/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 460 by schoenebeck, Mon Mar 14 22:35:44 2005 UTC revision 781 by schoenebeck, Mon Sep 26 10:17:00 2005 UTC
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 32  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
47          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48          #if ARCH_X86          #if CONFIG_ASM && ARCH_X86
49          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50          #else          #else
51          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52          #endif          #endif
53          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
56          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 117  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param pEngineChannel       - engine channel on which this voice was ordered       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param itNoteOnEvent        - event that caused triggering of this voice       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param PitchBend            - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param pInstrument          - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @param iLayer               - layer number this voice refers to (only if this is a layered sound of course)       *  @param VoiceType      - type of this voice
80       *  @param ReleaseTriggerVoice  - if this new voice is a release trigger voice (optional, default = false)       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
      *  @param VoiceStealingAllowed - wether the voice is allowed to steal voices for further subvoices  
81       *  @returns 0 on success, a value < 0 if the voice wasn't triggered       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82       *           (either due to an error or e.g. because no region is       *           (either due to an error or e.g. because no region is
83       *           defined for the given key)       *           defined for the given key)
84       */       */
85      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealingAllowed) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          this->pEngineChannel = pEngineChannel;          this->pEngineChannel = pEngineChannel;
87          if (!pInstrument) {          this->pDimRgn        = pDimRgn;
88             dmsg(1,("voice::trigger: !pInstrument\n"));  
89             exit(EXIT_FAILURE);          #if CONFIG_DEVMODE
90          }          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
         if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // FIXME: should be removed before the final release (purpose: just a sanity check for debugging)  
91              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          }          }
93            #endif // CONFIG_DEVMODE
94    
95          Type            = type_normal;          Type            = VoiceType;
96          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
98          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
99          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
100          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
101            KeyGroup        = iKeyGroup;
102            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104          if (!pRegion) {          // calculate volume
105              dmsg(4, ("gig::Voice: No Region defined for MIDI key %d\n", MIDIKey));          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             return -1;  
         }  
106    
107          // only mark the first voice of a layered voice (group) to be in a          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
         // key group, so the layered voices won't kill each other  
         KeyGroup = (iLayer == 0 && !ReleaseTriggerVoice) ? pRegion->KeyGroup : 0;  
108    
109          // get current dimension values to select the right dimension region          Volume *= pDimRgn->SampleAttenuation;
         //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
         uint DimValues[8] = { 0 };  
         for (int i = pRegion->Dimensions - 1; i >= 0; i--) {  
             switch (pRegion->pDimensionDefinitions[i].dimension) {  
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pEngineChannel->CurrentKeyDimension;  
                     break;  
                 case ::gig::dimension_roundrobin:  
                     DimValues[i] = (uint) pEngineChannel->pMIDIKeyInfo[MIDIKey].RoundRobinIndex; // incremented for each note on  
                     break;  
                 case ::gig::dimension_random:  
                     pEngine->RandomSeed = pEngine->RandomSeed * 1103515245 + 12345; // classic pseudo random number generator  
                     DimValues[i] = (uint) pEngine->RandomSeed >> (32 - pRegion->pDimensionDefinitions[i].bits); // highest bits are most random  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngineChannel->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngineChannel->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngineChannel->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngineChannel->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngineChannel->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngineChannel->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngineChannel->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngineChannel->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngineChannel->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngineChannel->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngineChannel->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngineChannel->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngineChannel->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngineChannel->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngineChannel->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues);  
110    
111          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          // the volume of release triggered samples depends on note length
112          if (!pSample || !pSample->SamplesTotal) return -1; // no need to continue if sample is silent          if (Type == type_release_trigger) {
113                float noteLength = float(pEngine->FrameTime + Delay -
114                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                if (attenuation <= 0) return -1;
117                Volume *= attenuation;
118            }
119    
120          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
121          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
# Line 289  namespace LinuxSampler { namespace gig { Line 139  namespace LinuxSampler { namespace gig {
139          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
141    
142          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143    
144          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
145          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
146          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
147    
148          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
149              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
150    
151              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
152              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
153                  RAMLoop        = true;                  RAMLoop            = true;
154                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiTotalCycles = pSample->LoopPlayCount;
155                    loop.uiCyclesLeft  = pSample->LoopPlayCount;
156                    loop.uiStart       = pSample->LoopStart;
157                    loop.uiEnd         = pSample->LoopEnd;
158                    loop.uiSize        = pSample->LoopSize;
159              }              }
160              else RAMLoop = false;              else RAMLoop = false;
161    
# Line 315  namespace LinuxSampler { namespace gig { Line 169  namespace LinuxSampler { namespace gig {
169          else { // RAM only voice          else { // RAM only voice
170              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
171              if (pSample->Loops) {              if (pSample->Loops) {
172                  RAMLoop        = true;                  RAMLoop           = true;
173                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiCyclesLeft = pSample->LoopPlayCount;
174              }              }
175              else RAMLoop = false;              else RAMLoop = false;
176              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
# Line 327  namespace LinuxSampler { namespace gig { Line 181  namespace LinuxSampler { namespace gig {
181          {          {
182              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
183              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
184              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
185              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
186          }          }
187    
188          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          // the length of the decay and release curves are dependent on the velocity
189            const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
         Volume *= pDimRgn->SampleAttenuation;  
190    
191          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
192          {          {
# Line 355  namespace LinuxSampler { namespace gig { Line 208  namespace LinuxSampler { namespace gig {
208              }              }
209              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
210    
211              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
212              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
213              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
214              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
215                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
216              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
217                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
218                            pDimRgn->EG1Hold,  
219                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
220                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
221                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
222                            pDimRgn->EG1InfiniteSustain,                          pSample->LoopStart,
223                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
224                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
225                            // the SSE synthesis implementation requires                          pDimRgn->EG1InfiniteSustain,
226                            // the vca start to be 16 byte aligned                          pDimRgn->EG1Sustain,
227                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?                          pDimRgn->EG1Release * eg1release * velrelease,
228                            Delay & 0xfffffffc : Delay);                          velocityAttenuation,
229                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
230          }          }
231    
232    
# Line 396  namespace LinuxSampler { namespace gig { Line 250  namespace LinuxSampler { namespace gig {
250              }              }
251              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
252    
253              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
254              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
255              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
256              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
257    
258              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
259                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
260                            false,                          false,
261                            pSample->LoopStart,                          pSample->LoopStart,
262                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
263                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
264                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2InfiniteSustain,
265                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Sustain,
266                            pDimRgn->EG2Release + eg2release,                          pDimRgn->EG2Release * eg2release * velrelease,
267                            Delay);                          velocityAttenuation,
268                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
269          }          }
270    
271    
272          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
273          {          {
274            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
275            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);            EG3.trigger(eg3depth, pDimRgn->EG3Attack, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
276          }          }
277    
278    
# Line 428  namespace LinuxSampler { namespace gig { Line 283  namespace LinuxSampler { namespace gig {
283                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
284                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
285                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
286                        bLFO1Enabled         = (lfo1_internal_depth > 0);
287                      break;                      break;
288                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
289                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
290                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
291                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
292                      break;                      break;
293                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
294                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
295                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
296                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
297                      break;                      break;
298                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
299                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
300                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
301                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
302                      break;                      break;
303                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
304                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
305                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
306                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
307                      break;                      break;
308                  default:                  default:
309                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
310                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
311                        bLFO1Enabled         = false;
312              }              }
313              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
314                            lfo1_internal_depth,                                               start_level_max,
315                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
316                            pEngineChannel->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
317                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
318                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
319          }          }
320    
321    
# Line 466  namespace LinuxSampler { namespace gig { Line 326  namespace LinuxSampler { namespace gig {
326                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
327                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
328                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
329                        bLFO2Enabled         = (lfo2_internal_depth > 0);
330                      break;                      break;
331                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
332                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
333                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
334                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
335                      break;                      break;
336                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
337                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
338                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
339                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
340                      break;                      break;
341                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
342                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
343                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
344                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
345                      break;                      break;
346                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
347                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
348                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
349                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
350                      break;                      break;
351                  default:                  default:
352                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
353                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
354                        bLFO2Enabled         = false;
355              }              }
356              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
357                            lfo2_internal_depth,                                               start_level_max,
358                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
359                            pEngineChannel->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
360                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
361                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
362          }          }
363    
364    
# Line 504  namespace LinuxSampler { namespace gig { Line 369  namespace LinuxSampler { namespace gig {
369                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
370                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
371                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
372                        bLFO3Enabled         = (lfo3_internal_depth > 0);
373                      break;                      break;
374                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
375                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
376                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
377                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
378                      break;                      break;
379                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
380                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
381                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
382                        bLFO3Enabled         = false; // see TODO comment in line above
383                      break;                      break;
384                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
385                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
386                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
387                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
388                      break;                      break;
389                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
390                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
391                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
392                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
393                      break;                      break;
394                  default:                  default:
395                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
396                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
397                        bLFO3Enabled         = false;
398              }              }
399              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
400                            lfo3_internal_depth,                                               start_level_mid,
401                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
402                            pEngineChannel->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
403                            false,                                               false,
404                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
405          }          }
406    
407    
408          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
409          const bool bUseFilter = true;          const bool bUseFilter = true;
410          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
411          const bool bUseFilter = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
412          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
413          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
414          if (bUseFilter) {          if (bUseFilter) {
415              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
416              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
417              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
418              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
419                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 579  namespace LinuxSampler { namespace gig { Line 449  namespace LinuxSampler { namespace gig {
449                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
450                      break;                      break;
451              }              }
452              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
453    
454              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
455              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
456              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
457              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
458                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 601  namespace LinuxSampler { namespace gig { Line 471  namespace LinuxSampler { namespace gig {
471                  default:                  default:
472                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
473              }              }
474              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
475    
476              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
477              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
478              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
479              #else // override filter type              #else // override filter type
480              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
481              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
482              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
483    
484              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
485              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
486    
487              // calculate cutoff frequency              // calculate cutoff frequency
488              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
489                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX              if (pDimRgn->VCFKeyboardTracking) {
490                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
491                }
492                CutoffBase = cutoff;
493    
494                int cvalue;
495                if (VCFCutoffCtrl.controller) {
496                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
497                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
498                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
499                }
500                else {
501                    cvalue = pDimRgn->VCFCutoff;
502                }
503                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
504                if (cutoff > 1.0) cutoff = 1.0;
505                cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN;
506    
507              // calculate resonance              // calculate resonance
508              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
# Line 626  namespace LinuxSampler { namespace gig { Line 511  namespace LinuxSampler { namespace gig {
511              }              }
512              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
513    
514              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;
515              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
   
             FilterUpdateCounter = -1;  
516          }          }
517          else {          else {
518              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 653  namespace LinuxSampler { namespace gig { Line 536  namespace LinuxSampler { namespace gig {
536      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
537    
538          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
539          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
540    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         pLFO1->Process(Samples);  
         pLFO2->Process(Samples);  
         if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
541          switch (this->PlaybackState) {          switch (this->PlaybackState) {
542    
543                case playback_state_init:
544                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
545                    // no break - continue with playback_state_ram
546    
547              case playback_state_ram: {              case playback_state_ram: {
548                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
549    
# Line 694  namespace LinuxSampler { namespace gig { Line 552  namespace LinuxSampler { namespace gig {
552    
553                      if (DiskVoice) {                      if (DiskVoice) {
554                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
555                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
556                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
557                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
558                          }                          }
559                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
560                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
561                      }                      }
562                  }                  }
# Line 714  namespace LinuxSampler { namespace gig { Line 571  namespace LinuxSampler { namespace gig {
571                              KillImmediately();                              KillImmediately();
572                              return;                              return;
573                          }                          }
574                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
575                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
576                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
577                      }                      }
578    
# Line 723  namespace LinuxSampler { namespace gig { Line 580  namespace LinuxSampler { namespace gig {
580    
581                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
582                      if (DiskStreamRef.State == Stream::state_end) {                      if (DiskStreamRef.State == Stream::state_end) {
583                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
584                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
585                              // remember how many sample words there are before any silence has been added                              // remember how many sample words there are before any silence has been added
586                              if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;                              if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
# Line 736  namespace LinuxSampler { namespace gig { Line 593  namespace LinuxSampler { namespace gig {
593                      // render current audio fragment                      // render current audio fragment
594                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
595    
596                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
597                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
598                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
599                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
600    
601                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
602                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 754  namespace LinuxSampler { namespace gig { Line 611  namespace LinuxSampler { namespace gig {
611                  break;                  break;
612          }          }
613    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
614          // Reset delay          // Reset delay
615          Delay = 0;          Delay = 0;
616    
617          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
618    
619          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
620          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
621      }      }
622    
623      /**      /**
# Line 773  namespace LinuxSampler { namespace gig { Line 625  namespace LinuxSampler { namespace gig {
625       *  suspended / not running.       *  suspended / not running.
626       */       */
627      void Voice::Reset() {      void Voice::Reset() {
628          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
629          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
630          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
631          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
632          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 788  namespace LinuxSampler { namespace gig { Line 637  namespace LinuxSampler { namespace gig {
637      }      }
638    
639      /**      /**
640       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
641       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
642       *       *
643       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
644         * @param End     - youngest time stamp where processing should be stopped
645       */       */
646      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
647            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
648          // dispatch control change events              if (itEvent->Type == Event::type_release) {
649          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();                  EG1.update(EGADSR::event_release, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
650          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
651              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;              } else if (itEvent->Type == Event::type_cancel_release) {
652          }                  EG1.update(EGADSR::event_cancel_release, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
653          while (itCCEvent) {                  EG2.update(EGADSR::event_cancel_release, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
             if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
                 if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {  
                     *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {  
                     *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(itCCEvent);  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(itCCEvent);  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(itCCEvent);  
                 }  
                 if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&  
                     itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event  
                     *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;  
                 }  
654              }              }
   
             ++itCCEvent;  
655          }          }
656        }
657    
658        /**
659          // process pitch events       * Process given list of MIDI control change and pitch bend events for
660          {       * the given time.
661              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];       *
662              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();       * @param itEvent - iterator pointing to the next event to be processed
663              if (Delay) { // skip events that happened before this voice was triggered       * @param End     - youngest time stamp where processing should be stopped
664                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;       */
665              }      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
666              // apply old pitchbend value until first pitch event occurs          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
667              if (this->PitchBend != 1.0) {              if (itEvent->Type == Event::type_control_change &&
668                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
669                  for (uint i = Delay; i < end; i++) {                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
670                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      processCutoffEvent(itEvent);
671                    }
672                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
673                        processResonanceEvent(itEvent);
674                  }                  }
675              }                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
676              float pitch;                      pLFO1->update(itEvent->Param.CC.Value);
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
677                  }                  }
678                    if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
679                  itVCOEvent = itNextVCOEvent;                      pLFO2->update(itEvent->Param.CC.Value);
             }  
             if (!pVCOEventList->isEmpty()) {  
                 this->PitchBend = pitch;  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
   
         // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)  
         {  
             RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];  
             RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
680                  }                  }
681                    if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
682                  itVCAEvent = itNextVCAEvent;                      pLFO3->update(itEvent->Param.CC.Value);
             }  
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
   
         // process filter cutoff events  
         {  
             RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
683                  }                  }
684                    if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
685                  itCutoffEvent = itNextCutoffEvent;                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
686              }                      processCrossFadeEvent(itEvent);
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
   
         // process filter resonance events  
         {  
             RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
687                  }                  }
688                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
689                  itResonanceEvent = itNextResonanceEvent;                  processPitchEvent(itEvent);
690              }              }
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
691          }          }
692      }      }
693    
694      /**      void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
695       * Calculate all necessary, final biquad filter parameters.          const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
696       *          finalSynthesisParameters.fFinalPitch *= pitch;
697       * @param Samples - number of samples to be rendered in this audio fragment cycle          PitchBend = pitch;
698       */      }
     void Voice::CalculateBiquadParameters(uint Samples) {  
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                 }  
             }  
699    
700              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'      void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
701              bq    = (float*) &pEngine->pBasicFilterParameters[i];          CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
702              bq[0] = bqbase.b0;          #if CONFIG_PROCESS_MUTED_CHANNELS
703              bq[1] = bqbase.b1;          const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
704              bq[2] = bqbase.b2;          #else
705              bq[3] = bqbase.a1;          const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
706              bq[4] = bqbase.a2;          #endif
707            fFinalVolume = effectiveVolume;
708              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'      }
709              bq    = (float*) &pEngine->pMainFilterParameters[i];  
710              bq[0] = bqmain.b0;      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
711              bq[1] = bqmain.b1;          int ccvalue = itEvent->Param.CC.Value;
712              bq[2] = bqmain.b2;          if (VCFCutoffCtrl.value == ccvalue) return;
713              bq[3] = bqmain.a1;          VCFCutoffCtrl.value == ccvalue;
714              bq[4] = bqmain.a2;          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
715          }          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
716            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
717            if (cutoff > 1.0) cutoff = 1.0;
718            cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN - CONFIG_FILTER_CUTOFF_MIN;
719            VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
720            fFinalCutoff = cutoff;
721        }
722    
723        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
724            // convert absolute controller value to differential
725            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
726            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
727            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
728            fFinalResonance += resonancedelta;
729            // needed for initialization of parameter
730            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
731      }      }
732    
733      /**      /**
# Line 1009  namespace LinuxSampler { namespace gig { Line 739  namespace LinuxSampler { namespace gig {
739       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
740       */       */
741      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
742          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
743            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
744            finalSynthesisParameters.pSrc      = pSrc;
745    
746            RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
747            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
748    
749            if (Skip) { // skip events that happened before this voice was triggered
750                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
751                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
752            }
753    
754            uint i = Skip;
755            while (i < Samples) {
756                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
757    
758                // initialize all final synthesis parameters
759                finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
760                #if CONFIG_PROCESS_MUTED_CHANNELS
761                fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
762                #else
763                fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
764                #endif
765                fFinalCutoff    = VCFCutoffCtrl.fvalue;
766                fFinalResonance = VCFResonanceCtrl.fvalue;
767    
768                // process MIDI control change and pitchbend events for this subfragment
769                processCCEvents(itCCEvent, iSubFragmentEnd);
770    
771                // process transition events (note on, note off & sustain pedal)
772                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
773    
774                // process envelope generators
775                switch (EG1.getSegmentType()) {
776                    case EGADSR::segment_lin:
777                        fFinalVolume *= EG1.processLin();
778                        break;
779                    case EGADSR::segment_exp:
780                        fFinalVolume *= EG1.processExp();
781                        break;
782                    case EGADSR::segment_end:
783                        fFinalVolume *= EG1.getLevel();
784                        break; // noop
785                }
786                switch (EG2.getSegmentType()) {
787                    case EGADSR::segment_lin:
788                        fFinalCutoff *= EG2.processLin();
789                        break;
790                    case EGADSR::segment_exp:
791                        fFinalCutoff *= EG2.processExp();
792                        break;
793                    case EGADSR::segment_end:
794                        fFinalCutoff *= EG2.getLevel();
795                        break; // noop
796                }
797                if (EG3.active()) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(EG3.render());
798    
799                // process low frequency oscillators
800                if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
801                if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
802                if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
803    
804                // if filter enabled then update filter coefficients
805                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
806                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
807                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
808                }
809    
810                // do we need resampling?
811                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
812                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
813                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
814                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
815                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
816    
817                // prepare final synthesis parameters structure
818                finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
819                finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
820                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
821    
822                // render audio for one subfragment
823                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
824    
825                // increment envelopes' positions
826                if (EG1.active()) {
827                    EG1.increment(1);
828                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
829                }
830                if (EG2.active()) {
831                    EG2.increment(1);
832                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
833                }
834                EG3.increment(1);
835                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
836    
837                i = iSubFragmentEnd;
838            }
839      }      }
840    
841      /**      /**
# Line 1037  namespace LinuxSampler { namespace gig { Line 863  namespace LinuxSampler { namespace gig {
863       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
864       */       */
865      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
866          //FIXME: just two sanity checks for debugging, can be removed          #if CONFIG_DEVMODE
867          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
868          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
869            #endif // CONFIG_DEVMODE
870    
871          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
872          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;

Legend:
Removed from v.460  
changed lines
  Added in v.781

  ViewVC Help
Powered by ViewVC