/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 460 by schoenebeck, Mon Mar 14 22:35:44 2005 UTC revision 769 by schoenebeck, Sat Sep 3 11:14:30 2005 UTC
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    
# Line 32  namespace LinuxSampler { namespace gig { Line 30  namespace LinuxSampler { namespace gig {
30    
31      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
32    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
33      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
34          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
35      }      }
36    
37      Voice::Voice() {      Voice::Voice() {
38          pEngine     = NULL;          pEngine     = NULL;
39          pDiskThread = NULL;          pDiskThread = NULL;
40          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
41          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
42          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
43          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
44          KeyGroup = 0;          KeyGroup = 0;
45          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
46          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
47          #if ARCH_X86          #if CONFIG_ASM && ARCH_X86
48          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
49          #else          #else
50          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
# Line 73  namespace LinuxSampler { namespace gig { Line 56  namespace LinuxSampler { namespace gig {
56      }      }
57    
58      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
59          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
60          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
61          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
62      }      }
63    
64      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
65          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
66          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
67          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
68      }      }
# Line 117  namespace LinuxSampler { namespace gig { Line 71  namespace LinuxSampler { namespace gig {
71       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
72       *  needed.       *  needed.
73       *       *
74       *  @param pEngineChannel       - engine channel on which this voice was ordered       *  @param pEngineChannel - engine channel on which this voice was ordered
75       *  @param itNoteOnEvent        - event that caused triggering of this voice       *  @param itNoteOnEvent  - event that caused triggering of this voice
76       *  @param PitchBend            - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
77       *  @param pInstrument          - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
78       *  @param iLayer               - layer number this voice refers to (only if this is a layered sound of course)       *  @param VoiceType      - type of this voice
79       *  @param ReleaseTriggerVoice  - if this new voice is a release trigger voice (optional, default = false)       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
      *  @param VoiceStealingAllowed - wether the voice is allowed to steal voices for further subvoices  
80       *  @returns 0 on success, a value < 0 if the voice wasn't triggered       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
81       *           (either due to an error or e.g. because no region is       *           (either due to an error or e.g. because no region is
82       *           defined for the given key)       *           defined for the given key)
83       */       */
84      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealingAllowed) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
85          this->pEngineChannel = pEngineChannel;          this->pEngineChannel = pEngineChannel;
86          if (!pInstrument) {          this->pDimRgn        = pDimRgn;
87             dmsg(1,("voice::trigger: !pInstrument\n"));  
88             exit(EXIT_FAILURE);          #if CONFIG_DEVMODE
89          }          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
         if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // FIXME: should be removed before the final release (purpose: just a sanity check for debugging)  
90              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
91          }          }
92            #endif // CONFIG_DEVMODE
93    
94          Type            = type_normal;          Type            = VoiceType;
95          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
96          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
97          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
98          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
99          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
100            KeyGroup        = iKeyGroup;
101            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
102    
103          if (!pRegion) {          // calculate volume
104              dmsg(4, ("gig::Voice: No Region defined for MIDI key %d\n", MIDIKey));          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             return -1;  
         }  
105    
106          // only mark the first voice of a layered voice (group) to be in a          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
         // key group, so the layered voices won't kill each other  
         KeyGroup = (iLayer == 0 && !ReleaseTriggerVoice) ? pRegion->KeyGroup : 0;  
107    
108          // get current dimension values to select the right dimension region          Volume *= pDimRgn->SampleAttenuation;
         //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
         uint DimValues[8] = { 0 };  
         for (int i = pRegion->Dimensions - 1; i >= 0; i--) {  
             switch (pRegion->pDimensionDefinitions[i].dimension) {  
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pEngineChannel->CurrentKeyDimension;  
                     break;  
                 case ::gig::dimension_roundrobin:  
                     DimValues[i] = (uint) pEngineChannel->pMIDIKeyInfo[MIDIKey].RoundRobinIndex; // incremented for each note on  
                     break;  
                 case ::gig::dimension_random:  
                     pEngine->RandomSeed = pEngine->RandomSeed * 1103515245 + 12345; // classic pseudo random number generator  
                     DimValues[i] = (uint) pEngine->RandomSeed >> (32 - pRegion->pDimensionDefinitions[i].bits); // highest bits are most random  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngineChannel->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngineChannel->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngineChannel->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngineChannel->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngineChannel->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngineChannel->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngineChannel->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngineChannel->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngineChannel->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngineChannel->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngineChannel->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngineChannel->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngineChannel->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngineChannel->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngineChannel->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues);  
109    
110          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          // the volume of release triggered samples depends on note length
111          if (!pSample || !pSample->SamplesTotal) return -1; // no need to continue if sample is silent          if (Type == type_release_trigger) {
112                float noteLength = float(pEngine->FrameTime + Delay -
113                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
114                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
115                if (attenuation <= 0) return -1;
116                Volume *= attenuation;
117            }
118    
119          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
120          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
# Line 296  namespace LinuxSampler { namespace gig { Line 145  namespace LinuxSampler { namespace gig {
145          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
146    
147          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
148              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
149    
150              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
151              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
# Line 327  namespace LinuxSampler { namespace gig { Line 176  namespace LinuxSampler { namespace gig {
176          {          {
177              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
178              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
179              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
180              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
181          }          }
182    
183          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          // the length of the decay and release curves are dependent on the velocity
184            const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
         Volume *= pDimRgn->SampleAttenuation;  
185    
186          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
187          {          {
# Line 355  namespace LinuxSampler { namespace gig { Line 203  namespace LinuxSampler { namespace gig {
203              }              }
204              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
205    
206              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
207              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
208              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
209              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
210                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
211              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
212                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
213                            pDimRgn->EG1Hold,  
214                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
215                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
216                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
217                            pDimRgn->EG1InfiniteSustain,                          pSample->LoopStart,
218                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
219                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
220                            // the SSE synthesis implementation requires                          pDimRgn->EG1InfiniteSustain,
221                            // the vca start to be 16 byte aligned                          pDimRgn->EG1Sustain,
222                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?                          pDimRgn->EG1Release * eg1release * velrelease,
223                            Delay & 0xfffffffc : Delay);                          velocityAttenuation,
224                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
225          }          }
226    
227    
# Line 396  namespace LinuxSampler { namespace gig { Line 245  namespace LinuxSampler { namespace gig {
245              }              }
246              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
247    
248              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
249              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
250              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
251              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
252    
253              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
254                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
255                            false,                          false,
256                            pSample->LoopStart,                          pSample->LoopStart,
257                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
258                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
259                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2InfiniteSustain,
260                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Sustain,
261                            pDimRgn->EG2Release + eg2release,                          pDimRgn->EG2Release * eg2release * velrelease,
262                            Delay);                          velocityAttenuation,
263                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
264          }          }
265    
266    
267          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
268          {          {
269            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
270            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);            EG3.trigger(eg3depth, pDimRgn->EG3Attack, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
271          }          }
272    
273    
# Line 428  namespace LinuxSampler { namespace gig { Line 278  namespace LinuxSampler { namespace gig {
278                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
279                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
280                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
281                        bLFO1Enabled         = (lfo1_internal_depth > 0);
282                      break;                      break;
283                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
284                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
285                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
286                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
287                      break;                      break;
288                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
289                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
290                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
291                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
292                      break;                      break;
293                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
294                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
295                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
296                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
297                      break;                      break;
298                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
299                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
300                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
301                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
302                      break;                      break;
303                  default:                  default:
304                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
305                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
306                        bLFO1Enabled         = false;
307              }              }
308              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
309                            lfo1_internal_depth,                                               start_level_max,
310                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
311                            pEngineChannel->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
312                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
313                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
314          }          }
315    
316    
# Line 466  namespace LinuxSampler { namespace gig { Line 321  namespace LinuxSampler { namespace gig {
321                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
322                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
323                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
324                        bLFO2Enabled         = (lfo2_internal_depth > 0);
325                      break;                      break;
326                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
327                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
328                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
329                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
330                      break;                      break;
331                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
332                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
333                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
334                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
335                      break;                      break;
336                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
337                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
338                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
339                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
340                      break;                      break;
341                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
342                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
343                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
344                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
345                      break;                      break;
346                  default:                  default:
347                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
348                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
349                        bLFO2Enabled         = false;
350              }              }
351              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
352                            lfo2_internal_depth,                                               start_level_max,
353                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
354                            pEngineChannel->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
355                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
356                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
357          }          }
358    
359    
# Line 504  namespace LinuxSampler { namespace gig { Line 364  namespace LinuxSampler { namespace gig {
364                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
365                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
366                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
367                        bLFO3Enabled         = (lfo3_internal_depth > 0);
368                      break;                      break;
369                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
370                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
371                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
372                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
373                      break;                      break;
374                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
375                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
376                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
377                        bLFO3Enabled         = false; // see TODO comment in line above
378                      break;                      break;
379                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
380                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
381                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
382                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
383                      break;                      break;
384                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
385                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
386                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
387                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
388                      break;                      break;
389                  default:                  default:
390                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
391                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
392                        bLFO3Enabled         = false;
393              }              }
394              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
395                            lfo3_internal_depth,                                               start_level_mid,
396                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
397                            pEngineChannel->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
398                            false,                                               false,
399                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
400          }          }
401    
402    
403          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
404          const bool bUseFilter = true;          const bool bUseFilter = true;
405          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
406          const bool bUseFilter = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
407          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
408          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
409          if (bUseFilter) {          if (bUseFilter) {
410              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
411              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
412              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
413              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
414                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 579  namespace LinuxSampler { namespace gig { Line 444  namespace LinuxSampler { namespace gig {
444                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
445                      break;                      break;
446              }              }
447              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
448    
449              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
450              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
451              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
452              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
453                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 601  namespace LinuxSampler { namespace gig { Line 466  namespace LinuxSampler { namespace gig {
466                  default:                  default:
467                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
468              }              }
469              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
470    
471              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
472              FilterLeft.SetType(pDimRgn->VCFType);              FilterLeft.SetType(pDimRgn->VCFType);
473              FilterRight.SetType(pDimRgn->VCFType);              FilterRight.SetType(pDimRgn->VCFType);
474              #else // override filter type              #else // override filter type
475              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
476              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
477              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
478    
479              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
480              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
481    
482              // calculate cutoff frequency              // calculate cutoff frequency
483              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
484                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX              if (pDimRgn->VCFKeyboardTracking) {
485                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
486                }
487                CutoffBase = cutoff;
488    
489                int cvalue;
490                if (VCFCutoffCtrl.controller) {
491                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
492                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
493                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
494                }
495                else {
496                    cvalue = pDimRgn->VCFCutoff;
497                }
498                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
499                if (cutoff > 1.0) cutoff = 1.0;
500                cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN;
501    
502              // calculate resonance              // calculate resonance
503              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
# Line 626  namespace LinuxSampler { namespace gig { Line 506  namespace LinuxSampler { namespace gig {
506              }              }
507              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
508    
509              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;
510              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
   
             FilterUpdateCounter = -1;  
511          }          }
512          else {          else {
513              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 653  namespace LinuxSampler { namespace gig { Line 531  namespace LinuxSampler { namespace gig {
531      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
532    
533          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
534          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
535    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         pLFO1->Process(Samples);  
         pLFO2->Process(Samples);  
         if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
536          switch (this->PlaybackState) {          switch (this->PlaybackState) {
537    
538                case playback_state_init:
539                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
540                    // no break - continue with playback_state_ram
541    
542              case playback_state_ram: {              case playback_state_ram: {
543                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
544    
# Line 723  namespace LinuxSampler { namespace gig { Line 576  namespace LinuxSampler { namespace gig {
576    
577                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
578                      if (DiskStreamRef.State == Stream::state_end) {                      if (DiskStreamRef.State == Stream::state_end) {
579                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
580                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
581                              // remember how many sample words there are before any silence has been added                              // remember how many sample words there are before any silence has been added
582                              if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;                              if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
# Line 754  namespace LinuxSampler { namespace gig { Line 607  namespace LinuxSampler { namespace gig {
607                  break;                  break;
608          }          }
609    
610          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists
611          pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();          pEngineChannel->pEvents->clear();
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
612    
613          // Reset delay          // Reset delay
614          Delay = 0;          Delay = 0;
# Line 765  namespace LinuxSampler { namespace gig { Line 616  namespace LinuxSampler { namespace gig {
616          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
617    
618          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
619          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
620      }      }
621    
622      /**      /**
# Line 773  namespace LinuxSampler { namespace gig { Line 624  namespace LinuxSampler { namespace gig {
624       *  suspended / not running.       *  suspended / not running.
625       */       */
626      void Voice::Reset() {      void Voice::Reset() {
         pLFO1->Reset();  
         pLFO2->Reset();  
         pLFO3->Reset();  
627          FilterLeft.Reset();          FilterLeft.Reset();
628          FilterRight.Reset();          FilterRight.Reset();
629          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
# Line 788  namespace LinuxSampler { namespace gig { Line 636  namespace LinuxSampler { namespace gig {
636      }      }
637    
638      /**      /**
639       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
640       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
641       *       *
642       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
643         * @param End     - youngest time stamp where processing should be stopped
644       */       */
645      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
646            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
647          // dispatch control change events              if (itEvent->Type == Event::type_release) {
648          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();                  EG1.update(EGADSR::event_release, this->Pos, fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
649          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, this->Pos, fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
650              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;              } else if (itEvent->Type == Event::type_cancel_release) {
651                    EG1.update(EGADSR::event_cancel_release, this->Pos, fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
652                    EG2.update(EGADSR::event_cancel_release, this->Pos, fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
653                }
654          }          }
655          while (itCCEvent) {      }
656              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
657                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      /**
658                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;       * Process given list of MIDI control change and pitch bend events for
659                  }       * the given time.
660                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {       *
661                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;       * @param itEvent - iterator pointing to the next event to be processed
662         * @param End     - youngest time stamp where processing should be stopped
663         */
664        void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
665            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
666                if (itEvent->Type == Event::type_control_change &&
667                    itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
668                    if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
669                        processCutoffEvent(itEvent);
670                    }
671                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
672                        processResonanceEvent(itEvent);
673                  }                  }
674                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
675                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
676                  }                  }
677                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
678                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
679                  }                  }
680                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
681                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
682                  }                  }
683                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
684                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
685                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      processCrossFadeEvent(itEvent);
686                  }                  }
687                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
688                    processPitchEvent(itEvent);
689              }              }
690            }
691        }
692    
693        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
694            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
695            fFinalPitch *= pitch;
696            PitchBend = pitch;
697        }
698    
699        void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
700            CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
701            #if CONFIG_PROCESS_MUTED_CHANNELS
702            const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
703            #else
704            const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
705            #endif
706            fFinalVolume = effectiveVolume;
707        }
708    
709        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
710            int ccvalue = itEvent->Param.CC.Value;
711            if (VCFCutoffCtrl.value == ccvalue) return;
712            VCFCutoffCtrl.value == ccvalue;
713            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
714            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
715            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
716            if (cutoff > 1.0) cutoff = 1.0;
717            cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN - CONFIG_FILTER_CUTOFF_MIN;
718            VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
719            fFinalCutoff = cutoff;
720        }
721    
722        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
723            // convert absolute controller value to differential
724            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
725            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
726            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
727            fFinalResonance += resonancedelta;
728            // needed for initialization of parameter
729            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
730        }
731    
732              ++itCCEvent;      /**
733         *  Synthesizes the current audio fragment for this voice.
734         *
735         *  @param Samples - number of sample points to be rendered in this audio
736         *                   fragment cycle
737         *  @param pSrc    - pointer to input sample data
738         *  @param Skip    - number of sample points to skip in output buffer
739         */
740        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
741            RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
742            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
743    
744            if (Skip) { // skip events that happened before this voice was triggered
745                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
746                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
747          }          }
748    
749            uint i = Skip;
750            while (i < Samples) {
751                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
752    
753          // process pitch events              // initialize all final synthesis parameters
754          {              fFinalPitch = PitchBase * PitchBend;
755              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];              #if CONFIG_PROCESS_MUTED_CHANNELS
756              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();              fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
757              if (Delay) { // skip events that happened before this voice was triggered              #else
758                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;              fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
759              }              #endif
760              // apply old pitchbend value until first pitch event occurs              fFinalCutoff    = VCFCutoffCtrl.fvalue;
761              if (this->PitchBend != 1.0) {              fFinalResonance = VCFResonanceCtrl.fvalue;
762                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;  
763                  for (uint i = Delay; i < end; i++) {              // process MIDI control change and pitchbend events for this subfragment
764                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;              processCCEvents(itCCEvent, iSubFragmentEnd);
765                  }  
766              }              // process transition events (note on, note off & sustain pedal)
767              float pitch;              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
768    
769                  itVCOEvent = itNextVCOEvent;              // process envelope generators
770                switch (EG1.getSegmentType()) {
771                    case EGADSR::segment_lin:
772                        fFinalVolume *= EG1.processLin();
773                        break;
774                    case EGADSR::segment_exp:
775                        fFinalVolume *= EG1.processExp();
776                        break;
777                    case EGADSR::segment_end:
778                        fFinalVolume *= EG1.getLevel();
779                        break; // noop
780              }              }
781              if (!pVCOEventList->isEmpty()) {              switch (EG2.getSegmentType()) {
782                  this->PitchBend = pitch;                  case EGADSR::segment_lin:
783                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);                      fFinalCutoff *= EG2.processLin();
784                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);                      break;
785                    case EGADSR::segment_exp:
786                        fFinalCutoff *= EG2.processExp();
787                        break;
788                    case EGADSR::segment_end:
789                        fFinalCutoff *= EG2.getLevel();
790                        break; // noop
791              }              }
792          }              fFinalPitch *= RTMath::CentsToFreqRatio(EG3.render());
793    
794          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)              // process low frequency oscillators
795          {              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
796              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
797              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              if (bLFO3Enabled) fFinalPitch  *= RTMath::CentsToFreqRatio(pLFO3->render());
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
798    
799                  itVCAEvent = itNextVCAEvent;              // if filter enabled then update filter coefficients
800                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
801                    FilterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
802                    FilterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
803              }              }
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
804    
805          // process filter cutoff events              // how many steps do we calculate for this next subfragment
806          {              const int steps = iSubFragmentEnd - i;
             RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
807    
808                  itCutoffEvent = itNextCutoffEvent;              // select the appropriate synthesis mode
809              }              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, fFinalPitch != 1.0f);
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
810    
811          // process filter resonance events              // render audio for one subfragment
812          {              RunSynthesisFunction(SynthesisMode, *this, iSubFragmentEnd, pSrc, i);
             RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
813    
814                  itResonanceEvent = itNextResonanceEvent;              // increment envelopes' positions
815                if (EG1.active()) {
816                    EG1.increment(1);
817                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, this->Pos, fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
818              }              }
819              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time              if (EG2.active()) {
820          }                  EG2.increment(1);
821      }                  if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, this->Pos, fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
   
     /**  
      * Calculate all necessary, final biquad filter parameters.  
      *  
      * @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::CalculateBiquadParameters(uint Samples) {  
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                 }  
822              }              }
823                EG3.increment(1);
824                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
825    
826              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              i = iSubFragmentEnd;
             bq    = (float*) &pEngine->pBasicFilterParameters[i];  
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
827          }          }
828      }      }
829    
830      /**      /**
      *  Synthesizes the current audio fragment for this voice.  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {  
         RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);  
     }  
   
     /**  
831       *  Immediately kill the voice. This method should not be used to kill       *  Immediately kill the voice. This method should not be used to kill
832       *  a normal, active voice, because it doesn't take care of things like       *  a normal, active voice, because it doesn't take care of things like
833       *  fading down the volume level to avoid clicks and regular processing       *  fading down the volume level to avoid clicks and regular processing
# Line 1037  namespace LinuxSampler { namespace gig { Line 852  namespace LinuxSampler { namespace gig {
852       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
853       */       */
854      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
855          //FIXME: just two sanity checks for debugging, can be removed          #if CONFIG_DEVMODE
856          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
857          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
858            #endif // CONFIG_DEVMODE
859    
860          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
861          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;

Legend:
Removed from v.460  
changed lines
  Added in v.769

  ViewVC Help
Powered by ViewVC