/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 233 by schoenebeck, Tue Sep 7 09:32:21 2004 UTC revision 460 by schoenebeck, Mon Mar 14 22:35:44 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 22  Line 23 
23    
24  #include "EGADSR.h"  #include "EGADSR.h"
25  #include "Manipulator.h"  #include "Manipulator.h"
26    #include "../../common/Features.h"
27    #include "Synthesizer.h"
28    
29  #include "Voice.h"  #include "Voice.h"
30    
31  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
32    
     // TODO: no support for crossfades yet  
   
33      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
34    
35      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());
# Line 47  namespace LinuxSampler { namespace gig { Line 48  namespace LinuxSampler { namespace gig {
48      Voice::Voice() {      Voice::Voice() {
49          pEngine     = NULL;          pEngine     = NULL;
50          pDiskThread = NULL;          pDiskThread = NULL;
51          Active = false;          PlaybackState = playback_state_end;
52          pEG1   = NULL;          pEG1   = NULL;
53          pEG2   = NULL;          pEG2   = NULL;
54          pEG3   = NULL;          pEG3   = NULL;
# Line 57  namespace LinuxSampler { namespace gig { Line 58  namespace LinuxSampler { namespace gig {
58          pLFO1  = NULL;          pLFO1  = NULL;
59          pLFO2  = NULL;          pLFO2  = NULL;
60          pLFO3  = NULL;          pLFO3  = NULL;
61            KeyGroup = 0;
62            SynthesisMode = 0; // set all mode bits to 0 first
63            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
64            #if ARCH_X86
65            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
66            #else
67            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
68            #endif
69            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);
70    
71            FilterLeft.Reset();
72            FilterRight.Reset();
73      }      }
74    
75      Voice::~Voice() {      Voice::~Voice() {
# Line 104  namespace LinuxSampler { namespace gig { Line 117  namespace LinuxSampler { namespace gig {
117       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
118       *  needed.       *  needed.
119       *       *
120       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel       - engine channel on which this voice was ordered
121       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent        - event that caused triggering of this voice
122       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend            - MIDI detune factor (-8192 ... +8191)
123       *  @param iLayer       - layer number this voice refers to (only if this is a layered sound of course)       *  @param pInstrument          - points to the loaded instrument which provides sample wave(s) and articulation data
124       *  @returns            0 on success, a value < 0 if something failed       *  @param iLayer               - layer number this voice refers to (only if this is a layered sound of course)
125         *  @param ReleaseTriggerVoice  - if this new voice is a release trigger voice (optional, default = false)
126         *  @param VoiceStealingAllowed - wether the voice is allowed to steal voices for further subvoices
127         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
128         *           (either due to an error or e.g. because no region is
129         *           defined for the given key)
130       */       */
131      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealingAllowed) {
132            this->pEngineChannel = pEngineChannel;
133          if (!pInstrument) {          if (!pInstrument) {
134             dmsg(1,("voice::trigger: !pInstrument\n"));             dmsg(1,("voice::trigger: !pInstrument\n"));
135             exit(EXIT_FAILURE);             exit(EXIT_FAILURE);
136          }          }
137            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // FIXME: should be removed before the final release (purpose: just a sanity check for debugging)
138                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
139            }
140    
141          Active          = true;          Type            = type_normal;
142          MIDIKey         = pNoteOnEvent->Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
143          pRegion         = pInstrument->GetRegion(MIDIKey);          pRegion         = pInstrument->GetRegion(MIDIKey);
144          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
145          Pos             = 0;          Delay           = itNoteOnEvent->FragmentPos();
146          Delay           = pNoteOnEvent->FragmentPos();          itTriggerEvent  = itNoteOnEvent;
147          pTriggerEvent   = pNoteOnEvent;          itKillEvent     = Pool<Event>::Iterator();
148    
149          if (!pRegion) {          if (!pRegion) {
150              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;              dmsg(4, ("gig::Voice: No Region defined for MIDI key %d\n", MIDIKey));
             Kill();  
151              return -1;              return -1;
152          }          }
153    
154            // only mark the first voice of a layered voice (group) to be in a
155            // key group, so the layered voices won't kill each other
156            KeyGroup = (iLayer == 0 && !ReleaseTriggerVoice) ? pRegion->KeyGroup : 0;
157    
158          // get current dimension values to select the right dimension region          // get current dimension values to select the right dimension region
159          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          //FIXME: controller values for selecting the dimension region here are currently not sample accurate
160          uint DimValues[5] = {0,0,0,0,0};          uint DimValues[8] = { 0 };
161          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {
162              switch (pRegion->pDimensionDefinitions[i].dimension) {              switch (pRegion->pDimensionDefinitions[i].dimension) {
163                  case ::gig::dimension_samplechannel:                  case ::gig::dimension_samplechannel:
# Line 140  namespace LinuxSampler { namespace gig { Line 165  namespace LinuxSampler { namespace gig {
165                      break;                      break;
166                  case ::gig::dimension_layer:                  case ::gig::dimension_layer:
167                      DimValues[i] = iLayer;                      DimValues[i] = iLayer;
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             pEngine->LaunchVoice(pNoteOnEvent, iNewLayer);  
168                      break;                      break;
169                  case ::gig::dimension_velocity:                  case ::gig::dimension_velocity:
170                      DimValues[i] = pNoteOnEvent->Velocity;                      DimValues[i] = itNoteOnEvent->Param.Note.Velocity;
171                      break;                      break;
172                  case ::gig::dimension_channelaftertouch:                  case ::gig::dimension_channelaftertouch:
173                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      DimValues[i] = 0; //TODO: we currently ignore this dimension
174                      break;                      break;
175                  case ::gig::dimension_releasetrigger:                  case ::gig::dimension_releasetrigger:
176                      DimValues[i] = 0; //TODO: we currently ignore this dimension                      Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;
177                        DimValues[i] = (uint) ReleaseTriggerVoice;
178                      break;                      break;
179                  case ::gig::dimension_keyboard:                  case ::gig::dimension_keyboard:
180                      DimValues[i] = (uint) pNoteOnEvent->Key;                      DimValues[i] = (uint) pEngineChannel->CurrentKeyDimension;
181                        break;
182                    case ::gig::dimension_roundrobin:
183                        DimValues[i] = (uint) pEngineChannel->pMIDIKeyInfo[MIDIKey].RoundRobinIndex; // incremented for each note on
184                        break;
185                    case ::gig::dimension_random:
186                        pEngine->RandomSeed = pEngine->RandomSeed * 1103515245 + 12345; // classic pseudo random number generator
187                        DimValues[i] = (uint) pEngine->RandomSeed >> (32 - pRegion->pDimensionDefinitions[i].bits); // highest bits are most random
188                      break;                      break;
189                  case ::gig::dimension_modwheel:                  case ::gig::dimension_modwheel:
190                      DimValues[i] = pEngine->ControllerTable[1];                      DimValues[i] = pEngineChannel->ControllerTable[1];
191                      break;                      break;
192                  case ::gig::dimension_breath:                  case ::gig::dimension_breath:
193                      DimValues[i] = pEngine->ControllerTable[2];                      DimValues[i] = pEngineChannel->ControllerTable[2];
194                      break;                      break;
195                  case ::gig::dimension_foot:                  case ::gig::dimension_foot:
196                      DimValues[i] = pEngine->ControllerTable[4];                      DimValues[i] = pEngineChannel->ControllerTable[4];
197                      break;                      break;
198                  case ::gig::dimension_portamentotime:                  case ::gig::dimension_portamentotime:
199                      DimValues[i] = pEngine->ControllerTable[5];                      DimValues[i] = pEngineChannel->ControllerTable[5];
200                      break;                      break;
201                  case ::gig::dimension_effect1:                  case ::gig::dimension_effect1:
202                      DimValues[i] = pEngine->ControllerTable[12];                      DimValues[i] = pEngineChannel->ControllerTable[12];
203                      break;                      break;
204                  case ::gig::dimension_effect2:                  case ::gig::dimension_effect2:
205                      DimValues[i] = pEngine->ControllerTable[13];                      DimValues[i] = pEngineChannel->ControllerTable[13];
206                      break;                      break;
207                  case ::gig::dimension_genpurpose1:                  case ::gig::dimension_genpurpose1:
208                      DimValues[i] = pEngine->ControllerTable[16];                      DimValues[i] = pEngineChannel->ControllerTable[16];
209                      break;                      break;
210                  case ::gig::dimension_genpurpose2:                  case ::gig::dimension_genpurpose2:
211                      DimValues[i] = pEngine->ControllerTable[17];                      DimValues[i] = pEngineChannel->ControllerTable[17];
212                      break;                      break;
213                  case ::gig::dimension_genpurpose3:                  case ::gig::dimension_genpurpose3:
214                      DimValues[i] = pEngine->ControllerTable[18];                      DimValues[i] = pEngineChannel->ControllerTable[18];
215                      break;                      break;
216                  case ::gig::dimension_genpurpose4:                  case ::gig::dimension_genpurpose4:
217                      DimValues[i] = pEngine->ControllerTable[19];                      DimValues[i] = pEngineChannel->ControllerTable[19];
218                      break;                      break;
219                  case ::gig::dimension_sustainpedal:                  case ::gig::dimension_sustainpedal:
220                      DimValues[i] = pEngine->ControllerTable[64];                      DimValues[i] = pEngineChannel->ControllerTable[64];
221                      break;                      break;
222                  case ::gig::dimension_portamento:                  case ::gig::dimension_portamento:
223                      DimValues[i] = pEngine->ControllerTable[65];                      DimValues[i] = pEngineChannel->ControllerTable[65];
224                      break;                      break;
225                  case ::gig::dimension_sostenutopedal:                  case ::gig::dimension_sostenutopedal:
226                      DimValues[i] = pEngine->ControllerTable[66];                      DimValues[i] = pEngineChannel->ControllerTable[66];
227                      break;                      break;
228                  case ::gig::dimension_softpedal:                  case ::gig::dimension_softpedal:
229                      DimValues[i] = pEngine->ControllerTable[67];                      DimValues[i] = pEngineChannel->ControllerTable[67];
230                      break;                      break;
231                  case ::gig::dimension_genpurpose5:                  case ::gig::dimension_genpurpose5:
232                      DimValues[i] = pEngine->ControllerTable[80];                      DimValues[i] = pEngineChannel->ControllerTable[80];
233                      break;                      break;
234                  case ::gig::dimension_genpurpose6:                  case ::gig::dimension_genpurpose6:
235                      DimValues[i] = pEngine->ControllerTable[81];                      DimValues[i] = pEngineChannel->ControllerTable[81];
236                      break;                      break;
237                  case ::gig::dimension_genpurpose7:                  case ::gig::dimension_genpurpose7:
238                      DimValues[i] = pEngine->ControllerTable[82];                      DimValues[i] = pEngineChannel->ControllerTable[82];
239                      break;                      break;
240                  case ::gig::dimension_genpurpose8:                  case ::gig::dimension_genpurpose8:
241                      DimValues[i] = pEngine->ControllerTable[83];                      DimValues[i] = pEngineChannel->ControllerTable[83];
242                      break;                      break;
243                  case ::gig::dimension_effect1depth:                  case ::gig::dimension_effect1depth:
244                      DimValues[i] = pEngine->ControllerTable[91];                      DimValues[i] = pEngineChannel->ControllerTable[91];
245                      break;                      break;
246                  case ::gig::dimension_effect2depth:                  case ::gig::dimension_effect2depth:
247                      DimValues[i] = pEngine->ControllerTable[92];                      DimValues[i] = pEngineChannel->ControllerTable[92];
248                      break;                      break;
249                  case ::gig::dimension_effect3depth:                  case ::gig::dimension_effect3depth:
250                      DimValues[i] = pEngine->ControllerTable[93];                      DimValues[i] = pEngineChannel->ControllerTable[93];
251                      break;                      break;
252                  case ::gig::dimension_effect4depth:                  case ::gig::dimension_effect4depth:
253                      DimValues[i] = pEngine->ControllerTable[94];                      DimValues[i] = pEngineChannel->ControllerTable[94];
254                      break;                      break;
255                  case ::gig::dimension_effect5depth:                  case ::gig::dimension_effect5depth:
256                      DimValues[i] = pEngine->ControllerTable[95];                      DimValues[i] = pEngineChannel->ControllerTable[95];
257                      break;                      break;
258                  case ::gig::dimension_none:                  case ::gig::dimension_none:
259                      std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;                      std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;
# Line 233  namespace LinuxSampler { namespace gig { Line 262  namespace LinuxSampler { namespace gig {
262                      std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;                      std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;
263              }              }
264          }          }
265          ::gig::DimensionRegion* pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues);
266    
267          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          pSample = pDimRgn->pSample; // sample won't change until the voice is finished
268            if (!pSample || !pSample->SamplesTotal) return -1; // no need to continue if sample is silent
269    
270            // select channel mode (mono or stereo)
271            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
272    
273            // get starting crossfade volume level
274            switch (pDimRgn->AttenuationController.type) {
275                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
276                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
277                    break;
278                case ::gig::attenuation_ctrl_t::type_velocity:
279                    CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
280                    break;
281                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
282                    CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
283                    break;
284                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
285                default:
286                    CrossfadeVolume = 1.0f;
287            }
288    
289            PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
290            PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
291    
292            Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
293    
294          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
295          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
# Line 253  namespace LinuxSampler { namespace gig { Line 307  namespace LinuxSampler { namespace gig {
307    
308              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
309                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
310                  Kill();                  KillImmediately();
311                  return -1;                  return -1;
312              }              }
313              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
# Line 271  namespace LinuxSampler { namespace gig { Line 325  namespace LinuxSampler { namespace gig {
325    
326          // calculate initial pitch value          // calculate initial pitch value
327          {          {
328              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
329              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
330              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));
331              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
332          }          }
333    
334            Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
335    
336          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          Volume *= pDimRgn->SampleAttenuation;
   
337    
338          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
339          {          {
# Line 293  namespace LinuxSampler { namespace gig { Line 347  namespace LinuxSampler { namespace gig {
347                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
348                      break;                      break;
349                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
350                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
351                      break;                      break;
352                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
353                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
354                      break;                      break;
355              }              }
356              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
# Line 315  namespace LinuxSampler { namespace gig { Line 369  namespace LinuxSampler { namespace gig {
369                            pDimRgn->EG1InfiniteSustain,                            pDimRgn->EG1InfiniteSustain,
370                            pDimRgn->EG1Sustain,                            pDimRgn->EG1Sustain,
371                            pDimRgn->EG1Release + eg1release,                            pDimRgn->EG1Release + eg1release,
372                            Delay);                            // the SSE synthesis implementation requires
373                              // the vca start to be 16 byte aligned
374                              SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?
375                              Delay & 0xfffffffc : Delay);
376          }          }
377    
378    
     #if ENABLE_FILTER  
379          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
380          {          {
381              // get current value of EG2 controller              // get current value of EG2 controller
# Line 332  namespace LinuxSampler { namespace gig { Line 388  namespace LinuxSampler { namespace gig {
388                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
389                      break;                      break;
390                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
391                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
392                      break;                      break;
393                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
394                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
395                      break;                      break;
396              }              }
397              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
# Line 356  namespace LinuxSampler { namespace gig { Line 412  namespace LinuxSampler { namespace gig {
412                            pDimRgn->EG2Release + eg2release,                            pDimRgn->EG2Release + eg2release,
413                            Delay);                            Delay);
414          }          }
     #endif // ENABLE_FILTER  
415    
416    
417          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
# Line 397  namespace LinuxSampler { namespace gig { Line 452  namespace LinuxSampler { namespace gig {
452              pLFO1->Trigger(pDimRgn->LFO1Frequency,              pLFO1->Trigger(pDimRgn->LFO1Frequency,
453                            lfo1_internal_depth,                            lfo1_internal_depth,
454                            pDimRgn->LFO1ControlDepth,                            pDimRgn->LFO1ControlDepth,
455                            pEngine->ControllerTable[pLFO1->ExtController],                            pEngineChannel->ControllerTable[pLFO1->ExtController],
456                            pDimRgn->LFO1FlipPhase,                            pDimRgn->LFO1FlipPhase,
457                            pEngine->SampleRate,                            pEngine->SampleRate,
458                            Delay);                            Delay);
459          }          }
460    
461      #if ENABLE_FILTER  
462          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
463          {          {
464              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 435  namespace LinuxSampler { namespace gig { Line 490  namespace LinuxSampler { namespace gig {
490              pLFO2->Trigger(pDimRgn->LFO2Frequency,              pLFO2->Trigger(pDimRgn->LFO2Frequency,
491                            lfo2_internal_depth,                            lfo2_internal_depth,
492                            pDimRgn->LFO2ControlDepth,                            pDimRgn->LFO2ControlDepth,
493                            pEngine->ControllerTable[pLFO2->ExtController],                            pEngineChannel->ControllerTable[pLFO2->ExtController],
494                            pDimRgn->LFO2FlipPhase,                            pDimRgn->LFO2FlipPhase,
495                            pEngine->SampleRate,                            pEngine->SampleRate,
496                            Delay);                            Delay);
497          }          }
498      #endif // ENABLE_FILTER  
499    
500          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
501          {          {
# Line 473  namespace LinuxSampler { namespace gig { Line 528  namespace LinuxSampler { namespace gig {
528              pLFO3->Trigger(pDimRgn->LFO3Frequency,              pLFO3->Trigger(pDimRgn->LFO3Frequency,
529                            lfo3_internal_depth,                            lfo3_internal_depth,
530                            pDimRgn->LFO3ControlDepth,                            pDimRgn->LFO3ControlDepth,
531                            pEngine->ControllerTable[pLFO3->ExtController],                            pEngineChannel->ControllerTable[pLFO3->ExtController],
532                            false,                            false,
533                            pEngine->SampleRate,                            pEngine->SampleRate,
534                            Delay);                            Delay);
535          }          }
536    
537      #if ENABLE_FILTER  
538          #if FORCE_FILTER_USAGE          #if FORCE_FILTER_USAGE
539          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
540          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
541          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
542          #endif // FORCE_FILTER_USAGE          #endif // FORCE_FILTER_USAGE
543          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
544            if (bUseFilter) {
545              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL
546              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;
547              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
# Line 555  namespace LinuxSampler { namespace gig { Line 611  namespace LinuxSampler { namespace gig {
611              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(OVERRIDE_FILTER_TYPE);
612              #endif // OVERRIDE_FILTER_TYPE              #endif // OVERRIDE_FILTER_TYPE
613    
614              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
615              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
616    
617              // calculate cutoff frequency              // calculate cutoff frequency
618              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = (!VCFCutoffCtrl.controller)
619                  ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX
620                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;
621    
622              // calculate resonance              // calculate resonance
623              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
624              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
625                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
626              }              }
627              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
628    
629              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;
630              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
631    
             FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);  
   
632              FilterUpdateCounter = -1;              FilterUpdateCounter = -1;
633          }          }
634          else {          else {
635              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
636              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
637          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
638    
639          return 0; // success          return 0; // success
640      }      }
# Line 604  namespace LinuxSampler { namespace gig { Line 652  namespace LinuxSampler { namespace gig {
652       */       */
653      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
654    
655            // select default values for synthesis mode bits
656            SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);
657            SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);
658            SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
659    
660          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
661          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);  
662            pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);
663          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
     #if ENABLE_FILTER  
664          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
665          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);
     #endif // ENABLE_FILTER  
   
666    
667          // Apply events to the synthesis parameter matrix          // Apply events to the synthesis parameter matrix
668          ProcessEvents(Samples);          ProcessEvents(Samples);
669    
   
670          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
671          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
672      #if ENABLE_FILTER          pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
673          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          if (pEG3->Process(Samples)) { // if pitch EG is active
674      #endif // ENABLE_FILTER              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
675          pEG3->Process(Samples);              SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
676            }
677          pLFO1->Process(Samples);          pLFO1->Process(Samples);
     #if ENABLE_FILTER  
678          pLFO2->Process(Samples);          pLFO2->Process(Samples);
679      #endif // ENABLE_FILTER          if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active
680          pLFO3->Process(Samples);              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
681                SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
682            }
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
683    
684            if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))
685                CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters
686    
687          switch (this->PlaybackState) {          switch (this->PlaybackState) {
688    
689              case playback_state_ram: {              case playback_state_ram: {
690                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
691                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
692                        // render current fragment
693                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
694    
695                      if (DiskVoice) {                      if (DiskVoice) {
696                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
697                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 659  namespace LinuxSampler { namespace gig { Line 711  namespace LinuxSampler { namespace gig {
711                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
712                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
713                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
714                              Kill();                              KillImmediately();
715                              return;                              return;
716                          }                          }
717                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));
718                          Pos -= RTMath::DoubleToInt(Pos);                          Pos -= int(Pos);
719                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
720                      }                      }
721    
722                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
723    
724                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
725                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
726                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
727                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
728                                // remember how many sample words there are before any silence has been added
729                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
730                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
731                            }
732                      }                      }
733    
734                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
735                      Interpolate(Samples, ptr, Delay);  
736                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
737                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
738    
739                        const int iPos = (int) Pos;
740                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
741                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
742                        Pos -= iPos; // just keep fractional part of Pos
743    
744                        // change state of voice to 'end' if we really reached the end of the sample data
745                        if (RealSampleWordsLeftToRead >= 0) {
746                            RealSampleWordsLeftToRead -= readSampleWords;
747                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
748                        }
749                  }                  }
750                  break;                  break;
751    
752              case playback_state_end:              case playback_state_end:
753                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
754                  break;                  break;
755          }          }
756    
   
     #if ENABLE_FILTER  
757          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
758          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();
759          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();          pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();
760      #endif // ENABLE_FILTER          pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();
761    
762          // Reset delay          // Reset delay
763          Delay = 0;          Delay = 0;
764    
765          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
766    
767          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
768          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();
769      }      }
770    
771      /**      /**
# Line 708  namespace LinuxSampler { namespace gig { Line 776  namespace LinuxSampler { namespace gig {
776          pLFO1->Reset();          pLFO1->Reset();
777          pLFO2->Reset();          pLFO2->Reset();
778          pLFO3->Reset();          pLFO3->Reset();
779            FilterLeft.Reset();
780            FilterRight.Reset();
781          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
782          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
783          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
784          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
785          Active = false;          PlaybackState = playback_state_end;
786            itTriggerEvent = Pool<Event>::Iterator();
787            itKillEvent    = Pool<Event>::Iterator();
788      }      }
789    
790      /**      /**
# Line 725  namespace LinuxSampler { namespace gig { Line 797  namespace LinuxSampler { namespace gig {
797      void Voice::ProcessEvents(uint Samples) {      void Voice::ProcessEvents(uint Samples) {
798    
799          // dispatch control change events          // dispatch control change events
800          Event* pCCEvent = pEngine->pCCEvents->first();          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();
801          if (Delay) { // skip events that happened before this voice was triggered          if (Delay) { // skip events that happened before this voice was triggered
802              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;
803          }          }
804          while (pCCEvent) {          while (itCCEvent) {
805              if (pCCEvent->Controller) { // if valid MIDI controller              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
806                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
807                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
808                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);                  }
809                    if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
810                        *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
811                  }                  }
812                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
813                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      pLFO1->SendEvent(itCCEvent);
814                  }                  }
815                  #endif // ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
816                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO2->SendEvent(itCCEvent);
                     pLFO1->SendEvent(pCCEvent);  
817                  }                  }
818                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
819                  if (pCCEvent->Controller == pLFO2->ExtController) {                      pLFO3->SendEvent(itCCEvent);
                     pLFO2->SendEvent(pCCEvent);  
820                  }                  }
821                  #endif // ENABLE_FILTER                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
822                  if (pCCEvent->Controller == pLFO3->ExtController) {                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
823                      pLFO3->SendEvent(pCCEvent);                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;
824                  }                  }
825              }              }
826    
827              pCCEvent = pEngine->pCCEvents->next();              ++itCCEvent;
828          }          }
829    
830    
831          // process pitch events          // process pitch events
832          {          {
833              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];
834              Event* pVCOEvent = pVCOEventList->first();              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();
835              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
836                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;
837              }              }
838              // apply old pitchbend value until first pitch event occurs              // apply old pitchbend value until first pitch event occurs
839              if (this->PitchBend != 1.0) {              if (this->PitchBend != 1.0) {
840                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;
841                  for (uint i = Delay; i < end; i++) {                  for (uint i = Delay; i < end; i++) {
842                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;
843                  }                  }
844              }              }
845              float pitch;              float pitch;
846              while (pVCOEvent) {              while (itVCOEvent) {
847                  Event* pNextVCOEvent = pVCOEventList->next();                  RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;
848                    ++itNextVCOEvent;
849    
850                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
851                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;                  uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;
852    
853                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents                  pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
854    
855                  // apply pitch value to the pitch parameter sequence                  // apply pitch value to the pitch parameter sequence
856                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {
857                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;
858                  }                  }
859    
860                  pVCOEvent = pNextVCOEvent;                  itVCOEvent = itNextVCOEvent;
861                }
862                if (!pVCOEventList->isEmpty()) {
863                    this->PitchBend = pitch;
864                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
865                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
866              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
867          }          }
868    
869            // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
870            {
871                RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];
872                RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();
873                if (Delay) { // skip events that happened before this voice was triggered
874                    while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;
875                }
876                float crossfadevolume;
877                while (itVCAEvent) {
878                    RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;
879                    ++itNextVCAEvent;
880    
881                    // calculate the influence length of this event (in sample points)
882                    uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;
883    
884                    crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);
885    
886                    float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;
887    
888                    // apply volume value to the volume parameter sequence
889                    for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {
890                        pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;
891                    }
892    
893                    itVCAEvent = itNextVCAEvent;
894                }
895                if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
896            }
897    
     #if ENABLE_FILTER  
898          // process filter cutoff events          // process filter cutoff events
899          {          {
900              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];
901              Event* pCutoffEvent = pCutoffEventList->first();              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();
902              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
903                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;
904              }              }
905              float cutoff;              float cutoff;
906              while (pCutoffEvent) {              while (itCutoffEvent) {
907                  Event* pNextCutoffEvent = pCutoffEventList->next();                  RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;
908                    ++itNextCutoffEvent;
909    
910                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
911                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;
912    
913                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;
914    
915                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
916                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {
917                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;
918                  }                  }
919    
920                  pCutoffEvent = pNextCutoffEvent;                  itCutoffEvent = itNextCutoffEvent;
921              }              }
922              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time
923          }          }
924    
925          // process filter resonance events          // process filter resonance events
926          {          {
927              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];
928              Event* pResonanceEvent = pResonanceEventList->first();              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();
929              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
930                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;
931              }              }
932              while (pResonanceEvent) {              while (itResonanceEvent) {
933                  Event* pNextResonanceEvent = pResonanceEventList->next();                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;
934                    ++itNextResonanceEvent;
935    
936                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
937                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;
938    
939                  // convert absolute controller value to differential                  // convert absolute controller value to differential
940                  int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;                  int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;
941                  VCFResonanceCtrl.value = pResonanceEvent->Value;                  VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;
942    
943                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
944    
945                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
946                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {
947                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;
948                  }                  }
949    
950                  pResonanceEvent = pNextResonanceEvent;                  itResonanceEvent = itNextResonanceEvent;
951              }              }
952              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
953          }          }
     #endif // ENABLE_FILTER  
954      }      }
955    
     #if ENABLE_FILTER  
956      /**      /**
957       * Calculate all necessary, final biquad filter parameters.       * Calculate all necessary, final biquad filter parameters.
958       *       *
959       * @param Samples - number of samples to be rendered in this audio fragment cycle       * @param Samples - number of samples to be rendered in this audio fragment cycle
960       */       */
961      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::CalculateBiquadParameters(uint Samples) {
         if (!FilterLeft.Enabled) return;  
   
962          biquad_param_t bqbase;          biquad_param_t bqbase;
963          biquad_param_t bqmain;          biquad_param_t bqmain;
964          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];
965          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];
966          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
967            FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
968          pEngine->pBasicFilterParameters[0] = bqbase;          pEngine->pBasicFilterParameters[0] = bqbase;
969          pEngine->pMainFilterParameters[0]  = bqmain;          pEngine->pMainFilterParameters[0]  = bqmain;
970    
971          float* bq;          float* bq;
972          for (int i = 1; i < Samples; i++) {          for (int i = 1; i < Samples; i++) {
973              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              // recalculate biquad parameters if cutoff or resonance differ from previous sample point
974              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||              if (!(i & FILTER_UPDATE_MASK)) {
975                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||
976                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)
977                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];                  {
978                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];
979                        prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];
980                        FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
981                        FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
982                    }
983              }              }
984    
985              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'
986              bq    = (float*) &pEngine->pBasicFilterParameters[i];              bq    = (float*) &pEngine->pBasicFilterParameters[i];
987              bq[0] = bqbase.a1;              bq[0] = bqbase.b0;
988              bq[1] = bqbase.a2;              bq[1] = bqbase.b1;
989              bq[2] = bqbase.b0;              bq[2] = bqbase.b2;
990              bq[3] = bqbase.b1;              bq[3] = bqbase.a1;
991              bq[4] = bqbase.b2;              bq[4] = bqbase.a2;
992    
993              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'
994              bq    = (float*) &pEngine->pMainFilterParameters[i];              bq    = (float*) &pEngine->pMainFilterParameters[i];
995              bq[0] = bqmain.a1;              bq[0] = bqmain.b0;
996              bq[1] = bqmain.a2;              bq[1] = bqmain.b1;
997              bq[2] = bqmain.b0;              bq[2] = bqmain.b2;
998              bq[3] = bqmain.b1;              bq[3] = bqmain.a1;
999              bq[4] = bqmain.b2;              bq[4] = bqmain.a2;
1000          }          }
1001      }      }
     #endif // ENABLE_FILTER  
1002    
1003      /**      /**
1004       *  Interpolates the input audio data (no loop).       *  Synthesizes the current audio fragment for this voice.
1005       *       *
1006       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
1007       *                   fragment cycle       *                   fragment cycle
1008       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
1009       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
1010       */       */
1011      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
1012          int i = Skip;          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);
   
         // FIXME: assuming either mono or stereo  
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Stereo(pSrc, i,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
         }  
         else { // Mono Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
         }  
1013      }      }
1014    
1015      /**      /**
1016       *  Interpolates the input audio data, this method honors looping.       *  Immediately kill the voice. This method should not be used to kill
1017         *  a normal, active voice, because it doesn't take care of things like
1018         *  fading down the volume level to avoid clicks and regular processing
1019         *  until the kill event actually occured!
1020       *       *
1021       *  @param Samples - number of sample points to be rendered in this audio       *  @see Kill()
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
1022       */       */
1023      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::KillImmediately() {
1024          int i = Skip;          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
1025                pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
1026          }          }
1027            Reset();
1028      }      }
1029    
1030      /**      /**
1031       *  Immediately kill the voice.       *  Kill the voice in regular sense. Let the voice render audio until
1032         *  the kill event actually occured and then fade down the volume level
1033         *  very quickly and let the voice die finally. Unlike a normal release
1034         *  of a voice, a kill process cannot be cancalled and is therefore
1035         *  usually used for voice stealing and key group conflicts.
1036         *
1037         *  @param itKillEvent - event which caused the voice to be killed
1038       */       */
1039      void Voice::Kill() {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
1040          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          //FIXME: just two sanity checks for debugging, can be removed
1041              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
1042          }          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
1043          Reset();  
1044            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
1045            this->itKillEvent = itKillEvent;
1046      }      }
1047    
1048  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.233  
changed lines
  Added in v.460

  ViewVC Help
Powered by ViewVC