/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 230 by schoenebeck, Thu Sep 2 21:52:29 2004 UTC revision 407 by persson, Wed Feb 23 19:14:14 2005 UTC
# Line 22  Line 22 
22    
23  #include "EGADSR.h"  #include "EGADSR.h"
24  #include "Manipulator.h"  #include "Manipulator.h"
25    #include "../../common/Features.h"
26    #include "Synthesizer.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     // FIXME: no support for layers (nor crossfades) yet  
   
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
34      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());
# Line 47  namespace LinuxSampler { namespace gig { Line 47  namespace LinuxSampler { namespace gig {
47      Voice::Voice() {      Voice::Voice() {
48          pEngine     = NULL;          pEngine     = NULL;
49          pDiskThread = NULL;          pDiskThread = NULL;
50          Active = false;          PlaybackState = playback_state_end;
51          pEG1   = NULL;          pEG1   = NULL;
52          pEG2   = NULL;          pEG2   = NULL;
53          pEG3   = NULL;          pEG3   = NULL;
# Line 57  namespace LinuxSampler { namespace gig { Line 57  namespace LinuxSampler { namespace gig {
57          pLFO1  = NULL;          pLFO1  = NULL;
58          pLFO2  = NULL;          pLFO2  = NULL;
59          pLFO3  = NULL;          pLFO3  = NULL;
60            KeyGroup = 0;
61            SynthesisMode = 0; // set all mode bits to 0 first
62            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
63            #if ARCH_X86
64            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
65            #else
66            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
67            #endif
68            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);
69    
70            FilterLeft.Reset();
71            FilterRight.Reset();
72      }      }
73    
74      Voice::~Voice() {      Voice::~Voice() {
# Line 104  namespace LinuxSampler { namespace gig { Line 116  namespace LinuxSampler { namespace gig {
116       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
117       *  needed.       *  needed.
118       *       *
119       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param itNoteOnEvent       - event that caused triggering of this voice
120       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)
121       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data
122       *  @returns            0 on success, a value < 0 if something failed       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)
123         *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)
124         *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices
125         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
126         *           (either due to an error or e.g. because no region is
127         *           defined for the given key)
128       */       */
129      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument) {      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {
130          if (!pInstrument) {          if (!pInstrument) {
131             dmsg(1,("voice::trigger: !pInstrument\n"));             dmsg(1,("voice::trigger: !pInstrument\n"));
132             exit(EXIT_FAILURE);             exit(EXIT_FAILURE);
133          }          }
134            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // FIXME: should be removed before the final release (purpose: just a sanity check for debugging)
135                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
136            }
137    
138          Active          = true;          Type            = type_normal;
139          MIDIKey         = pNoteOnEvent->Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
140          pRegion         = pInstrument->GetRegion(MIDIKey);          pRegion         = pInstrument->GetRegion(MIDIKey);
141          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
142          Pos             = 0;          Delay           = itNoteOnEvent->FragmentPos();
143          Delay           = pNoteOnEvent->FragmentPos();          itTriggerEvent  = itNoteOnEvent;
144          pTriggerEvent   = pNoteOnEvent;          itKillEvent     = Pool<Event>::Iterator();
145            itChildVoice    = Pool<Voice>::Iterator();
146    
147          if (!pRegion) {          if (!pRegion) {
148              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;              dmsg(4, ("gig::Voice: No Region defined for MIDI key %d\n", MIDIKey));
             Kill();  
149              return -1;              return -1;
150          }          }
151    
152            KeyGroup = pRegion->KeyGroup;
153    
154          // get current dimension values to select the right dimension region          // get current dimension values to select the right dimension region
155          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          //FIXME: controller values for selecting the dimension region here are currently not sample accurate
156          uint DimValues[5] = {0,0,0,0,0};          uint DimValues[8] = { 0 };
157          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {
158              switch (pRegion->pDimensionDefinitions[i].dimension) {              switch (pRegion->pDimensionDefinitions[i].dimension) {
159                  case ::gig::dimension_samplechannel:                  case ::gig::dimension_samplechannel:
160                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      DimValues[i] = 0; //TODO: we currently ignore this dimension
161                      break;                      break;
162                  case ::gig::dimension_layer:                  case ::gig::dimension_layer:
163                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      DimValues[i] = iLayer;
164                        // if this is the 1st layer then spawn further voices for all the other layers
165                        if (iLayer == 0)
166                            for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)
167                                itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);
168                      break;                      break;
169                  case ::gig::dimension_velocity:                  case ::gig::dimension_velocity:
170                      DimValues[i] = pNoteOnEvent->Velocity;                      DimValues[i] = itNoteOnEvent->Param.Note.Velocity;
171                      break;                      break;
172                  case ::gig::dimension_channelaftertouch:                  case ::gig::dimension_channelaftertouch:
173                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      DimValues[i] = 0; //TODO: we currently ignore this dimension
174                      break;                      break;
175                  case ::gig::dimension_releasetrigger:                  case ::gig::dimension_releasetrigger:
176                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;
177                        DimValues[i] = (uint) ReleaseTriggerVoice;
178                      break;                      break;
179                  case ::gig::dimension_keyboard:                  case ::gig::dimension_keyboard:
180                      DimValues[i] = (uint) pNoteOnEvent->Key;                      DimValues[i] = (uint) pEngine->CurrentKeyDimension;
181                      break;                      break;
182                  case ::gig::dimension_modwheel:                  case ::gig::dimension_modwheel:
183                      DimValues[i] = pEngine->ControllerTable[1];                      DimValues[i] = pEngine->ControllerTable[1];
# Line 228  namespace LinuxSampler { namespace gig { Line 255  namespace LinuxSampler { namespace gig {
255                      std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;                      std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;
256              }              }
257          }          }
258          ::gig::DimensionRegion* pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues);
259    
260          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          pSample = pDimRgn->pSample; // sample won't change until the voice is finished
261            if (!pSample || !pSample->SamplesTotal) return -1; // no need to continue if sample is silent
262    
263            // select channel mode (mono or stereo)
264            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
265    
266            // get starting crossfade volume level
267            switch (pDimRgn->AttenuationController.type) {
268                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
269                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
270                    break;
271                case ::gig::attenuation_ctrl_t::type_velocity:
272                    CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
273                    break;
274                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
275                    CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);
276                    break;
277                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
278                default:
279                    CrossfadeVolume = 1.0f;
280            }
281    
282            PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
283            PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
284    
285            Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
286    
287          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
288          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
# Line 248  namespace LinuxSampler { namespace gig { Line 300  namespace LinuxSampler { namespace gig {
300    
301              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
302                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
303                  Kill();                  KillImmediately();
304                  return -1;                  return -1;
305              }              }
306              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
# Line 266  namespace LinuxSampler { namespace gig { Line 318  namespace LinuxSampler { namespace gig {
318    
319          // calculate initial pitch value          // calculate initial pitch value
320          {          {
321              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
322              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
323              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents);              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));
324              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
325          }          }
326    
327            Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
328    
329          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          Volume *= pDimRgn->SampleAttenuation;
   
330    
331          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
332          {          {
# Line 288  namespace LinuxSampler { namespace gig { Line 340  namespace LinuxSampler { namespace gig {
340                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
341                      break;                      break;
342                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
343                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
344                      break;                      break;
345                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
346                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];
# Line 314  namespace LinuxSampler { namespace gig { Line 366  namespace LinuxSampler { namespace gig {
366          }          }
367    
368    
     #if ENABLE_FILTER  
369          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
370          {          {
371              // get current value of EG2 controller              // get current value of EG2 controller
# Line 327  namespace LinuxSampler { namespace gig { Line 378  namespace LinuxSampler { namespace gig {
378                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
379                      break;                      break;
380                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
381                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
382                      break;                      break;
383                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
384                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];
# Line 351  namespace LinuxSampler { namespace gig { Line 402  namespace LinuxSampler { namespace gig {
402                            pDimRgn->EG2Release + eg2release,                            pDimRgn->EG2Release + eg2release,
403                            Delay);                            Delay);
404          }          }
     #endif // ENABLE_FILTER  
405    
406    
407          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
# Line 398  namespace LinuxSampler { namespace gig { Line 448  namespace LinuxSampler { namespace gig {
448                            Delay);                            Delay);
449          }          }
450    
451      #if ENABLE_FILTER  
452          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
453          {          {
454              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 435  namespace LinuxSampler { namespace gig { Line 485  namespace LinuxSampler { namespace gig {
485                            pEngine->SampleRate,                            pEngine->SampleRate,
486                            Delay);                            Delay);
487          }          }
488      #endif // ENABLE_FILTER  
489    
490          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
491          {          {
# Line 474  namespace LinuxSampler { namespace gig { Line 524  namespace LinuxSampler { namespace gig {
524                            Delay);                            Delay);
525          }          }
526    
527      #if ENABLE_FILTER  
528          #if FORCE_FILTER_USAGE          #if FORCE_FILTER_USAGE
529          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
530          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
531          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
532          #endif // FORCE_FILTER_USAGE          #endif // FORCE_FILTER_USAGE
533          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
534            if (bUseFilter) {
535              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL
536              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;
537              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
# Line 555  namespace LinuxSampler { namespace gig { Line 606  namespace LinuxSampler { namespace gig {
606    
607              // calculate cutoff frequency              // calculate cutoff frequency
608              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = (!VCFCutoffCtrl.controller)
609                  ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX
610                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;
611    
612              // calculate resonance              // calculate resonance
613              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
614              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
615                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
616              }              }
617              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
618    
619              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;
620              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
621    
             FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);  
   
622              FilterUpdateCounter = -1;              FilterUpdateCounter = -1;
623          }          }
624          else {          else {
625              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
626              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
627          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
628    
629          return 0; // success          return 0; // success
630      }      }
# Line 599  namespace LinuxSampler { namespace gig { Line 642  namespace LinuxSampler { namespace gig {
642       */       */
643      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
644    
645            // select default values for synthesis mode bits
646            SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);
647            SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);
648            SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
649    
650          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
651          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);  
652            pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);
653          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
     #if ENABLE_FILTER  
654          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
655          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);
     #endif // ENABLE_FILTER  
   
656    
657          // Apply events to the synthesis parameter matrix          // Apply events to the synthesis parameter matrix
658          ProcessEvents(Samples);          ProcessEvents(Samples);
659    
   
660          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
661          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
662      #if ENABLE_FILTER          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
663          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          if (pEG3->Process(Samples)) { // if pitch EG is active
664      #endif // ENABLE_FILTER              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
665          pEG3->Process(Samples);              SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
666            }
667          pLFO1->Process(Samples);          pLFO1->Process(Samples);
     #if ENABLE_FILTER  
668          pLFO2->Process(Samples);          pLFO2->Process(Samples);
669      #endif // ENABLE_FILTER          if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active
670          pLFO3->Process(Samples);              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
671                SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
672            }
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
673    
674            if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))
675                    CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters
676    
677          switch (this->PlaybackState) {          switch (this->PlaybackState) {
678    
679              case playback_state_ram: {              case playback_state_ram: {
680                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
681                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
682                        // render current fragment
683                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
684    
685                      if (DiskVoice) {                      if (DiskVoice) {
686                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
687                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 654  namespace LinuxSampler { namespace gig { Line 701  namespace LinuxSampler { namespace gig {
701                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
702                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
703                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
704                              Kill();                              KillImmediately();
705                              return;                              return;
706                          }                          }
707                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));
708                          Pos -= RTMath::DoubleToInt(Pos);                          Pos -= int(Pos);
709                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
710                      }                      }
711    
712                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
713    
714                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
715                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
716                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
717                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
718                                // remember how many sample words there are before any silence has been added
719                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
720                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
721                            }
722                      }                      }
723    
724                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
725                      Interpolate(Samples, ptr, Delay);  
726                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
727                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
728    
729                        const int iPos = (int) Pos;
730                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
731                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
732                        Pos -= iPos; // just keep fractional part of Pos
733    
734                        // change state of voice to 'end' if we really reached the end of the sample data
735                        if (RealSampleWordsLeftToRead >= 0) {
736                            RealSampleWordsLeftToRead -= readSampleWords;
737                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
738                        }
739                  }                  }
740                  break;                  break;
741    
742              case playback_state_end:              case playback_state_end:
743                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
744                  break;                  break;
745          }          }
746    
   
     #if ENABLE_FILTER  
747          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
748            pEngine->pSynthesisEvents[Event::destination_vca]->clear();
749          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();
750          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();
     #endif // ENABLE_FILTER  
751    
752          // Reset delay          // Reset delay
753          Delay = 0;          Delay = 0;
754    
755          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
756    
757          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
758          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();
759      }      }
760    
761      /**      /**
# Line 703  namespace LinuxSampler { namespace gig { Line 766  namespace LinuxSampler { namespace gig {
766          pLFO1->Reset();          pLFO1->Reset();
767          pLFO2->Reset();          pLFO2->Reset();
768          pLFO3->Reset();          pLFO3->Reset();
769            FilterLeft.Reset();
770            FilterRight.Reset();
771          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
772          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
773          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
774          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
775          Active = false;          PlaybackState = playback_state_end;
776            itTriggerEvent = Pool<Event>::Iterator();
777            itKillEvent    = Pool<Event>::Iterator();
778      }      }
779    
780      /**      /**
# Line 720  namespace LinuxSampler { namespace gig { Line 787  namespace LinuxSampler { namespace gig {
787      void Voice::ProcessEvents(uint Samples) {      void Voice::ProcessEvents(uint Samples) {
788    
789          // dispatch control change events          // dispatch control change events
790          Event* pCCEvent = pEngine->pCCEvents->first();          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();
791          if (Delay) { // skip events that happened before this voice was triggered          if (Delay) { // skip events that happened before this voice was triggered
792              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;
793          }          }
794          while (pCCEvent) {          while (itCCEvent) {
795              if (pCCEvent->Controller) { // if valid MIDI controller              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
796                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
797                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
798                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);                  }
799                    if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
800                        *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
801                  }                  }
802                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
803                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      pLFO1->SendEvent(itCCEvent);
804                  }                  }
805                  #endif // ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
806                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO2->SendEvent(itCCEvent);
                     pLFO1->SendEvent(pCCEvent);  
807                  }                  }
808                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
809                  if (pCCEvent->Controller == pLFO2->ExtController) {                      pLFO3->SendEvent(itCCEvent);
                     pLFO2->SendEvent(pCCEvent);  
810                  }                  }
811                  #endif // ENABLE_FILTER                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
812                  if (pCCEvent->Controller == pLFO3->ExtController) {                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
813                      pLFO3->SendEvent(pCCEvent);                      *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;
814                  }                  }
815              }              }
816    
817              pCCEvent = pEngine->pCCEvents->next();              ++itCCEvent;
818          }          }
819    
820    
821          // process pitch events          // process pitch events
822          {          {
823              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];
824              Event* pVCOEvent = pVCOEventList->first();              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();
825              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
826                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;
827              }              }
828              // apply old pitchbend value until first pitch event occurs              // apply old pitchbend value until first pitch event occurs
829              if (this->PitchBend != 1.0) {              if (this->PitchBend != 1.0) {
830                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;
831                  for (uint i = Delay; i < end; i++) {                  for (uint i = Delay; i < end; i++) {
832                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;
833                  }                  }
834              }              }
835              float pitch;              float pitch;
836              while (pVCOEvent) {              while (itVCOEvent) {
837                  Event* pNextVCOEvent = pVCOEventList->next();                  RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;
838                    ++itNextVCOEvent;
839    
840                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
841                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;                  uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;
842    
843                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents                  pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
844    
845                  // apply pitch value to the pitch parameter sequence                  // apply pitch value to the pitch parameter sequence
846                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {
847                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;
848                  }                  }
849    
850                  pVCOEvent = pNextVCOEvent;                  itVCOEvent = itNextVCOEvent;
851                }
852                if (!pVCOEventList->isEmpty()) {
853                    this->PitchBend = pitch;
854                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
855                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
856              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
857          }          }
858    
859            // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
860            {
861                RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];
862                RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();
863                if (Delay) { // skip events that happened before this voice was triggered
864                    while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;
865                }
866                float crossfadevolume;
867                while (itVCAEvent) {
868                    RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;
869                    ++itNextVCAEvent;
870    
871                    // calculate the influence length of this event (in sample points)
872                    uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;
873    
874                    crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);
875    
876                    float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;
877    
878                    // apply volume value to the volume parameter sequence
879                    for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {
880                        pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;
881                    }
882    
883                    itVCAEvent = itNextVCAEvent;
884                }
885                if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
886            }
887    
     #if ENABLE_FILTER  
888          // process filter cutoff events          // process filter cutoff events
889          {          {
890              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];              RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];
891              Event* pCutoffEvent = pCutoffEventList->first();              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();
892              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
893                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;
894              }              }
895              float cutoff;              float cutoff;
896              while (pCutoffEvent) {              while (itCutoffEvent) {
897                  Event* pNextCutoffEvent = pCutoffEventList->next();                  RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;
898                    ++itNextCutoffEvent;
899    
900                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
901                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;
902    
903                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;
904    
905                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
906                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {
907                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;
908                  }                  }
909    
910                  pCutoffEvent = pNextCutoffEvent;                  itCutoffEvent = itNextCutoffEvent;
911              }              }
912              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time
913          }          }
914    
915          // process filter resonance events          // process filter resonance events
916          {          {
917              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];
918              Event* pResonanceEvent = pResonanceEventList->first();              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();
919              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
920                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;
921              }              }
922              while (pResonanceEvent) {              while (itResonanceEvent) {
923                  Event* pNextResonanceEvent = pResonanceEventList->next();                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;
924                    ++itNextResonanceEvent;
925    
926                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
927                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;
928    
929                  // convert absolute controller value to differential                  // convert absolute controller value to differential
930                  int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;                  int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;
931                  VCFResonanceCtrl.value = pResonanceEvent->Value;                  VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;
932    
933                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
934    
935                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
936                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {
937                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;
938                  }                  }
939    
940                  pResonanceEvent = pNextResonanceEvent;                  itResonanceEvent = itNextResonanceEvent;
941              }              }
942              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
943          }          }
     #endif // ENABLE_FILTER  
944      }      }
945    
     #if ENABLE_FILTER  
946      /**      /**
947       * Calculate all necessary, final biquad filter parameters.       * Calculate all necessary, final biquad filter parameters.
948       *       *
949       * @param Samples - number of samples to be rendered in this audio fragment cycle       * @param Samples - number of samples to be rendered in this audio fragment cycle
950       */       */
951      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::CalculateBiquadParameters(uint Samples) {
         if (!FilterLeft.Enabled) return;  
   
952          biquad_param_t bqbase;          biquad_param_t bqbase;
953          biquad_param_t bqmain;          biquad_param_t bqmain;
954          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];
955          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];
956          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
957            FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
958          pEngine->pBasicFilterParameters[0] = bqbase;          pEngine->pBasicFilterParameters[0] = bqbase;
959          pEngine->pMainFilterParameters[0]  = bqmain;          pEngine->pMainFilterParameters[0]  = bqmain;
960    
961          float* bq;          float* bq;
962          for (int i = 1; i < Samples; i++) {          for (int i = 1; i < Samples; i++) {
963              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              // recalculate biquad parameters if cutoff or resonance differ from previous sample point
964              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||              if (!(i & FILTER_UPDATE_MASK)) {
965                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||
966                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)
967                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];                  {
968                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];
969                        prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];
970                        FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
971                        FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
972                    }
973              }              }
974    
975              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'
976              bq    = (float*) &pEngine->pBasicFilterParameters[i];              bq    = (float*) &pEngine->pBasicFilterParameters[i];
977              bq[0] = bqbase.a1;              bq[0] = bqbase.b0;
978              bq[1] = bqbase.a2;              bq[1] = bqbase.b1;
979              bq[2] = bqbase.b0;              bq[2] = bqbase.b2;
980              bq[3] = bqbase.b1;              bq[3] = bqbase.a1;
981              bq[4] = bqbase.b2;              bq[4] = bqbase.a2;
982    
983              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'
984              bq    = (float*) &pEngine->pMainFilterParameters[i];              bq    = (float*) &pEngine->pMainFilterParameters[i];
985              bq[0] = bqmain.a1;              bq[0] = bqmain.b0;
986              bq[1] = bqmain.a2;              bq[1] = bqmain.b1;
987              bq[2] = bqmain.b0;              bq[2] = bqmain.b2;
988              bq[3] = bqmain.b1;              bq[3] = bqmain.a1;
989              bq[4] = bqmain.b2;              bq[4] = bqmain.a2;
990          }          }
991      }      }
     #endif // ENABLE_FILTER  
992    
993      /**      /**
994       *  Interpolates the input audio data (no loop).       *  Synthesizes the current audio fragment for this voice.
995       *       *
996       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
997       *                   fragment cycle       *                   fragment cycle
998       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
999       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
1000       */       */
1001      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
1002          int i = Skip;          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);
   
         // FIXME: assuming either mono or stereo  
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Stereo(pSrc, i,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
         }  
         else { // Mono Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
         }  
1003      }      }
1004    
1005      /**      /**
1006       *  Interpolates the input audio data, this method honors looping.       *  Immediately kill the voice. This method should not be used to kill
1007         *  a normal, active voice, because it doesn't take care of things like
1008         *  fading down the volume level to avoid clicks and regular processing
1009         *  until the kill event actually occured!
1010       *       *
1011       *  @param Samples - number of sample points to be rendered in this audio       *  @see Kill()
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
1012       */       */
1013      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::KillImmediately() {
1014          int i = Skip;          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
1015                pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
1016          }          }
1017            Reset();
1018      }      }
1019    
1020      /**      /**
1021       *  Immediately kill the voice.       *  Kill the voice in regular sense. Let the voice render audio until
1022         *  the kill event actually occured and then fade down the volume level
1023         *  very quickly and let the voice die finally. Unlike a normal release
1024         *  of a voice, a kill process cannot be cancalled and is therefore
1025         *  usually used for voice stealing and key group conflicts.
1026         *
1027         *  @param itKillEvent - event which caused the voice to be killed
1028       */       */
1029      void Voice::Kill() {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
1030          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          //FIXME: just two sanity checks for debugging, can be removed
1031              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
1032          }          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
1033          Reset();  
1034            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
1035            this->itKillEvent = itKillEvent;
1036      }      }
1037    
1038  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.230  
changed lines
  Added in v.407

  ViewVC Help
Powered by ViewVC