_keyboard:
173                      DimValues[i] = (uint) pNoteOnEvent->Param.Note.Key;                      DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;
174                      break;                      break;
175                  case ::gig::dimension_modwheel:                  case ::gig::dimension_modwheel:
176                      DimValues[i] = pEngine->ControllerTable[1];                      DimValues[i] = pEngine->ControllerTable[1];
# Line 239  namespace LinuxSampler { namespace gig { Line 250  namespace LinuxSampler { namespace gig {
250          }          }
251          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);
252    
253            pSample = pDimRgn->pSample; // sample won't change until the voice is finished
254    
255            // select channel mode (mono or stereo)
256            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
257    
258          // get starting crossfade volume level          // get starting crossfade volume level
259          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
260              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
261                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
262                  break;                  break;
263              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
264                  CrossfadeVolume = CrossfadeAttenuation(pNoteOnEvent->Param.Note.Velocity);                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
265                  break;                  break;
266              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
267                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);
# Line 255  namespace LinuxSampler { namespace gig { Line 271  namespace LinuxSampler { namespace gig {
271                  CrossfadeVolume = 1.0f;                  CrossfadeVolume = 1.0f;
272          }          }
273    
274          PanLeft  = float(RTMath::Max(pDimRgn->Pan, 0)) / -64.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
275          PanRight = float(RTMath::Min(pDimRgn->Pan, 0)) /  63.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
   
         pSample = pDimRgn->pSample; // sample won't change until the voice is finished  
276    
277          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
278    
# Line 302  namespace LinuxSampler { namespace gig { Line 316  namespace LinuxSampler { namespace gig {
316              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
317          }          }
318    
319            Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
         Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)  
   
320    
321          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
322          {          {
# Line 318  namespace LinuxSampler { namespace gig { Line 330  namespace LinuxSampler { namespace gig {
330                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
331                      break;                      break;
332                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
333                      eg1controllervalue = pNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
334                      break;                      break;
335                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
336                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];
# Line 344  namespace LinuxSampler { namespace gig { Line 356  namespace LinuxSampler { namespace gig {
356          }          }
357    
358    
     #if ENABLE_FILTER  
359          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
360          {          {
361              // get current value of EG2 controller              // get current value of EG2 controller
# Line 357  namespace LinuxSampler { namespace gig { Line 368  namespace LinuxSampler { namespace gig {
368                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
369                      break;                      break;
370                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
371                      eg2controllervalue = pNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
372                      break;                      break;
373                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
374                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];
# Line 381  namespace LinuxSampler { namespace gig { Line 392  namespace LinuxSampler { namespace gig {
392                            pDimRgn->EG2Release + eg2release,                            pDimRgn->EG2Release + eg2release,
393                            Delay);                            Delay);
394          }          }
     #endif // ENABLE_FILTER  
395    
396    
397          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
# Line 428  namespace LinuxSampler { namespace gig { Line 438  namespace LinuxSampler { namespace gig {
438                            Delay);                            Delay);
439          }          }
440    
441      #if ENABLE_FILTER  
442          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
443          {          {
444              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 465  namespace LinuxSampler { namespace gig { Line 475  namespace LinuxSampler { namespace gig {
475                            pEngine->SampleRate,                            pEngine->SampleRate,
476                            Delay);                            Delay);
477          }          }
478      #endif // ENABLE_FILTER  
479    
480          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
481          {          {
# Line 504  namespace LinuxSampler { namespace gig { Line 514  namespace LinuxSampler { namespace gig {
514                            Delay);                            Delay);
515          }          }
516    
517      #if ENABLE_FILTER  
518          #if FORCE_FILTER_USAGE          #if FORCE_FILTER_USAGE
519          FilterLeft.Enabled = FilterRight.Enabled = true;          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, true);
520          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
521          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, pDimRgn->VCFEnabled);
522          #endif // FORCE_FILTER_USAGE          #endif // FORCE_FILTER_USAGE
523          if (pDimRgn->VCFEnabled) {          if (pDimRgn->VCFEnabled) {
524              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL
# Line 585  namespace LinuxSampler { namespace gig { Line 595  namespace LinuxSampler { namespace gig {
595    
596              // calculate cutoff frequency              // calculate cutoff frequency
597              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = (!VCFCutoffCtrl.controller)
598                  ? exp((float) (127 - pNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX
599                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;
600    
601              // calculate resonance              // calculate resonance
602              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
603              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
604                  resonance += (float) (pNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
605              }              }
606              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
607    
608              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;
609              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
610    
             FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);  
   
611              FilterUpdateCounter = -1;              FilterUpdateCounter = -1;
612          }          }
613          else {          else {
614              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
615              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
616          }          }
     #endif // ENABLE_FILTER  
617    
618          return 0; // success          return 0; // success
619      }      }
# Line 625  namespace LinuxSampler { namespace gig { Line 631  namespace LinuxSampler { namespace gig {
631       */       */
632      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
633    
634            // select default values for synthesis mode bits
635            SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);
636            SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);
637            SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
638    
639          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
640    
641          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);
642          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
     #if ENABLE_FILTER  
643          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
644          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);
     #endif // ENABLE_FILTER  
   
645    
646          // Apply events to the synthesis parameter matrix          // Apply events to the synthesis parameter matrix
647          ProcessEvents(Samples);          ProcessEvents(Samples);
648    
   
649          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
650          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, pKillEvent);          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
651      #if ENABLE_FILTER          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
652          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          if (pEG3->Process(Samples)) { // if pitch EG is active
653      #endif // ENABLE_FILTER              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
654          pEG3->Process(Samples);              SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
655            }
656          pLFO1->Process(Samples);          pLFO1->Process(Samples);
     #if ENABLE_FILTER  
657          pLFO2->Process(Samples);          pLFO2->Process(Samples);
658      #endif // ENABLE_FILTER          if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active
659          pLFO3->Process(Samples);              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
660                SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
661            }
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
662    
663            if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))
664                    CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters
665    
666          switch (this->PlaybackState) {          switch (this->PlaybackState) {
667    
668              case playback_state_ram: {              case playback_state_ram: {
669                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
670                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
671                        // render current fragment
672                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
673    
674                      if (DiskVoice) {                      if (DiskVoice) {
675                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
676                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 683  namespace LinuxSampler { namespace gig { Line 693  namespace LinuxSampler { namespace gig {
693                              KillImmediately();                              KillImmediately();
694                              return;                              return;
695                          }                          }
696                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));
697                          Pos -= RTMath::DoubleToInt(Pos);                          Pos -= int(Pos);
698                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
699                      }                      }
700    
701                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
702    
703                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
704                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
705                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
706                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
707                                // remember how many sample words there are before any silence has been added
708                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
709                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
710                            }
711                      }                      }
712    
713                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
714                      InterpolateNoLoop(Samples, ptr, Delay);  
715                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
716                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
717    
718                        const int iPos = (int) Pos;
719                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
720                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
721                        Pos -= iPos; // just keep fractional part of Pos
722    
723                        // change state of voice to 'end' if we really reached the end of the sample data
724                        if (RealSampleWordsLeftToRead >= 0) {
725                            RealSampleWordsLeftToRead -= readSampleWords;
726                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
727                        }
728                  }                  }
729                  break;                  break;
730    
731              case playback_state_end:              case playback_state_end:
732                  KillImmediately(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
733                  break;                  break;
734          }          }
735    
   
736          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
737          pEngine->pSynthesisEvents[Event::destination_vca]->clear();          pEngine->pSynthesisEvents[Event::destination_vca]->clear();
     #if ENABLE_FILTER  
738          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();
739          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();
     #endif // ENABLE_FILTER  
740    
741          // Reset delay          // Reset delay
742          Delay = 0;          Delay = 0;
743    
744          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
745    
746          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
747          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();
748      }      }
749    
750      /**      /**
# Line 730  namespace LinuxSampler { namespace gig { Line 755  namespace LinuxSampler { namespace gig {
755          pLFO1->Reset();          pLFO1->Reset();
756          pLFO2->Reset();          pLFO2->Reset();
757          pLFO3->Reset();          pLFO3->Reset();
758            FilterLeft.Reset();
759            FilterRight.Reset();
760          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
761          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
762          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
763          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
764          Active = false;          PlaybackState = playback_state_end;
765            itTriggerEvent = Pool<Event>::Iterator();
766            itKillEvent    = Pool<Event>::Iterator();
767      }      }
768    
769      /**      /**
# Line 747  namespace LinuxSampler { namespace gig { Line 776  namespace LinuxSampler { namespace gig {
776      void Voice::ProcessEvents(uint Samples) {      void Voice::ProcessEvents(uint Samples) {
777    
778          // dispatch control change events          // dispatch control change events
779          Event* pCCEvent = pEngine->pCCEvents->first();          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();
780          if (Delay) { // skip events that happened before this voice was triggered          if (Delay) { // skip events that happened before this voice was triggered
781              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;
782          }          }
783          while (pCCEvent) {          while (itCCEvent) {
784              if (pCCEvent->Param.CC.Controller) { // if valid MIDI controller              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
785                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
786                  if (pCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
                     pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);  
787                  }                  }
788                  if (pCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
789                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
790                  }                  }
791                  #endif // ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
792                  if (pCCEvent->Param.CC.Controller == pLFO1->ExtController) {                      pLFO1->SendEvent(itCCEvent);
                     pLFO1->SendEvent(pCCEvent);  
793                  }                  }
794                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
795                  if (pCCEvent->Param.CC.Controller == pLFO2->ExtController) {                      pLFO2->SendEvent(itCCEvent);
                     pLFO2->SendEvent(pCCEvent);  
796                  }                  }
797                  #endif // ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
798                  if (pCCEvent->Param.CC.Controller == pLFO3->ExtController) {                      pLFO3->SendEvent(itCCEvent);
                     pLFO3->SendEvent(pCCEvent);  
799                  }                  }
800                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
801                      pCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
802                      pEngine->pSynthesisEvents[Event::destination_vca]->alloc_assign(*pCCEvent);                      *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;
803                  }                  }
804              }              }
805    
806              pCCEvent = pEngine->pCCEvents->next();              ++itCCEvent;
807          }          }
808    
809    
810          // process pitch events          // process pitch events
811          {          {
812              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];
813              Event* pVCOEvent = pVCOEventList->first();              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();
814              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
815                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;
816              }              }
817              // apply old pitchbend value until first pitch event occurs              // apply old pitchbend value until first pitch event occurs
818              if (this->PitchBend != 1.0) {              if (this->PitchBend != 1.0) {
819                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;
820                  for (uint i = Delay; i < end; i++) {                  for (uint i = Delay; i < end; i++) {
821                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;
822                  }                  }
823              }              }
824              float pitch;              float pitch;
825              while (pVCOEvent) {              while (itVCOEvent) {
826                  Event* pNextVCOEvent = pVCOEventList->next();                  RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;
827                    ++itNextVCOEvent;
828    
829                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
830                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;                  uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;
831    
832                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents                  pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
833    
834                  // apply pitch value to the pitch parameter sequence                  // apply pitch value to the pitch parameter sequence
835                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {
836                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;
837                  }                  }
838    
839                  pVCOEvent = pNextVCOEvent;                  itVCOEvent = itNextVCOEvent;
840                }
841                if (!pVCOEventList->isEmpty()) {
842                    this->PitchBend = pitch;
843                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
844                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
845              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
846          }          }
847    
848          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
849          {          {
850              RTEList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];              RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];
851              Event* pVCAEvent = pVCAEventList->first();              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();
852              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
853                  while (pVCAEvent && pVCAEvent->FragmentPos() <= Delay) pVCAEvent = pVCAEventList->next();                  while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;
854              }              }
855              float crossfadevolume;              float crossfadevolume;
856              while (pVCAEvent) {              while (itVCAEvent) {
857                  Event* pNextVCAEvent = pVCAEventList->next();                  RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;
858                    ++itNextVCAEvent;
859    
860                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
861                  uint end = (pNextVCAEvent) ? pNextVCAEvent->FragmentPos() : Samples;                  uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;
862    
863                  crossfadevolume = CrossfadeAttenuation(pVCAEvent->Param.CC.Value);                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);
864    
865                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;
866    
867                  // apply volume value to the volume parameter sequence                  // apply volume value to the volume parameter sequence
868                  for (uint i = pVCAEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {
869                      pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;                      pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;
870                  }                  }
871    
872                  pVCAEvent = pNextVCAEvent;                  itVCAEvent = itNextVCAEvent;
873              }              }
874              if (pVCAEventList->last()) this->CrossfadeVolume = crossfadevolume;              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
875          }          }
876    
     #if ENABLE_FILTER  
877          // process filter cutoff events          // process filter cutoff events
878          {          {
879              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];              RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];
880              Event* pCutoffEvent = pCutoffEventList->first();              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();
881              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
882                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;
883              }              }
884              float cutoff;              float cutoff;
885              while (pCutoffEvent) {              while (itCutoffEvent) {
886                  Event* pNextCutoffEvent = pCutoffEventList->next();                  RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;
887                    ++itNextCutoffEvent;
888    
889                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
890                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;
891    
892                  cutoff = exp((float) pCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;
893    
894                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
895                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {
896                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;
897                  }                  }
898    
899                  pCutoffEvent = pNextCutoffEvent;                  itCutoffEvent = itNextCutoffEvent;
900              }              }
901              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time
902          }          }
903    
904          // process filter resonance events          // process filter resonance events
905          {          {
906              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];
907              Event* pResonanceEvent = pResonanceEventList->first();              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();
908              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
909                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;
910              }              }
911              while (pResonanceEvent) {              while (itResonanceEvent) {
912                  Event* pNextResonanceEvent = pResonanceEventList->next();                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;
913                    ++itNextResonanceEvent;
914    
915                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
916                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;
917    
918                  // convert absolute controller value to differential                  // convert absolute controller value to differential
919                  int ctrldelta = pResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;                  int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;
920                  VCFResonanceCtrl.value = pResonanceEvent->Param.CC.Value;                  VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;
921    
922                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
923    
924                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
925                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {
926                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;
927                  }                  }
928    
929                  pResonanceEvent = pNextResonanceEvent;                  itResonanceEvent = itNextResonanceEvent;
930              }              }
931              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
932          }          }
     #endif // ENABLE_FILTER  
933      }      }
934    
     #if ENABLE_FILTER  
935      /**      /**
936       * Calculate all necessary, final biquad filter parameters.       * Calculate all necessary, final biquad filter parameters.
937       *       *
938       * @param Samples - number of samples to be rendered in this audio fragment cycle       * @param Samples - number of samples to be rendered in this audio fragment cycle
939       */       */
940      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::CalculateBiquadParameters(uint Samples) {
         if (!FilterLeft.Enabled) return;  
   
941          biquad_param_t bqbase;          biquad_param_t bqbase;
942          biquad_param_t bqmain;          biquad_param_t bqmain;
943          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];
944          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];
945          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);
946            FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);
947          pEngine->pBasicFilterParameters[0] = bqbase;          pEngine->pBasicFilterParameters[0] = bqbase;
948          pEngine->pMainFilterParameters[0]  = bqmain;          pEngine->pMainFilterParameters[0]  = bqmain;
949    
950          float* bq;          float* bq;
951          for (int i = 1; i < Samples; i++) {          for (int i = 1; i < Samples; i++) {
952              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              // recalculate biquad parameters if cutoff or resonance differ from previous sample point
953              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||              if (!(i & FILTER_UPDATE_MASK)) {
954                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||
955                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)
956                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];                  {
957                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];
958                        prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];
959                        FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);
960                        FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);
961                    }
962              }              }
963    
964              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'
965              bq    = (float*) &pEngine->pBasicFilterParameters[i];              bq    = (float*) &pEngine->pBasicFilterParameters[i];
966              bq[0] = bqbase.a1;              bq[0] = bqbase.b0;
967              bq[1] = bqbase.a2;              bq[1] = bqbase.b1;
968              bq[2] = bqbase.b0;              bq[2] = bqbase.b2;
969              bq[3] = bqbase.b1;              bq[3] = bqbase.a1;
970              bq[4] = bqbase.b2;              bq[4] = bqbase.a2;
971    
972              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'
973              bq    = (float*) &pEngine->pMainFilterParameters[i];              bq    = (float*) &pEngine->pMainFilterParameters[i];
974              bq[0] = bqmain.a1;              bq[0] = bqmain.b0;
975              bq[1] = bqmain.a2;              bq[1] = bqmain.b1;
976              bq[2] = bqmain.b0;              bq[2] = bqmain.b2;
977              bq[3] = bqmain.b1;              bq[3] = bqmain.a1;
978              bq[4] = bqmain.b2;              bq[4] = bqmain.a2;
979          }          }
980      }      }
     #endif // ENABLE_FILTER  
981    
982      /**      /**
983       *  Interpolates the input audio data (without looping).       *  Synthesizes the current audio fragment for this voice.
984       *       *
985       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
986       *                   fragment cycle       *                   fragment cycle
987       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
988       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
989       */       */
990      void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
991          int i = Skip;          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);
   
         // FIXME: assuming either mono or stereo  
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) InterpolateStereo(pSrc, i);  
         }  
         else { // Mono Sample  
             while (i < Samples) InterpolateMono(pSrc, i);  
         }  
     }  
   
     /**  
      *  Interpolates the input audio data, this method honors looping.  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
   
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateStereo(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateMono(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
         }  
992      }      }
993    
994      /**      /**
# Line 1047  namespace LinuxSampler { namespace gig { Line 1013  namespace LinuxSampler { namespace gig {
1013       *  of a voice, a kill process cannot be cancalled and is therefore       *  of a voice, a kill process cannot be cancalled and is therefore
1014       *  usually used for voice stealing and key group conflicts.       *  usually used for voice stealing and key group conflicts.
1015       *       *
1016       *  @param pKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
1017       */       */
1018      void Voice::Kill(Event* pKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
1019          if (pTriggerEvent && pKillEvent->FragmentPos() <= pTriggerEvent->FragmentPos()) return;          //FIXME: just two sanity checks for debugging, can be removed
1020          this->pKillEvent = pKillEvent;          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
1021            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
1022    
1023            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
1024            this->itKillEvent = itKillEvent;
1025      }      }
1026    
1027  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.246  
changed lines
  Added in v.332

  ViewVC Help
Powered by ViewVC