/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 614 by persson, Mon Jun 6 16:54:20 2005 UTC revision 1923 by persson, Sat Jun 27 16:55:41 2009 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005 - 2009 Christian Schoenebeck                       *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
39          KeyGroup = 0;          KeyGroup = 0;
40          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
41          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (asm core is not supported ATM)
42          #if ARCH_X86          #if 0 // CONFIG_ASM && ARCH_X86
43          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44          #else          #else
45          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46          #endif          #endif
47          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
50          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 117  namespace LinuxSampler { namespace gig { Line 66  namespace LinuxSampler { namespace gig {
66       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
67       *  needed.       *  needed.
68       *       *
69       *  @param pEngineChannel       - engine channel on which this voice was ordered       *  @param pEngineChannel - engine channel on which this voice was ordered
70       *  @param itNoteOnEvent        - event that caused triggering of this voice       *  @param itNoteOnEvent  - event that caused triggering of this voice
71       *  @param PitchBend            - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
72       *  @param pInstrument          - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
73       *  @param iLayer               - layer number this voice refers to (only if this is a layered sound of course)       *  @param VoiceType      - type of this voice
74       *  @param ReleaseTriggerVoice  - if this new voice is a release trigger voice (optional, default = false)       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
      *  @param VoiceStealingAllowed - wether the voice is allowed to steal voices for further subvoices  
75       *  @returns 0 on success, a value < 0 if the voice wasn't triggered       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
76       *           (either due to an error or e.g. because no region is       *           (either due to an error or e.g. because no region is
77       *           defined for the given key)       *           defined for the given key)
78       */       */
79      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealingAllowed) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          this->pEngineChannel = pEngineChannel;          this->pEngineChannel = pEngineChannel;
81          if (!pInstrument) {          this->pDimRgn        = pDimRgn;
82             dmsg(1,("voice::trigger: !pInstrument\n"));          Orphan = false;
83             exit(EXIT_FAILURE);  
         }  
84          #if CONFIG_DEVMODE          #if CONFIG_DEVMODE
85          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
86              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
87          }          }
88          #endif // CONFIG_DEVMODE          #endif // CONFIG_DEVMODE
89    
90          Type            = type_normal;          Type            = VoiceType;
91          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
         pRegion         = pInstrument->GetRegion(MIDIKey);  
92          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
93          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
94          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
95          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
96            KeyGroup        = iKeyGroup;
97            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
98    
99          if (!pRegion) {          // calculate volume
100              dmsg(4, ("gig::Voice: No Region defined for MIDI key %d\n", MIDIKey));          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             return -1;  
         }  
   
         // only mark the first voice of a layered voice (group) to be in a  
         // key group, so the layered voices won't kill each other  
         KeyGroup = (iLayer == 0 && !ReleaseTriggerVoice) ? pRegion->KeyGroup : 0;  
101    
102          // get current dimension values to select the right dimension region          // For 16 bit samples, we downscale by 32768 to convert from
103          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          // int16 value range to DSP value range (which is
104          uint DimValues[8] = { 0 };          // -1.0..1.0). For 24 bit, we downscale from int32.
105          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
106              switch (pRegion->pDimensionDefinitions[i].dimension) {  
107                  case ::gig::dimension_samplechannel:          volume *= pDimRgn->SampleAttenuation * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;
108                      DimValues[i] = 0; //TODO: we currently ignore this dimension  
109                      break;          // the volume of release triggered samples depends on note length
110                  case ::gig::dimension_layer:          if (Type == type_release_trigger) {
111                      DimValues[i] = iLayer;              float noteLength = float(pEngine->FrameTime + Delay -
112                      break;                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
113                  case ::gig::dimension_velocity:              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
114                      DimValues[i] = itNoteOnEvent->Param.Note.Velocity;              if (attenuation <= 0) return -1;
115                      break;              volume *= attenuation;
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pEngineChannel->CurrentKeyDimension;  
                     break;  
                 case ::gig::dimension_roundrobin:  
                     DimValues[i] = (uint) pEngineChannel->pMIDIKeyInfo[MIDIKey].RoundRobinIndex; // incremented for each note on  
                     break;  
                 case ::gig::dimension_random:  
                     pEngine->RandomSeed = pEngine->RandomSeed * 1103515245 + 12345; // classic pseudo random number generator  
                     DimValues[i] = (uint) pEngine->RandomSeed >> (32 - pRegion->pDimensionDefinitions[i].bits); // highest bits are most random  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngineChannel->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngineChannel->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngineChannel->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngineChannel->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngineChannel->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngineChannel->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngineChannel->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngineChannel->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngineChannel->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngineChannel->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngineChannel->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngineChannel->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngineChannel->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngineChannel->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngineChannel->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
116          }          }
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues);  
   
         pSample = pDimRgn->pSample; // sample won't change until the voice is finished  
         if (!pSample || !pSample->SamplesTotal) return -1; // no need to continue if sample is silent  
117    
118          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
119          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
120            // select bit depth (16 or 24)
121            SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124            float crossfadeVolume;
125          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
126              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
130                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                  break;                  break;
132              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                  break;                  break;
135              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136              default:              default:
137                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
138          }          }
139    
140          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143            float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
157    
158          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
159              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              if (cachedsamples > (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH)) {
160                    MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
161                } else {
162                    // The cache is too small to fit a max sample buffer.
163                    // Setting MaxRAMPos to 0 will probably cause a click
164                    // in the audio, but it's better than not handling
165                    // this case at all, which would have caused the
166                    // unsigned MaxRAMPos to be set to a negative number.
167                    MaxRAMPos = 0;
168                }
169    
170              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
171              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
172    
173              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
174                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
175                  KillImmediately();                  KillImmediately();
176                  return -1;                  return -1;
# Line 316  namespace LinuxSampler { namespace gig { Line 179  namespace LinuxSampler { namespace gig {
179          }          }
180          else { // RAM only voice          else { // RAM only voice
181              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
182              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
183              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
184          }          }
185            if (RAMLoop) {
186                loop.uiTotalCycles = pSample->LoopPlayCount;
187                loop.uiCyclesLeft  = pSample->LoopPlayCount;
188                loop.uiStart       = loopinfo.LoopStart;
189                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
190                loop.uiSize        = loopinfo.LoopLength;
191            }
192    
193          // calculate initial pitch value          // calculate initial pitch value
194          {          {
195              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pEngineChannel->pInstrument->FineTune + pDimRgn->FineTune + pEngine->ScaleTuning[MIDIKey % 12];
             if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;  
             this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));  
             this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents  
         }  
196    
197          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);              // GSt behaviour: maximum transpose up is 40 semitones. If
198                // MIDI key is more than 40 semitones above unity note,
199          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)              // the transpose is not done.
200                if (pDimRgn->PitchTrack && (MIDIKey - (int) pDimRgn->UnityNote) < 40) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
201          Volume *= pDimRgn->SampleAttenuation;  
202                this->PitchBase = RTMath::CentsToFreqRatioUnlimited(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
203                this->PitchBendRange = 1.0 / 8192.0 * 100.0 * pEngineChannel->pInstrument->PitchbendRange;
204                this->PitchBend = RTMath::CentsToFreqRatio(PitchBend * PitchBendRange);
205            }
206    
207          // the length of the decay and release curves are dependent on the velocity          // the length of the decay and release curves are dependent on the velocity
208          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
# Line 351  namespace LinuxSampler { namespace gig { Line 216  namespace LinuxSampler { namespace gig {
216                      eg1controllervalue = 0;                      eg1controllervalue = 0;
217                      break;                      break;
218                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
219                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
220                      break;                      break;
221                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
222                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
# Line 362  namespace LinuxSampler { namespace gig { Line 227  namespace LinuxSampler { namespace gig {
227              }              }
228              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
229    
230              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
231              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
232              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
233              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
234                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
235              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
236                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
237                            pDimRgn->EG1Hold,  
238                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
239                            (pDimRgn->EG1Decay1 + eg1decay) * velrelease,                          pDimRgn->EG1Attack * eg1attack,
240                            (pDimRgn->EG1Decay2 + eg1decay) * velrelease,                          pDimRgn->EG1Hold,
241                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
242                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
243                            (pDimRgn->EG1Release + eg1release) * velrelease,                          pDimRgn->EG1InfiniteSustain,
244                            // the SSE synthesis implementation requires                          pDimRgn->EG1Sustain,
245                            // the vca start to be 16 byte aligned                          pDimRgn->EG1Release * eg1release * velrelease,
246                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?                          velocityAttenuation,
247                            Delay & 0xfffffffc : Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
248                            velocityAttenuation);          }
249          }  
250    #ifdef CONFIG_INTERPOLATE_VOLUME
251            // setup initial volume in synthesis parameters
252    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
253            if (pEngineChannel->GetMute()) {
254                finalSynthesisParameters.fFinalVolumeLeft  = 0;
255                finalSynthesisParameters.fFinalVolumeRight = 0;
256            }
257            else
258    #else
259            {
260                float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
261    
262                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
263                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
264            }
265    #endif
266    #endif
267    
268          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
269          {          {
# Line 393  namespace LinuxSampler { namespace gig { Line 274  namespace LinuxSampler { namespace gig {
274                      eg2controllervalue = 0;                      eg2controllervalue = 0;
275                      break;                      break;
276                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
277                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
278                      break;                      break;
279                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
280                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
# Line 404  namespace LinuxSampler { namespace gig { Line 285  namespace LinuxSampler { namespace gig {
285              }              }
286              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
287    
288              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
289              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
290              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
291              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
292    
293              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
294                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
295                            false,                          false,
296                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
297                            (pDimRgn->EG2Decay1 + eg2decay) * velrelease,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
298                            (pDimRgn->EG2Decay2 + eg2decay) * velrelease,                          pDimRgn->EG2InfiniteSustain,
299                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
300                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
301                            (pDimRgn->EG2Release + eg2release) * velrelease,                          velocityAttenuation,
302                            Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           velocityAttenuation);  
303          }          }
304    
305    
306          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
307          {          {
308            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
309            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
310                float eg3depth = (bPortamento)
311                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
312                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
313                float eg3time = (bPortamento)
314                                    ? pEngineChannel->PortamentoTime
315                                    : pDimRgn->EG3Attack;
316                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
317                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
318          }          }
319    
320    
# Line 437  namespace LinuxSampler { namespace gig { Line 325  namespace LinuxSampler { namespace gig {
325                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
326                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
327                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
328                        bLFO1Enabled         = (lfo1_internal_depth > 0);
329                      break;                      break;
330                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
331                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
332                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
333                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
334                      break;                      break;
335                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
336                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
337                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
338                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
339                      break;                      break;
340                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
341                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
342                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
343                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
344                      break;                      break;
345                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
346                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
347                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
348                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
349                      break;                      break;
350                  default:                  default:
351                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
352                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
353                        bLFO1Enabled         = false;
354                }
355                if (bLFO1Enabled) {
356                    pLFO1->trigger(pDimRgn->LFO1Frequency,
357                                   start_level_min,
358                                   lfo1_internal_depth,
359                                   pDimRgn->LFO1ControlDepth,
360                                   pDimRgn->LFO1FlipPhase,
361                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
362                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
363              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngineChannel->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
364          }          }
365    
366    
# Line 475  namespace LinuxSampler { namespace gig { Line 371  namespace LinuxSampler { namespace gig {
371                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
374                        bLFO2Enabled         = (lfo2_internal_depth > 0);
375                      break;                      break;
376                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
377                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
378                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
379                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
380                      break;                      break;
381                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
382                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
383                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
384                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
385                      break;                      break;
386                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
387                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
388                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
389                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
390                      break;                      break;
391                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
392                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
393                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
394                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
395                      break;                      break;
396                  default:                  default:
397                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
398                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
399                        bLFO2Enabled         = false;
400                }
401                if (bLFO2Enabled) {
402                    pLFO2->trigger(pDimRgn->LFO2Frequency,
403                                   start_level_max,
404                                   lfo2_internal_depth,
405                                   pDimRgn->LFO2ControlDepth,
406                                   pDimRgn->LFO2FlipPhase,
407                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
408                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
409              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngineChannel->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
410          }          }
411    
412    
# Line 513  namespace LinuxSampler { namespace gig { Line 417  namespace LinuxSampler { namespace gig {
417                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
418                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
419                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
420                        bLFO3Enabled         = (lfo3_internal_depth > 0);
421                      break;                      break;
422                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
423                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
424                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
425                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
426                      break;                      break;
427                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
428                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
429                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
430                        bLFO3Enabled         = true;
431                      break;                      break;
432                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
433                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
434                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
435                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
436                      break;                      break;
437                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
438                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
439                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
440                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
441                      break;                      break;
442                  default:                  default:
443                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
444                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
445                        bLFO3Enabled         = false;
446                }
447                if (bLFO3Enabled) {
448                    pLFO3->trigger(pDimRgn->LFO3Frequency,
449                                   start_level_mid,
450                                   lfo3_internal_depth,
451                                   pDimRgn->LFO3ControlDepth,
452                                   false,
453                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
454                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
455              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngineChannel->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
456          }          }
457    
458    
# Line 582  namespace LinuxSampler { namespace gig { Line 494  namespace LinuxSampler { namespace gig {
494                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
495                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
496                      break;                      break;
497                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
498                        VCFCutoffCtrl.controller = 128;
499                        break;
500                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
501                  default:                  default:
502                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
# Line 613  namespace LinuxSampler { namespace gig { Line 527  namespace LinuxSampler { namespace gig {
527              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
528    
529              #ifndef CONFIG_OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
530              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
531              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
532              #else // override filter type              #else // override filter type
533              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
534              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
535              #endif // CONFIG_OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
536    
537              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
538              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
539    
540              // calculate cutoff frequency              // calculate cutoff frequency
541              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
542              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
543                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
544              }              }
545              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
546    
547              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;              int cvalue;
548              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
549                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
550                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
551                    // VCFVelocityScale in this case means Minimum cutoff
552                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
553                }
554                else {
555                    cvalue = pDimRgn->VCFCutoff;
556                }
557                cutoff *= float(cvalue);
558                if (cutoff > 127.0f) cutoff = 127.0f;
559    
560                // calculate resonance
561                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
562    
563              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
564                VCFResonanceCtrl.fvalue = resonance;
565          }          }
566          else {          else {
567              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 662  namespace LinuxSampler { namespace gig { Line 585  namespace LinuxSampler { namespace gig {
585      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
586    
587          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
588          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
589    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         pLFO1->Process(Samples);  
         pLFO2->Process(Samples);  
         if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
590          switch (this->PlaybackState) {          switch (this->PlaybackState) {
591    
592              case playback_state_init:              case playback_state_init:
# Line 707  namespace LinuxSampler { namespace gig { Line 601  namespace LinuxSampler { namespace gig {
601    
602                      if (DiskVoice) {                      if (DiskVoice) {
603                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
604                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
605                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
606                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
607                          }                          }
608                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
609                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
610                      }                      }
611                  }                  }
# Line 727  namespace LinuxSampler { namespace gig { Line 620  namespace LinuxSampler { namespace gig {
620                              KillImmediately();                              KillImmediately();
621                              return;                              return;
622                          }                          }
623                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
624                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
625                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
626                      }                      }
627    
# Line 744  namespace LinuxSampler { namespace gig { Line 637  namespace LinuxSampler { namespace gig {
637                          }                          }
638                      }                      }
639    
640                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
641    
642                      // render current audio fragment                      // render current audio fragment
643                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
644    
645                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
646                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
647                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
648                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
649    
650                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
651                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 767  namespace LinuxSampler { namespace gig { Line 660  namespace LinuxSampler { namespace gig {
660                  break;                  break;
661          }          }
662    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
663          // Reset delay          // Reset delay
664          Delay = 0;          Delay = 0;
665    
666          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
667    
668          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
669          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
670      }      }
671    
672      /**      /**
# Line 786  namespace LinuxSampler { namespace gig { Line 674  namespace LinuxSampler { namespace gig {
674       *  suspended / not running.       *  suspended / not running.
675       */       */
676      void Voice::Reset() {      void Voice::Reset() {
677          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
678          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
679          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
680          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
681          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 801  namespace LinuxSampler { namespace gig { Line 686  namespace LinuxSampler { namespace gig {
686      }      }
687    
688      /**      /**
689       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
690       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
691       *       *
692       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
693         * @param End     - youngest time stamp where processing should be stopped
694       */       */
695      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
696            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
697                if (itEvent->Type == Event::type_release) {
698                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
699                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
700                } else if (itEvent->Type == Event::type_cancel_release) {
701                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
702                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
703                }
704            }
705        }
706    
707          // dispatch control change events      /**
708          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
709          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
710              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
711          }       * @param itEvent - iterator pointing to the next event to be processed
712          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
713              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
714                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
715                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
716                  }              if (itEvent->Type == Event::type_control_change &&
717                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
718                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
719                        processCutoffEvent(itEvent);
720                    }
721                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
722                        processResonanceEvent(itEvent);
723                  }                  }
724                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
725                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
726                  }                  }
727                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
728                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
729                  }                  }
730                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
731                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
732                  }                  }
733                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
734                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
735                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
736                    }
737                    if (itEvent->Param.CC.Controller == 7) { // volume
738                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
739                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
740                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
741                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
742                  }                  }
743                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
744                    processPitchEvent(itEvent);
745              }              }
   
             ++itCCEvent;  
746          }          }
747        }
748    
749        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
750            PitchBend = RTMath::CentsToFreqRatio(itEvent->Param.Pitch.Pitch * PitchBendRange);
751        }
752    
753          // process pitch events      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
754          {          int ccvalue = itEvent->Param.CC.Value;
755              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];          if (VCFCutoffCtrl.value == ccvalue) return;
756              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();          VCFCutoffCtrl.value == ccvalue;
757              if (Delay) { // skip events that happened before this voice was triggered          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
758                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
759              }          float cutoff = CutoffBase * float(ccvalue);
760              // apply old pitchbend value until first pitch event occurs          if (cutoff > 127.0f) cutoff = 127.0f;
761              if (this->PitchBend != 1.0) {  
762                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
763                  for (uint i = Delay; i < end; i++) {          fFinalCutoff = cutoff;
764                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;      }
765    
766        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
767            // convert absolute controller value to differential
768            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
769            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
770            const float resonancedelta = (float) ctrldelta;
771            fFinalResonance += resonancedelta;
772            // needed for initialization of parameter
773            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
774        }
775    
776        /**
777         *  Synthesizes the current audio fragment for this voice.
778         *
779         *  @param Samples - number of sample points to be rendered in this audio
780         *                   fragment cycle
781         *  @param pSrc    - pointer to input sample data
782         *  @param Skip    - number of sample points to skip in output buffer
783         */
784        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
785            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];
786            finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];
787            finalSynthesisParameters.pSrc      = pSrc;
788    
789            RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
790            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
791    
792            if (itTriggerEvent) { // skip events that happened before this voice was triggered
793                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
794                // we can't simply compare the timestamp here, because note events
795                // might happen on the same time stamp, so we have to deal on the
796                // actual sequence the note events arrived instead (see bug #112)
797                for (; itNoteEvent; ++itNoteEvent) {
798                    if (itTriggerEvent == itNoteEvent) {
799                        ++itNoteEvent;
800                        break;
801                  }                  }
802              }              }
803              float pitch;          }
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
804    
805                  itVCOEvent = itNextVCOEvent;          uint killPos;
806              }          if (itKillEvent) {
807              if (!pVCOEventList->isEmpty()) {              int maxFadeOutPos = Samples - pEngine->MinFadeOutSamples;
808                  this->PitchBend = pitch;              if (maxFadeOutPos < 0) {
809                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);                  // There's not enough space in buffer to do a fade out
810                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);                  // from max volume (this can only happen for audio
811                    // drivers that use Samples < MaxSamplesPerCycle).
812                    // End the EG1 here, at pos 0, with a shorter max fade
813                    // out time.
814                    EG1.enterFadeOutStage(Samples / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
815                    itKillEvent = Pool<Event>::Iterator();
816                } else {
817                    killPos = RTMath::Min(itKillEvent->FragmentPos(), maxFadeOutPos);
818              }              }
819          }          }
820    
821          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          uint i = Skip;
822          {          while (i < Samples) {
823              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
             RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
824    
825                  itVCAEvent = itNextVCAEvent;              // initialize all final synthesis parameters
826              }              fFinalCutoff    = VCFCutoffCtrl.fvalue;
827              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;              fFinalResonance = VCFResonanceCtrl.fvalue;
         }  
828    
829          // process filter cutoff events              // process MIDI control change and pitchbend events for this subfragment
830          {              processCCEvents(itCCEvent, iSubFragmentEnd);
             RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
831    
832                  itCutoffEvent = itNextCutoffEvent;              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
833                float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
834    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
835                if (pEngineChannel->GetMute()) fFinalVolume = 0;
836    #endif
837    
838                // process transition events (note on, note off & sustain pedal)
839                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
840    
841                // if the voice was killed in this subfragment, or if the
842                // filter EG is finished, switch EG1 to fade out stage
843                if ((itKillEvent && killPos <= iSubFragmentEnd) ||
844                    (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
845                     EG2.getSegmentType() == EGADSR::segment_end)) {
846                    EG1.enterFadeOutStage();
847                    itKillEvent = Pool<Event>::Iterator();
848              }              }
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
849    
850          // process filter resonance events              // process envelope generators
851          {              switch (EG1.getSegmentType()) {
852              RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];                  case EGADSR::segment_lin:
853              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();                      fFinalVolume *= EG1.processLin();
854              if (Delay) { // skip events that happened before this voice was triggered                      break;
855                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;                  case EGADSR::segment_exp:
856              }                      fFinalVolume *= EG1.processExp();
857              while (itResonanceEvent) {                      break;
858                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;                  case EGADSR::segment_end:
859                  ++itNextResonanceEvent;                      fFinalVolume *= EG1.getLevel();
860                        break; // noop
861                  // calculate the influence length of this event (in sample points)              }
862                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;              switch (EG2.getSegmentType()) {
863                    case EGADSR::segment_lin:
864                  // convert absolute controller value to differential                      fFinalCutoff *= EG2.processLin();
865                  int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;                      break;
866                  VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;                  case EGADSR::segment_exp:
867                        fFinalCutoff *= EG2.processExp();
868                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0                      break;
869                    case EGADSR::segment_end:
870                  // apply cutoff frequency to the cutoff parameter sequence                      fFinalCutoff *= EG2.getLevel();
871                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {                      break; // noop
872                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;              }
873                  }              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
874    
875                // process low frequency oscillators
876                if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
877                if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
878                if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
879    
880                // limit the pitch so we don't read outside the buffer
881                finalSynthesisParameters.fFinalPitch = RTMath::Min(finalSynthesisParameters.fFinalPitch, float(1 << CONFIG_MAX_PITCH));
882    
883                  itResonanceEvent = itNextResonanceEvent;              // if filter enabled then update filter coefficients
884                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
885                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
886                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
887              }              }
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     }  
888    
889      /**              // do we need resampling?
890       * Calculate all necessary, final biquad filter parameters.              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
891       *              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
892       * @param Samples - number of samples to be rendered in this audio fragment cycle              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
893       */                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
894      void Voice::CalculateBiquadParameters(uint Samples) {              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
895          biquad_param_t bqbase;  
896          biquad_param_t bqmain;              // prepare final synthesis parameters structure
897          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
898          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  #ifdef CONFIG_INTERPOLATE_VOLUME
899          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);              finalSynthesisParameters.fFinalVolumeDeltaLeft  =
900          FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);                  (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
901          pEngine->pBasicFilterParameters[0] = bqbase;                   finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
902          pEngine->pMainFilterParameters[0]  = bqmain;              finalSynthesisParameters.fFinalVolumeDeltaRight =
903                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
904          float* bq;                   finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
905          for (int i = 1; i < Samples; i++) {  #else
906              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              finalSynthesisParameters.fFinalVolumeLeft  =
907              if (!(i & FILTER_UPDATE_MASK)) {                  fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
908                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||              finalSynthesisParameters.fFinalVolumeRight =
909                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)                  fFinalVolume * VolumeRight * PanRightSmoother.render();
910                  {  #endif
911                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];              // render audio for one subfragment
912                      prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];              RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
913                      FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
914                      FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);              // stop the rendering if volume EG is finished
915                if (EG1.getSegmentType() == EGADSR::segment_end) break;
916    
917                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
918    
919                // increment envelopes' positions
920                if (EG1.active()) {
921    
922                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
923                    if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
924                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
925                  }                  }
926    
927                    EG1.increment(1);
928                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
929                }
930                if (EG2.active()) {
931                    EG2.increment(1);
932                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
933              }              }
934                EG3.increment(1);
935                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
936    
937              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
938              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
939          }          }
940      }      }
941    
942      /**      /** @brief Update current portamento position.
      *  Synthesizes the current audio fragment for this voice.  
943       *       *
944       *  @param Samples - number of sample points to be rendered in this audio       * Will be called when portamento mode is enabled to get the final
945       *                   fragment cycle       * portamento position of this active voice from where the next voice(s)
946       *  @param pSrc    - pointer to input sample data       * might continue to slide on.
947       *  @param Skip    - number of sample points to skip in output buffer       *
948         * @param itNoteOffEvent - event which causes this voice to die soon
949       */       */
950      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
951          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
952            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
953      }      }
954    
955      /**      /**
# Line 1031  namespace LinuxSampler { namespace gig { Line 958  namespace LinuxSampler { namespace gig {
958       *  fading down the volume level to avoid clicks and regular processing       *  fading down the volume level to avoid clicks and regular processing
959       *  until the kill event actually occured!       *  until the kill event actually occured!
960       *       *
961       *  @see Kill()       * If it's necessary to know when the voice's disk stream was actually
962         * deleted, then one can set the optional @a bRequestNotification
963         * parameter and this method will then return the handle of the disk
964         * stream (unique identifier) and one can use this handle to poll the
965         * disk thread if this stream has been deleted. In any case this method
966         * will return immediately and will not block until the stream actually
967         * was deleted.
968         *
969         * @param bRequestNotification - (optional) whether the disk thread shall
970         *                                provide a notification once it deleted
971         *                               the respective disk stream
972         *                               (default=false)
973         * @returns handle to the voice's disk stream or @c Stream::INVALID_HANDLE
974         *          if the voice did not use a disk stream at all
975         * @see Kill()
976       */       */
977      void Voice::KillImmediately() {      Stream::Handle Voice::KillImmediately(bool bRequestNotification) {
978            Stream::Handle hStream = Stream::INVALID_HANDLE;
979          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
980              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef, bRequestNotification);
981                hStream = DiskStreamRef.hStream;
982          }          }
983          Reset();          Reset();
984            return hStream;
985      }      }
986    
987      /**      /**

Legend:
Removed from v.614  
changed lines
  Added in v.1923

  ViewVC Help
Powered by ViewVC