/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 56 by schoenebeck, Tue Apr 27 09:21:58 2004 UTC revision 716 by iliev, Sun Jul 24 06:57:30 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 22  Line 23 
23    
24  #include "EGADSR.h"  #include "EGADSR.h"
25  #include "Manipulator.h"  #include "Manipulator.h"
26    #include "../../common/Features.h"
27    #include "Synthesizer.h"
28    
29  #include "Voice.h"  #include "Voice.h"
30    
31  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
32    
     // FIXME: no support for layers (nor crossfades) yet  
   
33      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
34    
35        const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());
36    
37      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
38          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);
39        }
40    
41        int Voice::CalculateFilterUpdateMask() {
42            if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;
43            int power_of_two;
44            for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);
45            return (1 << power_of_two) - 1;
46      }      }
47    
48      Voice::Voice() {      Voice::Voice() {
49          pEngine     = NULL;          pEngine     = NULL;
50          pDiskThread = NULL;          pDiskThread = NULL;
51          Active = false;          PlaybackState = playback_state_end;
52          pEG1   = NULL;          pEG1   = NULL;
53          pEG2   = NULL;          pEG2   = NULL;
54          pEG3   = NULL;          pEG3   = NULL;
# Line 48  namespace LinuxSampler { namespace gig { Line 58  namespace LinuxSampler { namespace gig {
58          pLFO1  = NULL;          pLFO1  = NULL;
59          pLFO2  = NULL;          pLFO2  = NULL;
60          pLFO3  = NULL;          pLFO3  = NULL;
61            KeyGroup = 0;
62            SynthesisMode = 0; // set all mode bits to 0 first
63            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
64            #if CONFIG_ASM && ARCH_X86
65            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
66            #else
67            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
68            #endif
69            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);
70    
71            FilterLeft.Reset();
72            FilterRight.Reset();
73      }      }
74    
75      Voice::~Voice() {      Voice::~Voice() {
# Line 62  namespace LinuxSampler { namespace gig { Line 84  namespace LinuxSampler { namespace gig {
84          if (pVCOManipulator)  delete pVCOManipulator;          if (pVCOManipulator)  delete pVCOManipulator;
85      }      }
86    
     void Voice::SetOutput(AudioOutputDevice* pAudioOutputDevice) {  
         this->pOutputLeft        = pAudioOutputDevice->Channel(0)->Buffer();  
         this->pOutputRight       = pAudioOutputDevice->Channel(1)->Buffer();  
         this->MaxSamplesPerCycle = pAudioOutputDevice->MaxSamplesPerCycle();  
         this->SampleRate         = pAudioOutputDevice->SampleRate();  
     }  
   
87      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
88          this->pEngine = pEngine;          this->pEngine = pEngine;
89    
# Line 95  namespace LinuxSampler { namespace gig { Line 110  namespace LinuxSampler { namespace gig {
110          pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.          pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.
111    
112          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
113          dmsg(1,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
114      }      }
115    
116      /**      /**
117       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
118       *  needed.       *  needed.
119       *       *
120       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
121       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
122       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
123       *  @returns            0 on success, a value < 0 if something failed       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
124         *  @param VoiceType      - type of this voice
125         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
126         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
127         *           (either due to an error or e.g. because no region is
128         *           defined for the given key)
129       */       */
130      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
131          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
132             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
133             exit(EXIT_FAILURE);  
134          }          #if CONFIG_DEVMODE
135            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
136          Active          = true;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
137          MIDIKey         = pNoteOnEvent->Key;          }
138          pRegion         = pInstrument->GetRegion(MIDIKey);          #endif // CONFIG_DEVMODE
139          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
140          Pos             = 0;          Type            = VoiceType;
141          Delay           = pNoteOnEvent->FragmentPos();          MIDIKey         = itNoteOnEvent->Param.Note.Key;
142          pTriggerEvent   = pNoteOnEvent;          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
143            Delay           = itNoteOnEvent->FragmentPos();
144          if (!pRegion) {          itTriggerEvent  = itNoteOnEvent;
145              std::cerr << "Audio Thread: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          itKillEvent     = Pool<Event>::Iterator();
146              Kill();          KeyGroup        = iKeyGroup;
147              return -1;          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
148          }  
149            // calculate volume
150          //TODO: current MIDI controller values are not taken into account yet          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
151          ::gig::DimensionRegion* pDimRgn = NULL;  
152          for (int i = pRegion->Dimensions - 1; i >= 0; i--) { // Check if instrument has a velocity split          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
153              if (pRegion->pDimensionDefinitions[i].dimension == ::gig::dimension_velocity) {  
154                  uint DimValues[5] = {0,0,0,0,0};          Volume *= pDimRgn->SampleAttenuation;
155                      DimValues[i] = pNoteOnEvent->Velocity;  
156                  pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          // the volume of release triggered samples depends on note length
157            if (Type == type_release_trigger) {
158                float noteLength = float(pEngine->FrameTime + Delay -
159                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
160                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
161                if (attenuation <= 0) return -1;
162                Volume *= attenuation;
163            }
164    
165            // select channel mode (mono or stereo)
166            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
167    
168            // get starting crossfade volume level
169            switch (pDimRgn->AttenuationController.type) {
170                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
171                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
172                  break;                  break;
173              }              case ::gig::attenuation_ctrl_t::type_velocity:
174          }                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
175          if (!pDimRgn) { // if there was no velocity split                  break;
176              pDimRgn = pRegion->GetDimensionRegionByValue(0,0,0,0,0);              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
177                    CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
178                    break;
179                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
180                default:
181                    CrossfadeVolume = 1.0f;
182          }          }
183    
184          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
185            PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
186    
187            Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
188    
189          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
190          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
191          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
192    
193          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
194              MaxRAMPos = cachedsamples - (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
195    
196              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
197              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
# Line 159  namespace LinuxSampler { namespace gig { Line 202  namespace LinuxSampler { namespace gig {
202    
203              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
204                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
205                  Kill();                  KillImmediately();
206                  return -1;                  return -1;
207              }              }
208              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
# Line 177  namespace LinuxSampler { namespace gig { Line 220  namespace LinuxSampler { namespace gig {
220    
221          // calculate initial pitch value          // calculate initial pitch value
222          {          {
223              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
224              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
225              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents);              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));
226              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
227          }          }
228    
229            // the length of the decay and release curves are dependent on the velocity
230          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
231    
232          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
233          {          {
# Line 199  namespace LinuxSampler { namespace gig { Line 241  namespace LinuxSampler { namespace gig {
241                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
242                      break;                      break;
243                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
244                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
245                      break;                      break;
246                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
247                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
248                      break;                      break;
249              }              }
250              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
251    
252              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
253              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
254              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
255              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
256                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
257                double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
258                double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
259    
260              pEG1->Trigger(pDimRgn->EG1PreAttack,              pEG1->Trigger(pDimRgn->EG1PreAttack,
261                            pDimRgn->EG1Attack + eg1attack,                            pDimRgn->EG1Attack * eg1attack,
262                            pDimRgn->EG1Hold,                            pDimRgn->EG1Hold,
263                            pSample->LoopStart,                            pSample->LoopStart,
264                            pDimRgn->EG1Decay1 + eg1decay,                            pDimRgn->EG1Decay1 * eg1decay * velrelease,
265                            pDimRgn->EG1Decay2 + eg1decay,                            pDimRgn->EG1Decay2 * eg1decay * velrelease,
266                            pDimRgn->EG1InfiniteSustain,                            pDimRgn->EG1InfiniteSustain,
267                            pDimRgn->EG1Sustain,                            pDimRgn->EG1Sustain,
268                            pDimRgn->EG1Release + eg1release,                            pDimRgn->EG1Release * eg1release * velrelease,
269                            Delay);                            // the SSE synthesis implementation requires
270                              // the vca start to be 16 byte aligned
271                              SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?
272                              Delay & 0xfffffffc : Delay,
273                              velocityAttenuation);
274          }          }
275    
276    
     #if ENABLE_FILTER  
277          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
278          {          {
279              // get current value of EG2 controller              // get current value of EG2 controller
# Line 238  namespace LinuxSampler { namespace gig { Line 286  namespace LinuxSampler { namespace gig {
286                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
287                      break;                      break;
288                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
289                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
290                      break;                      break;
291                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
292                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
293                      break;                      break;
294              }              }
295              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
296    
297              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
298              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
299              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
300              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
301    
302              pEG2->Trigger(pDimRgn->EG2PreAttack,              pEG2->Trigger(pDimRgn->EG2PreAttack,
303                            pDimRgn->EG2Attack + eg2attack,                            pDimRgn->EG2Attack * eg2attack,
304                            false,                            false,
305                            pSample->LoopStart,                            pSample->LoopStart,
306                            pDimRgn->EG2Decay1 + eg2decay,                            pDimRgn->EG2Decay1 * eg2decay * velrelease,
307                            pDimRgn->EG2Decay2 + eg2decay,                            pDimRgn->EG2Decay2 * eg2decay * velrelease,
308                            pDimRgn->EG2InfiniteSustain,                            pDimRgn->EG2InfiniteSustain,
309                            pDimRgn->EG2Sustain,                            pDimRgn->EG2Sustain,
310                            pDimRgn->EG2Release + eg2release,                            pDimRgn->EG2Release * eg2release * velrelease,
311                            Delay);                            Delay,
312                              velocityAttenuation);
313          }          }
     #endif // ENABLE_FILTER  
314    
315    
316          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
# Line 279  namespace LinuxSampler { namespace gig { Line 327  namespace LinuxSampler { namespace gig {
327                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
328                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
329                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
330                        bLFO1Enabled         = (lfo1_internal_depth > 0);
331                      break;                      break;
332                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
333                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
334                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
335                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
336                      break;                      break;
337                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
338                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
339                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
340                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
341                      break;                      break;
342                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
343                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
344                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
345                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
346                      break;                      break;
347                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
348                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
349                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
350                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
351                      break;                      break;
352                  default:                  default:
353                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
354                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
355                        bLFO1Enabled         = false;
356              }              }
357              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,
358                            lfo1_internal_depth,                                               lfo1_internal_depth,
359                            pDimRgn->LFO1ControlDepth,                                               pDimRgn->LFO1ControlDepth,
360                            pEngine->ControllerTable[pLFO1->ExtController],                                               pEngineChannel->ControllerTable[pLFO1->ExtController],
361                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
362                            this->SampleRate,                                               pEngine->SampleRate,
363                            Delay);                                               Delay);
364          }          }
365    
366      #if ENABLE_FILTER  
367          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
368          {          {
369              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 317  namespace LinuxSampler { namespace gig { Line 371  namespace LinuxSampler { namespace gig {
371                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
374                        bLFO2Enabled         = (lfo2_internal_depth > 0);
375                      break;                      break;
376                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
377                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
378                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
379                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
380                      break;                      break;
381                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
382                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
383                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
384                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
385                      break;                      break;
386                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
387                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
388                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
389                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
390                      break;                      break;
391                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
392                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
393                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
394                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
395                      break;                      break;
396                  default:                  default:
397                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
398                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
399                        bLFO2Enabled         = false;
400              }              }
401              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,
402                            lfo2_internal_depth,                                               lfo2_internal_depth,
403                            pDimRgn->LFO2ControlDepth,                                               pDimRgn->LFO2ControlDepth,
404                            pEngine->ControllerTable[pLFO2->ExtController],                                               pEngineChannel->ControllerTable[pLFO2->ExtController],
405                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
406                            Delay);                                               pEngine->SampleRate,
407                                                 Delay);
408          }          }
409      #endif // ENABLE_FILTER  
410    
411          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
412          {          {
# Line 354  namespace LinuxSampler { namespace gig { Line 415  namespace LinuxSampler { namespace gig {
415                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
416                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
417                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
418                        bLFO3Enabled         = (lfo3_internal_depth > 0);
419                      break;                      break;
420                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
421                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
422                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
423                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
424                      break;                      break;
425                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
426                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
427                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
428                        bLFO3Enabled         = false; // see TODO comment in line above
429                      break;                      break;
430                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
431                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
432                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
433                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
434                      break;                      break;
435                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
436                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
437                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
438                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
439                      break;                      break;
440                  default:                  default:
441                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
442                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
443                        bLFO3Enabled         = false;
444              }              }
445              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,
446                            lfo3_internal_depth,                                               lfo3_internal_depth,
447                            pDimRgn->LFO3ControlDepth,                                               pDimRgn->LFO3ControlDepth,
448                            pEngine->ControllerTable[pLFO3->ExtController],                                               pEngineChannel->ControllerTable[pLFO3->ExtController],
449                            false,                                               false,
450                            this->SampleRate,                                               pEngine->SampleRate,
451                            Delay);                                               Delay);
452          }          }
453    
454      #if ENABLE_FILTER  
455          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
456          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
457          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
458          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
459          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
460          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
461              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
462              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
463                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
464              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
465              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
466                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 428  namespace LinuxSampler { namespace gig { Line 496  namespace LinuxSampler { namespace gig {
496                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
497                      break;                      break;
498              }              }
499              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
500    
501              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
502              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
503              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
504              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
505                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 450  namespace LinuxSampler { namespace gig { Line 518  namespace LinuxSampler { namespace gig {
518                  default:                  default:
519                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
520              }              }
521              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
522    
523              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
524              FilterLeft.SetType(pDimRgn->VCFType);              FilterLeft.SetType(pDimRgn->VCFType);
525              FilterRight.SetType(pDimRgn->VCFType);              FilterRight.SetType(pDimRgn->VCFType);
526              #else // override filter type              #else // override filter type
527              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
528              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
529              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
530    
531              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
532              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
533    
534              // calculate cutoff frequency              // calculate cutoff frequency
535              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = (!VCFCutoffCtrl.controller)
536                  ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX
537                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;
538    
539              // calculate resonance              // calculate resonance
540              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
541              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
542                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
543              }              }
544              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
545    
546              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;
547              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
548    
             FilterLeft.SetParameters(cutoff,  resonance, SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, SampleRate);  
   
549              FilterUpdateCounter = -1;              FilterUpdateCounter = -1;
550          }          }
551          else {          else {
552              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
553              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
554          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
555    
556          return 0; // success          return 0; // success
557      }      }
# Line 509  namespace LinuxSampler { namespace gig { Line 569  namespace LinuxSampler { namespace gig {
569       */       */
570      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
571    
572            // select default values for synthesis mode bits
573            SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);
574            SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);
575            SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
576    
577          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
578          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume);  
579            #if CONFIG_PROCESS_MUTED_CHANNELS
580            pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume));
581            #else
582            pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);
583            #endif
584          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
     #if ENABLE_FILTER  
585          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
586          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);
     #endif // ENABLE_FILTER  
   
587    
588          // Apply events to the synthesis parameter matrix          // Apply events to the synthesis parameter matrix
589          ProcessEvents(Samples);          ProcessEvents(Samples);
590    
   
591          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
592          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
593      #if ENABLE_FILTER          pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
594          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          if (pEG3->Process(Samples)) { // if pitch EG is active
595      #endif // ENABLE_FILTER              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
596          pEG3->Process(Samples);              SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
597          pLFO1->Process(Samples);          }
598      #if ENABLE_FILTER          if (bLFO1Enabled) pLFO1->Process(Samples);
599          pLFO2->Process(Samples);          if (bLFO2Enabled) pLFO2->Process(Samples);
600      #endif // ENABLE_FILTER          if (bLFO3Enabled) {
601          pLFO3->Process(Samples);              if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active
602                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
603                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
604                }
605            }
606    
607            if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))
608                CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters
609    
610          switch (this->PlaybackState) {          switch (this->PlaybackState) {
611    
612                case playback_state_init:
613                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
614                    // no break - continue with playback_state_ram
615    
616              case playback_state_ram: {              case playback_state_ram: {
617                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
618                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
619                        // render current fragment
620                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
621    
622                      if (DiskVoice) {                      if (DiskVoice) {
623                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
624                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 559  namespace LinuxSampler { namespace gig { Line 638  namespace LinuxSampler { namespace gig {
638                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
639                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
640                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
641                              Kill();                              KillImmediately();
642                              return;                              return;
643                          }                          }
644                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));
645                          Pos -= RTMath::DoubleToInt(Pos);                          Pos -= int(Pos);
646                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
647                      }                      }
648    
649                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
650    
651                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
652                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
653                          DiskStreamRef.pStream->WriteSilence((MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
654                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
655                                // remember how many sample words there are before any silence has been added
656                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
657                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
658                            }
659                      }                      }
660    
661                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
662                      Interpolate(Samples, ptr, Delay);  
663                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
664                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
665    
666                        const int iPos = (int) Pos;
667                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
668                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
669                        Pos -= iPos; // just keep fractional part of Pos
670    
671                        // change state of voice to 'end' if we really reached the end of the sample data
672                        if (RealSampleWordsLeftToRead >= 0) {
673                            RealSampleWordsLeftToRead -= readSampleWords;
674                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
675                        }
676                  }                  }
677                  break;                  break;
678    
679              case playback_state_end:              case playback_state_end:
680                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
681                  break;                  break;
682          }          }
683    
   
     #if ENABLE_FILTER  
684          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
685          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();
686          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();          pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();
687      #endif // ENABLE_FILTER          pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();
688    
689          // Reset delay          // Reset delay
690          Delay = 0;          Delay = 0;
691    
692          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
693    
694          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
695          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();
696      }      }
697    
698      /**      /**
# Line 608  namespace LinuxSampler { namespace gig { Line 703  namespace LinuxSampler { namespace gig {
703          pLFO1->Reset();          pLFO1->Reset();
704          pLFO2->Reset();          pLFO2->Reset();
705          pLFO3->Reset();          pLFO3->Reset();
706            FilterLeft.Reset();
707            FilterRight.Reset();
708          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
709          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
710          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
711          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
712          Active = false;          PlaybackState = playback_state_end;
713            itTriggerEvent = Pool<Event>::Iterator();
714            itKillEvent    = Pool<Event>::Iterator();
715      }      }
716    
717      /**      /**
# Line 625  namespace LinuxSampler { namespace gig { Line 724  namespace LinuxSampler { namespace gig {
724      void Voice::ProcessEvents(uint Samples) {      void Voice::ProcessEvents(uint Samples) {
725    
726          // dispatch control change events          // dispatch control change events
727          Event* pCCEvent = pEngine->pCCEvents->first();          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();
728          if (Delay) { // skip events that happened before this voice was triggered          if (Delay) { // skip events that happened before this voice was triggered
729              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;
730          }          }
731          while (pCCEvent) {          while (itCCEvent) {
732              if (pCCEvent->Controller) { // if valid MIDI controller              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
733                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
734                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
735                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);                  }
736                    if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
737                        *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
738                  }                  }
739                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
740                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      pLFO1->SendEvent(itCCEvent);
741                  }                  }
742                  #endif // ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
743                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO2->SendEvent(itCCEvent);
                     pLFO1->SendEvent(pCCEvent);  
744                  }                  }
745                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
746                  if (pCCEvent->Controller == pLFO2->ExtController) {                      pLFO3->SendEvent(itCCEvent);
                     pLFO2->SendEvent(pCCEvent);  
747                  }                  }
748                  #endif // ENABLE_FILTER                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
749                  if (pCCEvent->Controller == pLFO3->ExtController) {                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
750                      pLFO3->SendEvent(pCCEvent);                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;
751                  }                  }
752              }              }
753    
754              pCCEvent = pEngine->pCCEvents->next();              ++itCCEvent;
755          }          }
756    
757    
758          // process pitch events          // process pitch events
759          {          {
760              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];
761              Event* pVCOEvent = pVCOEventList->first();              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();
762              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
763                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;
764              }              }
765              // apply old pitchbend value until first pitch event occurs              // apply old pitchbend value until first pitch event occurs
766              if (this->PitchBend != 1.0) {              if (this->PitchBend != 1.0) {
767                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;
768                  for (uint i = Delay; i < end; i++) {                  for (uint i = Delay; i < end; i++) {
769                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;
770                  }                  }
771              }              }
772              float pitch;              float pitch;
773              while (pVCOEvent) {              while (itVCOEvent) {
774                  Event* pNextVCOEvent = pVCOEventList->next();                  RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;
775                    ++itNextVCOEvent;
776    
777                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
778                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;                  uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;
779    
780                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents                  pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
781    
782                  // apply pitch value to the pitch parameter sequence                  // apply pitch value to the pitch parameter sequence
783                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {
784                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;
785                  }                  }
786    
787                  pVCOEvent = pNextVCOEvent;                  itVCOEvent = itNextVCOEvent;
788                }
789                if (!pVCOEventList->isEmpty()) {
790                    this->PitchBend = pitch;
791                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
792                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
793              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
794          }          }
795    
796            // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
797            {
798                RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];
799                RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();
800                if (Delay) { // skip events that happened before this voice was triggered
801                    while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;
802                }
803                float crossfadevolume;
804                while (itVCAEvent) {
805                    RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;
806                    ++itNextVCAEvent;
807    
808                    // calculate the influence length of this event (in sample points)
809                    uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;
810    
811                    crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);
812    
813                    #if CONFIG_PROCESS_MUTED_CHANNELS
814                    float effective_volume = crossfadevolume * this->Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
815                    #else
816                    float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;
817                    #endif
818    
819                    // apply volume value to the volume parameter sequence
820                    for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {
821                        pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;
822                    }
823    
824                    itVCAEvent = itNextVCAEvent;
825                }
826                if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
827            }
828    
     #if ENABLE_FILTER  
829          // process filter cutoff events          // process filter cutoff events
830          {          {
831              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];
832              Event* pCutoffEvent = pCutoffEventList->first();              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();
833              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
834                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;
835              }              }
836              float cutoff;              float cutoff;
837              while (pCutoffEvent) {              while (itCutoffEvent) {
838                  Event* pNextCutoffEvent = pCutoffEventList->next();                  RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;
839                    ++itNextCutoffEvent;
840    
841                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
842                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;
843    
844                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;
845    
846                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
847                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {
848                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;
849                  }                  }
850    
851                  pCutoffEvent = pNextCutoffEvent;                  itCutoffEvent = itNextCutoffEvent;
852              }              }
853              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time
854          }          }
855    
856          // process filter resonance events          // process filter resonance events
857          {          {
858              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];
859              Event* pResonanceEvent = pResonanceEventList->first();              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();
860              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
861                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;
862              }              }
863              while (pResonanceEvent) {              while (itResonanceEvent) {
864                  Event* pNextResonanceEvent = pResonanceEventList->next();                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;
865                    ++itNextResonanceEvent;
866    
867                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
868                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;
869    
870                  // convert absolute controller value to differential                  // convert absolute controller value to differential
871                  int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;                  int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;
872                  VCFResonanceCtrl.value = pResonanceEvent->Value;                  VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;
873    
874                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
875    
876                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
877                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {
878                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;
879                  }                  }
880    
881                  pResonanceEvent = pNextResonanceEvent;                  itResonanceEvent = itNextResonanceEvent;
882              }              }
883              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
884          }          }
     #endif // ENABLE_FILTER  
885      }      }
886    
887      /**      /**
888       *  Interpolates the input audio data (no loop).       * Calculate all necessary, final biquad filter parameters.
889       *       *
890       *  @param Samples - number of sample points to be rendered in this audio       * @param Samples - number of samples to be rendered in this audio fragment cycle
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
891       */       */
892      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::CalculateBiquadParameters(uint Samples) {
893          int i = Skip;          biquad_param_t bqbase;
894            biquad_param_t bqmain;
895          // FIXME: assuming either mono or stereo          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];
896          if (this->pSample->Channels == 2) { // Stereo Sample          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];
897              while (i < Samples) {          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
898                  InterpolateOneStep_Stereo(pSrc, i,          FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
899                                            pEngine->pSynthesisParameters[Event::destination_vca][i],          pEngine->pBasicFilterParameters[0] = bqbase;
900                                            pEngine->pSynthesisParameters[Event::destination_vco][i],          pEngine->pMainFilterParameters[0]  = bqmain;
901                                            pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
902                                            pEngine->pSynthesisParameters[Event::destination_vcfr][i]);          float* bq;
903              }          for (int i = 1; i < Samples; i++) {
904          }              // recalculate biquad parameters if cutoff or resonance differ from previous sample point
905          else { // Mono Sample              if (!(i & FILTER_UPDATE_MASK)) {
906              while (i < Samples) {                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||
907                  InterpolateOneStep_Mono(pSrc, i,                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)
908                                          pEngine->pSynthesisParameters[Event::destination_vca][i],                  {
909                                          pEngine->pSynthesisParameters[Event::destination_vco][i],                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];
910                                          pEngine->pSynthesisParameters[Event::destination_vcfc][i],                      prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];
911                                          pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                      FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
912                        FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
913                    }
914              }              }
915    
916                //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'
917                bq    = (float*) &pEngine->pBasicFilterParameters[i];
918                bq[0] = bqbase.b0;
919                bq[1] = bqbase.b1;
920                bq[2] = bqbase.b2;
921                bq[3] = bqbase.a1;
922                bq[4] = bqbase.a2;
923    
924                // same as 'pEngine->pMainFilterParameters[i] = bqmain;'
925                bq    = (float*) &pEngine->pMainFilterParameters[i];
926                bq[0] = bqmain.b0;
927                bq[1] = bqmain.b1;
928                bq[2] = bqmain.b2;
929                bq[3] = bqmain.a1;
930                bq[4] = bqmain.a2;
931          }          }
932      }      }
933    
934      /**      /**
935       *  Interpolates the input audio data, this method honors looping.       *  Synthesizes the current audio fragment for this voice.
936       *       *
937       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
938       *                   fragment cycle       *                   fragment cycle
939       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
940       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
941       */       */
942      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
943          int i = Skip;          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);
   
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
         }  
944      }      }
945    
946      /**      /**
947       *  Immediately kill the voice.       *  Immediately kill the voice. This method should not be used to kill
948         *  a normal, active voice, because it doesn't take care of things like
949         *  fading down the volume level to avoid clicks and regular processing
950         *  until the kill event actually occured!
951         *
952         *  @see Kill()
953       */       */
954      void Voice::Kill() {      void Voice::KillImmediately() {
955          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
956              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
957          }          }
958          Reset();          Reset();
959      }      }
960    
961        /**
962         *  Kill the voice in regular sense. Let the voice render audio until
963         *  the kill event actually occured and then fade down the volume level
964         *  very quickly and let the voice die finally. Unlike a normal release
965         *  of a voice, a kill process cannot be cancalled and is therefore
966         *  usually used for voice stealing and key group conflicts.
967         *
968         *  @param itKillEvent - event which caused the voice to be killed
969         */
970        void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
971            #if CONFIG_DEVMODE
972            if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
973            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
974            #endif // CONFIG_DEVMODE
975    
976            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
977            this->itKillEvent = itKillEvent;
978        }
979    
980  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.56  
changed lines
  Added in v.716

  ViewVC Help
Powered by ViewVC