/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 614 by persson, Mon Jun 6 16:54:20 2005 UTC revision 1038 by persson, Sat Feb 3 15:33:00 2007 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
39          KeyGroup = 0;          KeyGroup = 0;
40          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
41          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
42          #if ARCH_X86          #if CONFIG_ASM && ARCH_X86
43          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44          #else          #else
45          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46          #endif          #endif
47          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
50          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 117  namespace LinuxSampler { namespace gig { Line 66  namespace LinuxSampler { namespace gig {
66       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
67       *  needed.       *  needed.
68       *       *
69       *  @param pEngineChannel       - engine channel on which this voice was ordered       *  @param pEngineChannel - engine channel on which this voice was ordered
70       *  @param itNoteOnEvent        - event that caused triggering of this voice       *  @param itNoteOnEvent  - event that caused triggering of this voice
71       *  @param PitchBend            - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
72       *  @param pInstrument          - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
73       *  @param iLayer               - layer number this voice refers to (only if this is a layered sound of course)       *  @param VoiceType      - type of this voice
74       *  @param ReleaseTriggerVoice  - if this new voice is a release trigger voice (optional, default = false)       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
      *  @param VoiceStealingAllowed - wether the voice is allowed to steal voices for further subvoices  
75       *  @returns 0 on success, a value < 0 if the voice wasn't triggered       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
76       *           (either due to an error or e.g. because no region is       *           (either due to an error or e.g. because no region is
77       *           defined for the given key)       *           defined for the given key)
78       */       */
79      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealingAllowed) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          this->pEngineChannel = pEngineChannel;          this->pEngineChannel = pEngineChannel;
81          if (!pInstrument) {          this->pDimRgn        = pDimRgn;
82             dmsg(1,("voice::trigger: !pInstrument\n"));          Orphan = false;
83             exit(EXIT_FAILURE);  
         }  
84          #if CONFIG_DEVMODE          #if CONFIG_DEVMODE
85          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
86              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
87          }          }
88          #endif // CONFIG_DEVMODE          #endif // CONFIG_DEVMODE
89    
90          Type            = type_normal;          Type            = VoiceType;
91          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
         pRegion         = pInstrument->GetRegion(MIDIKey);  
92          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
93          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
94          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
95          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
96            KeyGroup        = iKeyGroup;
97            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
98    
99          if (!pRegion) {          // calculate volume
100              dmsg(4, ("gig::Voice: No Region defined for MIDI key %d\n", MIDIKey));          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             return -1;  
         }  
   
         // only mark the first voice of a layered voice (group) to be in a  
         // key group, so the layered voices won't kill each other  
         KeyGroup = (iLayer == 0 && !ReleaseTriggerVoice) ? pRegion->KeyGroup : 0;  
101    
102          // get current dimension values to select the right dimension region          // For 16 bit samples, we downscale by 32768 to convert from
103          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          // int16 value range to DSP value range (which is
104          uint DimValues[8] = { 0 };          // -1.0..1.0). For 24 bit, we downscale from int32.
105          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
106              switch (pRegion->pDimensionDefinitions[i].dimension) {  
107                  case ::gig::dimension_samplechannel:          volume *= pDimRgn->SampleAttenuation * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;
108                      DimValues[i] = 0; //TODO: we currently ignore this dimension  
109                      break;          // the volume of release triggered samples depends on note length
110                  case ::gig::dimension_layer:          if (Type == type_release_trigger) {
111                      DimValues[i] = iLayer;              float noteLength = float(pEngine->FrameTime + Delay -
112                      break;                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
113                  case ::gig::dimension_velocity:              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
114                      DimValues[i] = itNoteOnEvent->Param.Note.Velocity;              if (attenuation <= 0) return -1;
115                      break;              volume *= attenuation;
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pEngineChannel->CurrentKeyDimension;  
                     break;  
                 case ::gig::dimension_roundrobin:  
                     DimValues[i] = (uint) pEngineChannel->pMIDIKeyInfo[MIDIKey].RoundRobinIndex; // incremented for each note on  
                     break;  
                 case ::gig::dimension_random:  
                     pEngine->RandomSeed = pEngine->RandomSeed * 1103515245 + 12345; // classic pseudo random number generator  
                     DimValues[i] = (uint) pEngine->RandomSeed >> (32 - pRegion->pDimensionDefinitions[i].bits); // highest bits are most random  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngineChannel->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngineChannel->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngineChannel->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngineChannel->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngineChannel->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngineChannel->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngineChannel->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngineChannel->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngineChannel->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngineChannel->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngineChannel->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngineChannel->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngineChannel->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngineChannel->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngineChannel->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
116          }          }
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues);  
   
         pSample = pDimRgn->pSample; // sample won't change until the voice is finished  
         if (!pSample || !pSample->SamplesTotal) return -1; // no need to continue if sample is silent  
117    
118          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
119          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
120            // select bit depth (16 or 24)
121            SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124            float crossfadeVolume;
125          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
126              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
130                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                  break;                  break;
132              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                  break;                  break;
135              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136              default:              default:
137                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
138          }          }
139    
140          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143            float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
157    
158          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
159              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
160    
161              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
162              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
163    
164              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
165                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
166                  KillImmediately();                  KillImmediately();
167                  return -1;                  return -1;
# Line 316  namespace LinuxSampler { namespace gig { Line 170  namespace LinuxSampler { namespace gig {
170          }          }
171          else { // RAM only voice          else { // RAM only voice
172              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
173              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
174              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
175          }          }
176            if (RAMLoop) {
177                loop.uiTotalCycles = pSample->LoopPlayCount;
178                loop.uiCyclesLeft  = pSample->LoopPlayCount;
179                loop.uiStart       = loopinfo.LoopStart;
180                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
181                loop.uiSize        = loopinfo.LoopLength;
182            }
183    
184          // calculate initial pitch value          // calculate initial pitch value
185          {          {
186              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
187              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
188              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
189              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
190          }          }
191    
         const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);  
   
         Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)  
   
         Volume *= pDimRgn->SampleAttenuation;  
   
192          // the length of the decay and release curves are dependent on the velocity          // the length of the decay and release curves are dependent on the velocity
193          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
194    
# Line 351  namespace LinuxSampler { namespace gig { Line 201  namespace LinuxSampler { namespace gig {
201                      eg1controllervalue = 0;                      eg1controllervalue = 0;
202                      break;                      break;
203                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
204                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
205                      break;                      break;
206                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
207                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
# Line 362  namespace LinuxSampler { namespace gig { Line 212  namespace LinuxSampler { namespace gig {
212              }              }
213              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
214    
215              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
216              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
217              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
218              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
219                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
220              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
221                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
222                            pDimRgn->EG1Hold,  
223                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
224                            (pDimRgn->EG1Decay1 + eg1decay) * velrelease,                          pDimRgn->EG1Attack * eg1attack,
225                            (pDimRgn->EG1Decay2 + eg1decay) * velrelease,                          pDimRgn->EG1Hold,
226                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
227                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
228                            (pDimRgn->EG1Release + eg1release) * velrelease,                          pDimRgn->EG1InfiniteSustain,
229                            // the SSE synthesis implementation requires                          pDimRgn->EG1Sustain,
230                            // the vca start to be 16 byte aligned                          pDimRgn->EG1Release * eg1release * velrelease,
231                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?                          velocityAttenuation,
232                            Delay & 0xfffffffc : Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
233                            velocityAttenuation);          }
234          }  
235    #ifdef CONFIG_INTERPOLATE_VOLUME
236            // setup initial volume in synthesis parameters
237    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
238            if (pEngineChannel->GetMute()) {
239                finalSynthesisParameters.fFinalVolumeLeft  = 0;
240                finalSynthesisParameters.fFinalVolumeRight = 0;
241            }
242            else
243    #else
244            {
245                float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
246    
247                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
248                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
249            }
250    #endif
251    #endif
252    
253          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
254          {          {
# Line 393  namespace LinuxSampler { namespace gig { Line 259  namespace LinuxSampler { namespace gig {
259                      eg2controllervalue = 0;                      eg2controllervalue = 0;
260                      break;                      break;
261                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
262                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
263                      break;                      break;
264                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
265                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
# Line 404  namespace LinuxSampler { namespace gig { Line 270  namespace LinuxSampler { namespace gig {
270              }              }
271              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
272    
273              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
274              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
275              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
276              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
277    
278              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
279                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
280                            false,                          false,
281                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
282                            (pDimRgn->EG2Decay1 + eg2decay) * velrelease,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
283                            (pDimRgn->EG2Decay2 + eg2decay) * velrelease,                          pDimRgn->EG2InfiniteSustain,
284                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
285                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
286                            (pDimRgn->EG2Release + eg2release) * velrelease,                          velocityAttenuation,
287                            Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           velocityAttenuation);  
288          }          }
289    
290    
291          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
292          {          {
293            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
294            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
295                float eg3depth = (bPortamento)
296                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
297                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
298                float eg3time = (bPortamento)
299                                    ? pEngineChannel->PortamentoTime
300                                    : pDimRgn->EG3Attack;
301                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
302                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
303          }          }
304    
305    
# Line 437  namespace LinuxSampler { namespace gig { Line 310  namespace LinuxSampler { namespace gig {
310                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
311                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
312                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
313                        bLFO1Enabled         = (lfo1_internal_depth > 0);
314                      break;                      break;
315                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
316                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
317                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
318                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
319                      break;                      break;
320                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
321                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
322                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
323                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
324                      break;                      break;
325                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
326                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
327                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
328                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
329                      break;                      break;
330                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
331                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
332                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
333                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
334                      break;                      break;
335                  default:                  default:
336                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
337                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
338                        bLFO1Enabled         = false;
339                }
340                if (bLFO1Enabled) {
341                    pLFO1->trigger(pDimRgn->LFO1Frequency,
342                                   start_level_min,
343                                   lfo1_internal_depth,
344                                   pDimRgn->LFO1ControlDepth,
345                                   pDimRgn->LFO1FlipPhase,
346                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
347                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
348              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngineChannel->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
349          }          }
350    
351    
# Line 475  namespace LinuxSampler { namespace gig { Line 356  namespace LinuxSampler { namespace gig {
356                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
357                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
358                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
359                        bLFO2Enabled         = (lfo2_internal_depth > 0);
360                      break;                      break;
361                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
362                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
363                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
364                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
365                      break;                      break;
366                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
367                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
368                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
369                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
370                      break;                      break;
371                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
374                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
375                      break;                      break;
376                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
377                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
378                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
379                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
380                      break;                      break;
381                  default:                  default:
382                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
383                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
384                        bLFO2Enabled         = false;
385                }
386                if (bLFO2Enabled) {
387                    pLFO2->trigger(pDimRgn->LFO2Frequency,
388                                   start_level_max,
389                                   lfo2_internal_depth,
390                                   pDimRgn->LFO2ControlDepth,
391                                   pDimRgn->LFO2FlipPhase,
392                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
393                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
394              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngineChannel->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
395          }          }
396    
397    
# Line 513  namespace LinuxSampler { namespace gig { Line 402  namespace LinuxSampler { namespace gig {
402                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
403                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
404                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
405                        bLFO3Enabled         = (lfo3_internal_depth > 0);
406                      break;                      break;
407                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
408                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
409                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
410                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
411                      break;                      break;
412                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
413                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
414                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
415                        bLFO3Enabled         = true;
416                      break;                      break;
417                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
418                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
419                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
420                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
421                      break;                      break;
422                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
423                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
424                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
425                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
426                      break;                      break;
427                  default:                  default:
428                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
429                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
430                        bLFO3Enabled         = false;
431                }
432                if (bLFO3Enabled) {
433                    pLFO3->trigger(pDimRgn->LFO3Frequency,
434                                   start_level_mid,
435                                   lfo3_internal_depth,
436                                   pDimRgn->LFO3ControlDepth,
437                                   false,
438                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
439                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
440              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngineChannel->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
441          }          }
442    
443    
# Line 582  namespace LinuxSampler { namespace gig { Line 479  namespace LinuxSampler { namespace gig {
479                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
480                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
481                      break;                      break;
482                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
483                        VCFCutoffCtrl.controller = 128;
484                        break;
485                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
486                  default:                  default:
487                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
# Line 613  namespace LinuxSampler { namespace gig { Line 512  namespace LinuxSampler { namespace gig {
512              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
513    
514              #ifndef CONFIG_OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
515              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
516              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
517              #else // override filter type              #else // override filter type
518              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
519              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
# Line 624  namespace LinuxSampler { namespace gig { Line 523  namespace LinuxSampler { namespace gig {
523              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
524    
525              // calculate cutoff frequency              // calculate cutoff frequency
526              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
527              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
528                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
529              }              }
530              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
531    
532              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;              int cvalue;
533              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
534                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
535                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
536                    // VCFVelocityScale in this case means Minimum cutoff
537                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
538                }
539                else {
540                    cvalue = pDimRgn->VCFCutoff;
541                }
542                cutoff *= float(cvalue);
543                if (cutoff > 127.0f) cutoff = 127.0f;
544    
545                // calculate resonance
546                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
547    
548              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
549                VCFResonanceCtrl.fvalue = resonance;
550          }          }
551          else {          else {
552              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 662  namespace LinuxSampler { namespace gig { Line 570  namespace LinuxSampler { namespace gig {
570      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
571    
572          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
573          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
574    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         pLFO1->Process(Samples);  
         pLFO2->Process(Samples);  
         if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
575          switch (this->PlaybackState) {          switch (this->PlaybackState) {
576    
577              case playback_state_init:              case playback_state_init:
# Line 707  namespace LinuxSampler { namespace gig { Line 586  namespace LinuxSampler { namespace gig {
586    
587                      if (DiskVoice) {                      if (DiskVoice) {
588                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
589                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
590                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
591                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
592                          }                          }
593                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
594                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
595                      }                      }
596                  }                  }
# Line 727  namespace LinuxSampler { namespace gig { Line 605  namespace LinuxSampler { namespace gig {
605                              KillImmediately();                              KillImmediately();
606                              return;                              return;
607                          }                          }
608                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
609                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
610                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
611                      }                      }
612    
# Line 744  namespace LinuxSampler { namespace gig { Line 622  namespace LinuxSampler { namespace gig {
622                          }                          }
623                      }                      }
624    
625                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
626    
627                      // render current audio fragment                      // render current audio fragment
628                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
629    
630                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
631                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
632                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
633                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
634    
635                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
636                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 767  namespace LinuxSampler { namespace gig { Line 645  namespace LinuxSampler { namespace gig {
645                  break;                  break;
646          }          }
647    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
648          // Reset delay          // Reset delay
649          Delay = 0;          Delay = 0;
650    
651          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
652    
653          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
654          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
655      }      }
656    
657      /**      /**
# Line 786  namespace LinuxSampler { namespace gig { Line 659  namespace LinuxSampler { namespace gig {
659       *  suspended / not running.       *  suspended / not running.
660       */       */
661      void Voice::Reset() {      void Voice::Reset() {
662          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
663          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
664          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
665          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
666          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 801  namespace LinuxSampler { namespace gig { Line 671  namespace LinuxSampler { namespace gig {
671      }      }
672    
673      /**      /**
674       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
675       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
676       *       *
677       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
678         * @param End     - youngest time stamp where processing should be stopped
679       */       */
680      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
681            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
682                if (itEvent->Type == Event::type_release) {
683                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
684                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
685                } else if (itEvent->Type == Event::type_cancel_release) {
686                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
687                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
688                }
689            }
690        }
691    
692          // dispatch control change events      /**
693          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
694          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
695              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
696          }       * @param itEvent - iterator pointing to the next event to be processed
697          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
698              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
699                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
700                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
701                  }              if (itEvent->Type == Event::type_control_change &&
702                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
703                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
704                        processCutoffEvent(itEvent);
705                    }
706                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
707                        processResonanceEvent(itEvent);
708                  }                  }
709                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
710                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
711                  }                  }
712                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
713                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
714                  }                  }
715                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
716                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
717                  }                  }
718                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
719                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
720                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
721                  }                  }
722                    if (itEvent->Param.CC.Controller == 7) { // volume
723                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
724                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
725                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
726                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
727                    }
728                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
729                    processPitchEvent(itEvent);
730              }              }
731            }
732        }
733    
734        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
735            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
736            finalSynthesisParameters.fFinalPitch *= pitch;
737            PitchBend = pitch;
738        }
739    
740        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
741            int ccvalue = itEvent->Param.CC.Value;
742            if (VCFCutoffCtrl.value == ccvalue) return;
743            VCFCutoffCtrl.value == ccvalue;
744            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
745            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
746            float cutoff = CutoffBase * float(ccvalue);
747            if (cutoff > 127.0f) cutoff = 127.0f;
748    
749            VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
750            fFinalCutoff = cutoff;
751        }
752    
753        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
754            // convert absolute controller value to differential
755            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
756            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
757            const float resonancedelta = (float) ctrldelta;
758            fFinalResonance += resonancedelta;
759            // needed for initialization of parameter
760            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
761        }
762    
763              ++itCCEvent;      /**
764         *  Synthesizes the current audio fragment for this voice.
765         *
766         *  @param Samples - number of sample points to be rendered in this audio
767         *                   fragment cycle
768         *  @param pSrc    - pointer to input sample data
769         *  @param Skip    - number of sample points to skip in output buffer
770         */
771        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
772            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];
773            finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];
774            finalSynthesisParameters.pSrc      = pSrc;
775    
776            RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
777            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
778    
779            if (Skip) { // skip events that happened before this voice was triggered
780                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
781                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
782          }          }
783    
784            uint killPos;
785            if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
786    
787          // process pitch events          uint i = Skip;
788          {          while (i < Samples) {
789              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
790              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();  
791              if (Delay) { // skip events that happened before this voice was triggered              // initialize all final synthesis parameters
792                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
793              }              fFinalCutoff    = VCFCutoffCtrl.fvalue;
794              // apply old pitchbend value until first pitch event occurs              fFinalResonance = VCFResonanceCtrl.fvalue;
795              if (this->PitchBend != 1.0) {  
796                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;              // process MIDI control change and pitchbend events for this subfragment
797                  for (uint i = Delay; i < end; i++) {              processCCEvents(itCCEvent, iSubFragmentEnd);
798                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
799                  }              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
800    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
801                if (pEngineChannel->GetMute()) fFinalVolume = 0;
802    #endif
803    
804                // process transition events (note on, note off & sustain pedal)
805                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
806    
807                // if the voice was killed in this subfragment, or if the
808                // filter EG is finished, switch EG1 to fade out stage
809                if ((itKillEvent && killPos <= iSubFragmentEnd) ||
810                    (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
811                     EG2.getSegmentType() == EGADSR::segment_end)) {
812                    EG1.enterFadeOutStage();
813                    itKillEvent = Pool<Event>::Iterator();
814              }              }
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
815    
816                  itVCOEvent = itNextVCOEvent;              // process envelope generators
817                switch (EG1.getSegmentType()) {
818                    case EGADSR::segment_lin:
819                        fFinalVolume *= EG1.processLin();
820                        break;
821                    case EGADSR::segment_exp:
822                        fFinalVolume *= EG1.processExp();
823                        break;
824                    case EGADSR::segment_end:
825                        fFinalVolume *= EG1.getLevel();
826                        break; // noop
827              }              }
828              if (!pVCOEventList->isEmpty()) {              switch (EG2.getSegmentType()) {
829                  this->PitchBend = pitch;                  case EGADSR::segment_lin:
830                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);                      fFinalCutoff *= EG2.processLin();
831                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);                      break;
832                    case EGADSR::segment_exp:
833                        fFinalCutoff *= EG2.processExp();
834                        break;
835                    case EGADSR::segment_end:
836                        fFinalCutoff *= EG2.getLevel();
837                        break; // noop
838              }              }
839          }              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
840    
841          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)              // process low frequency oscillators
842          {              if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
843              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
844              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
845    
846                  itVCAEvent = itNextVCAEvent;              // if filter enabled then update filter coefficients
847                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
848                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
849                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
850              }              }
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
851    
852          // process filter cutoff events              // do we need resampling?
853          {              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
854              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
855              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
856              if (Delay) { // skip events that happened before this voice was triggered                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
857                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
858    
859                  itCutoffEvent = itNextCutoffEvent;              // prepare final synthesis parameters structure
860              }              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
861              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  #ifdef CONFIG_INTERPOLATE_VOLUME
862          }              finalSynthesisParameters.fFinalVolumeDeltaLeft  =
863                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
864                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
865                finalSynthesisParameters.fFinalVolumeDeltaRight =
866                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
867                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
868    #else
869                finalSynthesisParameters.fFinalVolumeLeft  =
870                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
871                finalSynthesisParameters.fFinalVolumeRight =
872                    fFinalVolume * VolumeRight * PanRightSmoother.render();
873    #endif
874                // render audio for one subfragment
875                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
876    
877          // process filter resonance events              // stop the rendering if volume EG is finished
878          {              if (EG1.getSegmentType() == EGADSR::segment_end) break;
             RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
879    
880                  itResonanceEvent = itNextResonanceEvent;              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
             }  
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     }  
881    
882      /**              // increment envelopes' positions
883       * Calculate all necessary, final biquad filter parameters.              if (EG1.active()) {
884       *  
885       * @param Samples - number of samples to be rendered in this audio fragment cycle                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
886       */                  if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
887      void Voice::CalculateBiquadParameters(uint Samples) {                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
888                  }                  }
889    
890                    EG1.increment(1);
891                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
892              }              }
893                if (EG2.active()) {
894                    EG2.increment(1);
895                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
896                }
897                EG3.increment(1);
898                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
899    
900              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
901              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
902          }          }
903      }      }
904    
905      /**      /** @brief Update current portamento position.
      *  Synthesizes the current audio fragment for this voice.  
906       *       *
907       *  @param Samples - number of sample points to be rendered in this audio       * Will be called when portamento mode is enabled to get the final
908       *                   fragment cycle       * portamento position of this active voice from where the next voice(s)
909       *  @param pSrc    - pointer to input sample data       * might continue to slide on.
910       *  @param Skip    - number of sample points to skip in output buffer       *
911         * @param itNoteOffEvent - event which causes this voice to die soon
912       */       */
913      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
914          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
915            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
916      }      }
917    
918      /**      /**

Legend:
Removed from v.614  
changed lines
  Added in v.1038

  ViewVC Help
Powered by ViewVC