/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 460 by schoenebeck, Mon Mar 14 22:35:44 2005 UTC revision 791 by persson, Sun Oct 16 14:50:20 2005 UTC
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 32  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
47          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48          #if ARCH_X86          #if CONFIG_ASM && ARCH_X86
49          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50          #else          #else
51          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52          #endif          #endif
53          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
56          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 117  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param pEngineChannel       - engine channel on which this voice was ordered       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param itNoteOnEvent        - event that caused triggering of this voice       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param PitchBend            - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param pInstrument          - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @param iLayer               - layer number this voice refers to (only if this is a layered sound of course)       *  @param VoiceType      - type of this voice
80       *  @param ReleaseTriggerVoice  - if this new voice is a release trigger voice (optional, default = false)       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
      *  @param VoiceStealingAllowed - wether the voice is allowed to steal voices for further subvoices  
81       *  @returns 0 on success, a value < 0 if the voice wasn't triggered       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82       *           (either due to an error or e.g. because no region is       *           (either due to an error or e.g. because no region is
83       *           defined for the given key)       *           defined for the given key)
84       */       */
85      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealingAllowed) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          this->pEngineChannel = pEngineChannel;          this->pEngineChannel = pEngineChannel;
87          if (!pInstrument) {          this->pDimRgn        = pDimRgn;
88             dmsg(1,("voice::trigger: !pInstrument\n"));  
89             exit(EXIT_FAILURE);          #if CONFIG_DEVMODE
90          }          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
         if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // FIXME: should be removed before the final release (purpose: just a sanity check for debugging)  
91              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          }          }
93            #endif // CONFIG_DEVMODE
94    
95          Type            = type_normal;          Type            = VoiceType;
96          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
98          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
99          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
100          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
101            KeyGroup        = iKeyGroup;
102            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104          if (!pRegion) {          // calculate volume
105              dmsg(4, ("gig::Voice: No Region defined for MIDI key %d\n", MIDIKey));          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             return -1;  
         }  
106    
107          // only mark the first voice of a layered voice (group) to be in a          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
         // key group, so the layered voices won't kill each other  
         KeyGroup = (iLayer == 0 && !ReleaseTriggerVoice) ? pRegion->KeyGroup : 0;  
108    
109          // get current dimension values to select the right dimension region          Volume *= pDimRgn->SampleAttenuation;
         //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
         uint DimValues[8] = { 0 };  
         for (int i = pRegion->Dimensions - 1; i >= 0; i--) {  
             switch (pRegion->pDimensionDefinitions[i].dimension) {  
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pEngineChannel->CurrentKeyDimension;  
                     break;  
                 case ::gig::dimension_roundrobin:  
                     DimValues[i] = (uint) pEngineChannel->pMIDIKeyInfo[MIDIKey].RoundRobinIndex; // incremented for each note on  
                     break;  
                 case ::gig::dimension_random:  
                     pEngine->RandomSeed = pEngine->RandomSeed * 1103515245 + 12345; // classic pseudo random number generator  
                     DimValues[i] = (uint) pEngine->RandomSeed >> (32 - pRegion->pDimensionDefinitions[i].bits); // highest bits are most random  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngineChannel->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngineChannel->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngineChannel->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngineChannel->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngineChannel->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngineChannel->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngineChannel->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngineChannel->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngineChannel->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngineChannel->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngineChannel->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngineChannel->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngineChannel->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngineChannel->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngineChannel->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues);  
110    
111          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          // the volume of release triggered samples depends on note length
112          if (!pSample || !pSample->SamplesTotal) return -1; // no need to continue if sample is silent          if (Type == type_release_trigger) {
113                float noteLength = float(pEngine->FrameTime + Delay -
114                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                if (attenuation <= 0) return -1;
117                Volume *= attenuation;
118            }
119    
120          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
121          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
# Line 289  namespace LinuxSampler { namespace gig { Line 139  namespace LinuxSampler { namespace gig {
139          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
141    
142          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143            Pos = pDimRgn->SampleStartOffset;
144    
145          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
146          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
147          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
148    
149          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
150              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
151    
152              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
153              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
154                  RAMLoop        = true;                  RAMLoop            = true;
155                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiTotalCycles = pSample->LoopPlayCount;
156                    loop.uiCyclesLeft  = pSample->LoopPlayCount;
157                    loop.uiStart       = pSample->LoopStart;
158                    loop.uiEnd         = pSample->LoopEnd;
159                    loop.uiSize        = pSample->LoopSize;
160              }              }
161              else RAMLoop = false;              else RAMLoop = false;
162    
# Line 315  namespace LinuxSampler { namespace gig { Line 170  namespace LinuxSampler { namespace gig {
170          else { // RAM only voice          else { // RAM only voice
171              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
172              if (pSample->Loops) {              if (pSample->Loops) {
173                  RAMLoop        = true;                  RAMLoop           = true;
174                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiCyclesLeft = pSample->LoopPlayCount;
175              }              }
176              else RAMLoop = false;              else RAMLoop = false;
177              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
# Line 327  namespace LinuxSampler { namespace gig { Line 182  namespace LinuxSampler { namespace gig {
182          {          {
183              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
184              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
185              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
186              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
187          }          }
188    
189          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          // the length of the decay and release curves are dependent on the velocity
190            const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
         Volume *= pDimRgn->SampleAttenuation;  
191    
192          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
193          {          {
# Line 355  namespace LinuxSampler { namespace gig { Line 209  namespace LinuxSampler { namespace gig {
209              }              }
210              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
211    
212              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
213              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
214              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
215              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
216                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
217              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
218                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
219                            pDimRgn->EG1Hold,  
220                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
221                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
222                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
223                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
224                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
225                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
226                            // the SSE synthesis implementation requires                          pDimRgn->EG1Sustain,
227                            // the vca start to be 16 byte aligned                          pDimRgn->EG1Release * eg1release * velrelease,
228                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?                          velocityAttenuation,
229                            Delay & 0xfffffffc : Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
230          }          }
231    
232    
# Line 396  namespace LinuxSampler { namespace gig { Line 250  namespace LinuxSampler { namespace gig {
250              }              }
251              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
252    
253              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
254              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
255              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
256              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
257    
258              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
259                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
260                            false,                          false,
261                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
262                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
263                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
264                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
265                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
266                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
267                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
268          }          }
269    
270    
271          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
272          {          {
273            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
274            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);            EG3.trigger(eg3depth, pDimRgn->EG3Attack, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
275          }          }
276    
277    
# Line 428  namespace LinuxSampler { namespace gig { Line 282  namespace LinuxSampler { namespace gig {
282                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
283                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
284                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
285                        bLFO1Enabled         = (lfo1_internal_depth > 0);
286                      break;                      break;
287                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
288                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
289                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
290                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
291                      break;                      break;
292                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
293                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
294                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
295                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
296                      break;                      break;
297                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
298                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
299                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
300                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
301                      break;                      break;
302                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
303                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
304                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
305                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
306                      break;                      break;
307                  default:                  default:
308                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
309                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
310                        bLFO1Enabled         = false;
311              }              }
312              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
313                            lfo1_internal_depth,                                               start_level_max,
314                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
315                            pEngineChannel->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
316                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
317                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
318          }          }
319    
320    
# Line 466  namespace LinuxSampler { namespace gig { Line 325  namespace LinuxSampler { namespace gig {
325                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
326                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
327                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
328                        bLFO2Enabled         = (lfo2_internal_depth > 0);
329                      break;                      break;
330                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
331                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
332                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
333                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
334                      break;                      break;
335                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
336                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
337                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
338                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
339                      break;                      break;
340                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
341                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
342                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
343                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
344                      break;                      break;
345                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
346                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
347                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
348                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
349                      break;                      break;
350                  default:                  default:
351                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
352                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
353                        bLFO2Enabled         = false;
354              }              }
355              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
356                            lfo2_internal_depth,                                               start_level_max,
357                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
358                            pEngineChannel->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
359                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
360                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
361          }          }
362    
363    
# Line 504  namespace LinuxSampler { namespace gig { Line 368  namespace LinuxSampler { namespace gig {
368                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
369                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
370                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
371                        bLFO3Enabled         = (lfo3_internal_depth > 0);
372                      break;                      break;
373                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
374                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
375                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
376                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
377                      break;                      break;
378                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
379                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
380                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
381                        bLFO3Enabled         = false; // see TODO comment in line above
382                      break;                      break;
383                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
384                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
385                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
386                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
387                      break;                      break;
388                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
389                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
390                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
391                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
392                      break;                      break;
393                  default:                  default:
394                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
395                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
396                        bLFO3Enabled         = false;
397              }              }
398              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
399                            lfo3_internal_depth,                                               start_level_mid,
400                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
401                            pEngineChannel->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
402                            false,                                               false,
403                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
404          }          }
405    
406    
407          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
408          const bool bUseFilter = true;          const bool bUseFilter = true;
409          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
410          const bool bUseFilter = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
411          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
412          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
413          if (bUseFilter) {          if (bUseFilter) {
414              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
415              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
416              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
417              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
418                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 579  namespace LinuxSampler { namespace gig { Line 448  namespace LinuxSampler { namespace gig {
448                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
449                      break;                      break;
450              }              }
451              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
452    
453              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
454              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
455              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
456              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
457                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 601  namespace LinuxSampler { namespace gig { Line 470  namespace LinuxSampler { namespace gig {
470                  default:                  default:
471                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
472              }              }
473              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
474    
475              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
476              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
477              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
478              #else // override filter type              #else // override filter type
479              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
480              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
481              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
482    
483              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
484              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
485    
486              // calculate cutoff frequency              // calculate cutoff frequency
487              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
488              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
489                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
490              }              }
491              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
492    
493              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
494              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
495                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
496                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
497                    // VCFVelocityScale in this case means Minimum cutoff
498                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
499                }
500                else {
501                    cvalue = pDimRgn->VCFCutoff;
502                }
503                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
504                if (cutoff > 1.0) cutoff = 1.0;
505                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
506                if (cutoff < 1.0) cutoff = 1.0;
507    
508                // calculate resonance
509                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
510    
511              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
512                VCFResonanceCtrl.fvalue = resonance;
513          }          }
514          else {          else {
515              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 653  namespace LinuxSampler { namespace gig { Line 533  namespace LinuxSampler { namespace gig {
533      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
534    
535          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
536          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
537    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         pLFO1->Process(Samples);  
         pLFO2->Process(Samples);  
         if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
538          switch (this->PlaybackState) {          switch (this->PlaybackState) {
539    
540                case playback_state_init:
541                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
542                    // no break - continue with playback_state_ram
543    
544              case playback_state_ram: {              case playback_state_ram: {
545                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
546    
# Line 694  namespace LinuxSampler { namespace gig { Line 549  namespace LinuxSampler { namespace gig {
549    
550                      if (DiskVoice) {                      if (DiskVoice) {
551                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
552                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
553                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
554                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
555                          }                          }
556                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
557                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
558                      }                      }
559                  }                  }
# Line 714  namespace LinuxSampler { namespace gig { Line 568  namespace LinuxSampler { namespace gig {
568                              KillImmediately();                              KillImmediately();
569                              return;                              return;
570                          }                          }
571                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
572                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
573                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
574                      }                      }
575    
# Line 723  namespace LinuxSampler { namespace gig { Line 577  namespace LinuxSampler { namespace gig {
577    
578                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
579                      if (DiskStreamRef.State == Stream::state_end) {                      if (DiskStreamRef.State == Stream::state_end) {
580                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
581                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
582                              // remember how many sample words there are before any silence has been added                              // remember how many sample words there are before any silence has been added
583                              if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;                              if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
# Line 736  namespace LinuxSampler { namespace gig { Line 590  namespace LinuxSampler { namespace gig {
590                      // render current audio fragment                      // render current audio fragment
591                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
592    
593                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
594                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
595                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
596                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
597    
598                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
599                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 754  namespace LinuxSampler { namespace gig { Line 608  namespace LinuxSampler { namespace gig {
608                  break;                  break;
609          }          }
610    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
611          // Reset delay          // Reset delay
612          Delay = 0;          Delay = 0;
613    
614          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
615    
616          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
617          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
618      }      }
619    
620      /**      /**
# Line 773  namespace LinuxSampler { namespace gig { Line 622  namespace LinuxSampler { namespace gig {
622       *  suspended / not running.       *  suspended / not running.
623       */       */
624      void Voice::Reset() {      void Voice::Reset() {
625          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
626          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
627          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
628          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
629          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 788  namespace LinuxSampler { namespace gig { Line 634  namespace LinuxSampler { namespace gig {
634      }      }
635    
636      /**      /**
637       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
638       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
639       *       *
640       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
641         * @param End     - youngest time stamp where processing should be stopped
642       */       */
643      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
644            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
645          // dispatch control change events              if (itEvent->Type == Event::type_release) {
646          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
647          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
648              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;              } else if (itEvent->Type == Event::type_cancel_release) {
649                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
650                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
651                }
652          }          }
653          while (itCCEvent) {      }
654              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
655                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      /**
656                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;       * Process given list of MIDI control change and pitch bend events for
657                  }       * the given time.
658                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {       *
659                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;       * @param itEvent - iterator pointing to the next event to be processed
660         * @param End     - youngest time stamp where processing should be stopped
661         */
662        void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
663            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
664                if (itEvent->Type == Event::type_control_change &&
665                    itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
666                    if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
667                        processCutoffEvent(itEvent);
668                    }
669                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
670                        processResonanceEvent(itEvent);
671                  }                  }
672                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
673                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
674                  }                  }
675                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
676                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
677                  }                  }
678                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
679                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
680                  }                  }
681                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
682                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
683                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      processCrossFadeEvent(itEvent);
684                  }                  }
685                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
686                    processPitchEvent(itEvent);
687              }              }
   
             ++itCCEvent;  
688          }          }
689        }
690    
691        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
692            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
693            finalSynthesisParameters.fFinalPitch *= pitch;
694            PitchBend = pitch;
695        }
696    
697          // process pitch events      void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
698          {          CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
699              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];          #if CONFIG_PROCESS_MUTED_CHANNELS
700              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();          const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
701              if (Delay) { // skip events that happened before this voice was triggered          #else
702                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;          const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
703              }          #endif
704              // apply old pitchbend value until first pitch event occurs          fFinalVolume = effectiveVolume;
705              if (this->PitchBend != 1.0) {      }
                 uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
706    
707                  itVCOEvent = itNextVCOEvent;      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
708              }          int ccvalue = itEvent->Param.CC.Value;
709              if (!pVCOEventList->isEmpty()) {          if (VCFCutoffCtrl.value == ccvalue) return;
710                  this->PitchBend = pitch;          VCFCutoffCtrl.value == ccvalue;
711                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
712                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
713              }          float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
714          }          if (cutoff > 1.0) cutoff = 1.0;
715            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
716            if (cutoff < 1.0) cutoff = 1.0;
717    
718            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
719            fFinalCutoff = cutoff;
720        }
721    
722        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
723            // convert absolute controller value to differential
724            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
725            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
726            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
727            fFinalResonance += resonancedelta;
728            // needed for initialization of parameter
729            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
730        }
731    
732          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)      /**
733          {       *  Synthesizes the current audio fragment for this voice.
734              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];       *
735              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();       *  @param Samples - number of sample points to be rendered in this audio
736              if (Delay) { // skip events that happened before this voice was triggered       *                   fragment cycle
737                  while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;       *  @param pSrc    - pointer to input sample data
738              }       *  @param Skip    - number of sample points to skip in output buffer
739              float crossfadevolume;       */
740              while (itVCAEvent) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
741                  RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
742                  ++itNextVCAEvent;          finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
743            finalSynthesisParameters.pSrc      = pSrc;
744    
745                  // calculate the influence length of this event (in sample points)          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
746                  uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
747    
748                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);          if (Skip) { // skip events that happened before this voice was triggered
749                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
750                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
751            }
752    
753                  float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;          uint i = Skip;
754            while (i < Samples) {
755                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
756    
757                  // apply volume value to the volume parameter sequence              // initialize all final synthesis parameters
758                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
759                      pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;              #if CONFIG_PROCESS_MUTED_CHANNELS
760                  }              fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
761                #else
762                fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
763                #endif
764                fFinalCutoff    = VCFCutoffCtrl.fvalue;
765                fFinalResonance = VCFResonanceCtrl.fvalue;
766    
767                  itVCAEvent = itNextVCAEvent;              // process MIDI control change and pitchbend events for this subfragment
768              }              processCCEvents(itCCEvent, iSubFragmentEnd);
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
769    
770          // process filter cutoff events              // process transition events (note on, note off & sustain pedal)
771          {              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
             RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
772    
773                  itCutoffEvent = itNextCutoffEvent;              // process envelope generators
774                switch (EG1.getSegmentType()) {
775                    case EGADSR::segment_lin:
776                        fFinalVolume *= EG1.processLin();
777                        break;
778                    case EGADSR::segment_exp:
779                        fFinalVolume *= EG1.processExp();
780                        break;
781                    case EGADSR::segment_end:
782                        fFinalVolume *= EG1.getLevel();
783                        break; // noop
784              }              }
785              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              switch (EG2.getSegmentType()) {
786          }                  case EGADSR::segment_lin:
787                        fFinalCutoff *= EG2.processLin();
788          // process filter resonance events                      break;
789          {                  case EGADSR::segment_exp:
790              RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];                      fFinalCutoff *= EG2.processExp();
791              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();                      break;
792              if (Delay) { // skip events that happened before this voice was triggered                  case EGADSR::segment_end:
793                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;                      fFinalCutoff *= EG2.getLevel();
794                        break; // noop
795              }              }
796              while (itResonanceEvent) {              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(EG3.render());
797                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
798                  ++itNextResonanceEvent;              // process low frequency oscillators
799                if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
800                  // calculate the influence length of this event (in sample points)              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
801                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
802    
803                  itResonanceEvent = itNextResonanceEvent;              // if filter enabled then update filter coefficients
804                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
805                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
806                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
807              }              }
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     }  
808    
809      /**              // do we need resampling?
810       * Calculate all necessary, final biquad filter parameters.              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
811       *              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
812       * @param Samples - number of samples to be rendered in this audio fragment cycle              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
813       */                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
814      void Voice::CalculateBiquadParameters(uint Samples) {              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
815          biquad_param_t bqbase;  
816          biquad_param_t bqmain;              // prepare final synthesis parameters structure
817          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];              finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
818          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];              finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
819          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
820          FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
821          pEngine->pBasicFilterParameters[0] = bqbase;              // render audio for one subfragment
822          pEngine->pMainFilterParameters[0]  = bqmain;              RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
823    
824          float* bq;              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
825          for (int i = 1; i < Samples; i++) {  
826              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              // increment envelopes' positions
827              if (!(i & FILTER_UPDATE_MASK)) {              if (EG1.active()) {
828                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
829                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
830                  {                  if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
831                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
832                  }                  }
833    
834                    EG1.increment(1);
835                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
836              }              }
837                if (EG2.active()) {
838                    EG2.increment(1);
839                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
840                }
841                EG3.increment(1);
842                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
843    
844              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
845              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
846          }          }
847      }      }
848    
849      /**      /**
      *  Synthesizes the current audio fragment for this voice.  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {  
         RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);  
     }  
   
     /**  
850       *  Immediately kill the voice. This method should not be used to kill       *  Immediately kill the voice. This method should not be used to kill
851       *  a normal, active voice, because it doesn't take care of things like       *  a normal, active voice, because it doesn't take care of things like
852       *  fading down the volume level to avoid clicks and regular processing       *  fading down the volume level to avoid clicks and regular processing
# Line 1037  namespace LinuxSampler { namespace gig { Line 871  namespace LinuxSampler { namespace gig {
871       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
872       */       */
873      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
874          //FIXME: just two sanity checks for debugging, can be removed          #if CONFIG_DEVMODE
875          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
876          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
877            #endif // CONFIG_DEVMODE
878    
879          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
880          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;

Legend:
Removed from v.460  
changed lines
  Added in v.791

  ViewVC Help
Powered by ViewVC