/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 438 by persson, Wed Mar 9 22:12:15 2005 UTC revision 832 by persson, Sun Feb 5 10:24:05 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 32  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
47          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48          #if ARCH_X86          #if CONFIG_ASM && ARCH_X86
49          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50          #else          #else
51          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52          #endif          #endif
53          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
56          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 117  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param pEngineChannel      - engine channel on which this voice was ordered       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param itNoteOnEvent       - event that caused triggering of this voice       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param VoiceType      - type of this voice
80       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
      *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices  
81       *  @returns 0 on success, a value < 0 if the voice wasn't triggered       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82       *           (either due to an error or e.g. because no region is       *           (either due to an error or e.g. because no region is
83       *           defined for the given key)       *           defined for the given key)
84       */       */
85      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          this->pEngineChannel = pEngineChannel;          this->pEngineChannel = pEngineChannel;
87          if (!pInstrument) {          this->pDimRgn        = pDimRgn;
88             dmsg(1,("voice::trigger: !pInstrument\n"));  
89             exit(EXIT_FAILURE);          #if CONFIG_DEVMODE
90          }          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
         if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // FIXME: should be removed before the final release (purpose: just a sanity check for debugging)  
91              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          }          }
93            #endif // CONFIG_DEVMODE
94    
95          Type            = type_normal;          Type            = VoiceType;
96          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
98          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
99          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
100          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
101          itChildVoice    = Pool<Voice>::Iterator();          KeyGroup        = iKeyGroup;
102            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104          if (!pRegion) {          // calculate volume
105              dmsg(4, ("gig::Voice: No Region defined for MIDI key %d\n", MIDIKey));          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             return -1;  
         }  
106    
107          KeyGroup = pRegion->KeyGroup;          float volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109          // get current dimension values to select the right dimension region          volume *= pDimRgn->SampleAttenuation;
110          //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
111          uint DimValues[8] = { 0 };          // the volume of release triggered samples depends on note length
112          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          if (Type == type_release_trigger) {
113              switch (pRegion->pDimensionDefinitions[i].dimension) {              float noteLength = float(pEngine->FrameTime + Delay -
114                  case ::gig::dimension_samplechannel:                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                      DimValues[i] = 0; //TODO: we currently ignore this dimension              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                      break;              if (attenuation <= 0) return -1;
117                  case ::gig::dimension_layer:              volume *= attenuation;
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             itChildVoice = pEngine->LaunchVoice(pEngineChannel, itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pEngineChannel->CurrentKeyDimension;  
                     break;  
                 case ::gig::dimension_roundrobin:  
                     DimValues[i] = (uint) pEngineChannel->pMIDIKeyInfo[MIDIKey].RoundRobinIndex; // incremented for each note on  
                     break;  
                 case ::gig::dimension_random:  
                     pEngine->RandomSeed = pEngine->RandomSeed * 1103515245 + 12345; // classic pseudo random number generator  
                     DimValues[i] = (uint) pEngine->RandomSeed >> (32 - pRegion->pDimensionDefinitions[i].bits); // highest bits are most random  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngineChannel->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngineChannel->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngineChannel->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngineChannel->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngineChannel->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngineChannel->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngineChannel->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngineChannel->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngineChannel->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngineChannel->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngineChannel->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngineChannel->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngineChannel->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngineChannel->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngineChannel->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
118          }          }
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues);  
   
         pSample = pDimRgn->pSample; // sample won't change until the voice is finished  
         if (!pSample || !pSample->SamplesTotal) return -1; // no need to continue if sample is silent  
119    
120          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
121          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124            float crossfadeVolume;
125          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
126              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
130                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                  break;                  break;
132              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                  break;                  break;
135              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136              default:              default:
137                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
138          }          }
139    
140          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->GlobalVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149            finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
157              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
158    
159              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
160              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
161    
162              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
163                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
# Line 317  namespace LinuxSampler { namespace gig { Line 168  namespace LinuxSampler { namespace gig {
168          }          }
169          else { // RAM only voice          else { // RAM only voice
170              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
171              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
172              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
173          }          }
174            if (RAMLoop) {
175                loop.uiTotalCycles = pSample->LoopPlayCount;
176                loop.uiCyclesLeft  = pSample->LoopPlayCount;
177                loop.uiStart       = pSample->LoopStart;
178                loop.uiEnd         = pSample->LoopEnd;
179                loop.uiSize        = pSample->LoopSize;
180            }
181    
182          // calculate initial pitch value          // calculate initial pitch value
183          {          {
184              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
185              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
186              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
187              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
188          }          }
189    
190          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          // the length of the decay and release curves are dependent on the velocity
191            const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
         Volume *= pDimRgn->SampleAttenuation;  
192    
193          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
194          {          {
# Line 358  namespace LinuxSampler { namespace gig { Line 210  namespace LinuxSampler { namespace gig {
210              }              }
211              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
212    
213              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
214              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
215              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
216              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
217                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
218              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
219                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
220                            pDimRgn->EG1Hold,  
221                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
222                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
223                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
224                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
225                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
226                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
227                            // the SSE synthesis implementation requires                          pDimRgn->EG1Sustain,
228                            // the vca start to be 16 byte aligned                          pDimRgn->EG1Release * eg1release * velrelease,
229                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?                          velocityAttenuation,
230                            Delay & 0xfffffffc : Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
231          }          }
232    
233    #ifdef CONFIG_INTERPOLATE_VOLUME
234            // setup initial volume in synthesis parameters
235    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
236            if (pEngineChannel->GetMute()) {
237                finalSynthesisParameters.fFinalVolumeLeft  = 0;
238                finalSynthesisParameters.fFinalVolumeRight = 0;
239            }
240            else
241    #else
242            {
243                float finalVolume = pEngineChannel->GlobalVolume * crossfadeVolume * EG1.getLevel();
244    
245                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
246                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
247            }
248    #endif
249    #endif
250    
251          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
252          {          {
# Line 399  namespace LinuxSampler { namespace gig { Line 268  namespace LinuxSampler { namespace gig {
268              }              }
269              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
270    
271              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
272              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
273              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
274              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
275    
276              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
277                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
278                            false,                          false,
279                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
280                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
281                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
282                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
283                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
284                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
285                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
286          }          }
287    
288    
289          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
290          {          {
291            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
292            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
293                float eg3depth = (bPortamento)
294                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
295                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
296                float eg3time = (bPortamento)
297                                    ? pEngineChannel->PortamentoTime
298                                    : pDimRgn->EG3Attack;
299                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
300                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
301          }          }
302    
303    
# Line 431  namespace LinuxSampler { namespace gig { Line 308  namespace LinuxSampler { namespace gig {
308                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
309                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
310                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
311                        bLFO1Enabled         = (lfo1_internal_depth > 0);
312                      break;                      break;
313                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
314                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
315                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
316                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
317                      break;                      break;
318                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
319                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
320                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
321                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
322                      break;                      break;
323                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
324                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
325                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
326                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
327                      break;                      break;
328                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
329                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
330                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
331                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
332                      break;                      break;
333                  default:                  default:
334                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
335                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
336                        bLFO1Enabled         = false;
337              }              }
338              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
339                            lfo1_internal_depth,                                               start_level_max,
340                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
341                            pEngineChannel->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
342                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
343                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
344          }          }
345    
346    
# Line 469  namespace LinuxSampler { namespace gig { Line 351  namespace LinuxSampler { namespace gig {
351                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
352                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
353                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
354                        bLFO2Enabled         = (lfo2_internal_depth > 0);
355                      break;                      break;
356                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
357                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
358                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
359                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
360                      break;                      break;
361                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
362                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
363                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
364                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
365                      break;                      break;
366                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
367                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
368                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
369                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
370                      break;                      break;
371                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
374                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
375                      break;                      break;
376                  default:                  default:
377                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
378                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
379                        bLFO2Enabled         = false;
380              }              }
381              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
382                            lfo2_internal_depth,                                               start_level_max,
383                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
384                            pEngineChannel->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
385                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
386                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
387          }          }
388    
389    
# Line 507  namespace LinuxSampler { namespace gig { Line 394  namespace LinuxSampler { namespace gig {
394                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
395                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
396                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
397                        bLFO3Enabled         = (lfo3_internal_depth > 0);
398                      break;                      break;
399                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
400                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
401                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
402                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
403                      break;                      break;
404                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
405                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
406                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
407                        bLFO3Enabled         = false; // see TODO comment in line above
408                      break;                      break;
409                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
410                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
411                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
412                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
413                      break;                      break;
414                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
415                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
416                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
417                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
418                      break;                      break;
419                  default:                  default:
420                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
421                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
422                        bLFO3Enabled         = false;
423              }              }
424              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
425                            lfo3_internal_depth,                                               start_level_mid,
426                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
427                            pEngineChannel->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
428                            false,                                               false,
429                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
430          }          }
431    
432    
433          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
434          const bool bUseFilter = true;          const bool bUseFilter = true;
435          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
436          const bool bUseFilter = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
437          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
438          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
439          if (bUseFilter) {          if (bUseFilter) {
440              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
441              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
442              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
443              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
444                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 582  namespace LinuxSampler { namespace gig { Line 474  namespace LinuxSampler { namespace gig {
474                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
475                      break;                      break;
476              }              }
477              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
478    
479              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
480              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
481              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
482              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
483                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 604  namespace LinuxSampler { namespace gig { Line 496  namespace LinuxSampler { namespace gig {
496                  default:                  default:
497                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
498              }              }
499              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
500    
501              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
502              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
503              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
504              #else // override filter type              #else // override filter type
505              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
506              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
507              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
508    
509              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
510              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
511    
512              // calculate cutoff frequency              // calculate cutoff frequency
513              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
514              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
515                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
516              }              }
517              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
518    
519              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
520              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
521                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
522                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
523                    // VCFVelocityScale in this case means Minimum cutoff
524                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
525                }
526                else {
527                    cvalue = pDimRgn->VCFCutoff;
528                }
529                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
530                if (cutoff > 1.0) cutoff = 1.0;
531                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
532                if (cutoff < 1.0) cutoff = 1.0;
533    
534              FilterUpdateCounter = -1;              // calculate resonance
535                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
536    
537                VCFCutoffCtrl.fvalue    = cutoff - 1.0;
538                VCFResonanceCtrl.fvalue = resonance;
539          }          }
540          else {          else {
541              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 656  namespace LinuxSampler { namespace gig { Line 559  namespace LinuxSampler { namespace gig {
559      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
560    
561          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
562          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
563    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         pLFO1->Process(Samples);  
         pLFO2->Process(Samples);  
         if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
564          switch (this->PlaybackState) {          switch (this->PlaybackState) {
565    
566                case playback_state_init:
567                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
568                    // no break - continue with playback_state_ram
569    
570              case playback_state_ram: {              case playback_state_ram: {
571                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
572    
# Line 697  namespace LinuxSampler { namespace gig { Line 575  namespace LinuxSampler { namespace gig {
575    
576                      if (DiskVoice) {                      if (DiskVoice) {
577                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
578                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
579                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
580                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
581                          }                          }
582                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
583                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
584                      }                      }
585                  }                  }
# Line 717  namespace LinuxSampler { namespace gig { Line 594  namespace LinuxSampler { namespace gig {
594                              KillImmediately();                              KillImmediately();
595                              return;                              return;
596                          }                          }
597                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
598                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
599                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
600                      }                      }
601    
# Line 726  namespace LinuxSampler { namespace gig { Line 603  namespace LinuxSampler { namespace gig {
603    
604                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
605                      if (DiskStreamRef.State == Stream::state_end) {                      if (DiskStreamRef.State == Stream::state_end) {
606                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
607                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
608                              // remember how many sample words there are before any silence has been added                              // remember how many sample words there are before any silence has been added
609                              if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;                              if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
# Line 739  namespace LinuxSampler { namespace gig { Line 616  namespace LinuxSampler { namespace gig {
616                      // render current audio fragment                      // render current audio fragment
617                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
618    
619                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
620                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
621                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
622                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
623    
624                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
625                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 757  namespace LinuxSampler { namespace gig { Line 634  namespace LinuxSampler { namespace gig {
634                  break;                  break;
635          }          }
636    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
637          // Reset delay          // Reset delay
638          Delay = 0;          Delay = 0;
639    
640          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
641    
642          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
643          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
644      }      }
645    
646      /**      /**
# Line 776  namespace LinuxSampler { namespace gig { Line 648  namespace LinuxSampler { namespace gig {
648       *  suspended / not running.       *  suspended / not running.
649       */       */
650      void Voice::Reset() {      void Voice::Reset() {
651          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
652          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
653          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
654          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
655          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 791  namespace LinuxSampler { namespace gig { Line 660  namespace LinuxSampler { namespace gig {
660      }      }
661    
662      /**      /**
663       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
664       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
665       *       *
666       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
667         * @param End     - youngest time stamp where processing should be stopped
668       */       */
669      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
670            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
671                if (itEvent->Type == Event::type_release) {
672                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
673                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
674                } else if (itEvent->Type == Event::type_cancel_release) {
675                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
676                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
677                }
678            }
679        }
680    
681          // dispatch control change events      /**
682          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
683          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
684              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
685          }       * @param itEvent - iterator pointing to the next event to be processed
686          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
687              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
688                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
689                      *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
690                  }              if (itEvent->Type == Event::type_control_change &&
691                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
692                      *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
693                        processCutoffEvent(itEvent);
694                    }
695                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
696                        processResonanceEvent(itEvent);
697                  }                  }
698                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
699                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
700                  }                  }
701                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
702                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
703                  }                  }
704                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
705                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
706                  }                  }
707                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
708                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
709                      *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
710                  }                  }
711                    if (itEvent->Param.CC.Controller == 7) { // volume
712                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value] * CONFIG_GLOBAL_ATTENUATION);
713                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
714                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
715                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
716                    }
717                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
718                    processPitchEvent(itEvent);
719              }              }
   
             ++itCCEvent;  
720          }          }
721        }
722    
723        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
724            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
725            finalSynthesisParameters.fFinalPitch *= pitch;
726            PitchBend = pitch;
727        }
728    
729        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
730            int ccvalue = itEvent->Param.CC.Value;
731            if (VCFCutoffCtrl.value == ccvalue) return;
732            VCFCutoffCtrl.value == ccvalue;
733            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
734            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
735            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
736            if (cutoff > 1.0) cutoff = 1.0;
737            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
738            if (cutoff < 1.0) cutoff = 1.0;
739    
740            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
741            fFinalCutoff = cutoff;
742        }
743    
744        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
745            // convert absolute controller value to differential
746            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
747            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
748            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
749            fFinalResonance += resonancedelta;
750            // needed for initialization of parameter
751            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
752        }
753    
754          // process pitch events      /**
755          {       *  Synthesizes the current audio fragment for this voice.
756              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];       *
757              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();       *  @param Samples - number of sample points to be rendered in this audio
758              if (Delay) { // skip events that happened before this voice was triggered       *                   fragment cycle
759                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;       *  @param pSrc    - pointer to input sample data
760              }       *  @param Skip    - number of sample points to skip in output buffer
761              // apply old pitchbend value until first pitch event occurs       */
762              if (this->PitchBend != 1.0) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
763                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
764                  for (uint i = Delay; i < end; i++) {          finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
765                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;          finalSynthesisParameters.pSrc      = pSrc;
                 }  
             }  
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
766    
767                  itVCOEvent = itNextVCOEvent;          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
768              }          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
769              if (!pVCOEventList->isEmpty()) {  
770                  this->PitchBend = pitch;          if (Skip) { // skip events that happened before this voice was triggered
771                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
772                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
             }  
773          }          }
774    
775          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          uint killPos;
776          {          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
             RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];  
             RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
777    
778                  // calculate the influence length of this event (in sample points)          uint i = Skip;
779                  uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;          while (i < Samples) {
780                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
781    
782                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);              // initialize all final synthesis parameters
783                finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
784                fFinalCutoff    = VCFCutoffCtrl.fvalue;
785                fFinalResonance = VCFResonanceCtrl.fvalue;
786    
787                  float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;              // process MIDI control change and pitchbend events for this subfragment
788                processCCEvents(itCCEvent, iSubFragmentEnd);
789    
790                  // apply volume value to the volume parameter sequence              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
791                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
792                      pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;              if (pEngineChannel->GetMute()) fFinalVolume = 0;
793                  }  #endif
794    
795                  itVCAEvent = itNextVCAEvent;              // process transition events (note on, note off & sustain pedal)
796              }              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
797    
798          // process filter cutoff events              // if the voice was killed in this subfragment switch EG1 to fade out stage
799          {              if (itKillEvent && killPos <= iSubFragmentEnd) {
800              RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];                  EG1.enterFadeOutStage();
801              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();                  itKillEvent = Pool<Event>::Iterator();
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
802              }              }
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
803    
804                  itCutoffEvent = itNextCutoffEvent;              // process envelope generators
805                switch (EG1.getSegmentType()) {
806                    case EGADSR::segment_lin:
807                        fFinalVolume *= EG1.processLin();
808                        break;
809                    case EGADSR::segment_exp:
810                        fFinalVolume *= EG1.processExp();
811                        break;
812                    case EGADSR::segment_end:
813                        fFinalVolume *= EG1.getLevel();
814                        break; // noop
815              }              }
816              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              switch (EG2.getSegmentType()) {
817          }                  case EGADSR::segment_lin:
818                        fFinalCutoff *= EG2.processLin();
819          // process filter resonance events                      break;
820          {                  case EGADSR::segment_exp:
821              RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];                      fFinalCutoff *= EG2.processExp();
822              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();                      break;
823              if (Delay) { // skip events that happened before this voice was triggered                  case EGADSR::segment_end:
824                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;                      fFinalCutoff *= EG2.getLevel();
825                        break; // noop
826              }              }
827              while (itResonanceEvent) {              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
828                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
829                  ++itNextResonanceEvent;              // process low frequency oscillators
830                if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
831                  // calculate the influence length of this event (in sample points)              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
832                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
833    
834                  itResonanceEvent = itNextResonanceEvent;              // if filter enabled then update filter coefficients
835                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
836                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
837                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
838              }              }
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     }  
839    
840      /**              // do we need resampling?
841       * Calculate all necessary, final biquad filter parameters.              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
842       *              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
843       * @param Samples - number of samples to be rendered in this audio fragment cycle              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
844       */                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
845      void Voice::CalculateBiquadParameters(uint Samples) {              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
846          biquad_param_t bqbase;  
847          biquad_param_t bqmain;              // prepare final synthesis parameters structure
848          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
849          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  #ifdef CONFIG_INTERPOLATE_VOLUME
850          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);              finalSynthesisParameters.fFinalVolumeDeltaLeft  =
851          FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);                  (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
852          pEngine->pBasicFilterParameters[0] = bqbase;                   finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
853          pEngine->pMainFilterParameters[0]  = bqmain;              finalSynthesisParameters.fFinalVolumeDeltaRight =
854                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
855          float* bq;                   finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
856          for (int i = 1; i < Samples; i++) {  #else
857              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              finalSynthesisParameters.fFinalVolumeLeft  =
858              if (!(i & FILTER_UPDATE_MASK)) {                  fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
859                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||              finalSynthesisParameters.fFinalVolumeRight =
860                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)                  fFinalVolume * VolumeRight * PanRightSmoother.render();
861                  {  #endif
862                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];              // render audio for one subfragment
863                      prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];              RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
864                      FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
865                      FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);              // stop the rendering if volume EG is finished
866                if (EG1.getSegmentType() == EGADSR::segment_end) break;
867    
868                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
869    
870                // increment envelopes' positions
871                if (EG1.active()) {
872    
873                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
874                    if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
875                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
876                  }                  }
877    
878                    EG1.increment(1);
879                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
880                }
881                if (EG2.active()) {
882                    EG2.increment(1);
883                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
884              }              }
885                EG3.increment(1);
886                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
887    
888              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
889              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
890          }          }
891      }      }
892    
893      /**      /** @brief Update current portamento position.
      *  Synthesizes the current audio fragment for this voice.  
894       *       *
895       *  @param Samples - number of sample points to be rendered in this audio       * Will be called when portamento mode is enabled to get the final
896       *                   fragment cycle       * portamento position of this active voice from where the next voice(s)
897       *  @param pSrc    - pointer to input sample data       * might continue to slide on.
898       *  @param Skip    - number of sample points to skip in output buffer       *
899         * @param itNoteOffEvent - event which causes this voice to die soon
900       */       */
901      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
902          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
903            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
904      }      }
905    
906      /**      /**
# Line 1040  namespace LinuxSampler { namespace gig { Line 928  namespace LinuxSampler { namespace gig {
928       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
929       */       */
930      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
931          //FIXME: just two sanity checks for debugging, can be removed          #if CONFIG_DEVMODE
932          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
933          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
934            #endif // CONFIG_DEVMODE
935    
936          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
937          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;

Legend:
Removed from v.438  
changed lines
  Added in v.832

  ViewVC Help
Powered by ViewVC