/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 614 by persson, Mon Jun 6 16:54:20 2005 UTC revision 877 by persson, Sun Jun 25 13:54:17 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
39          KeyGroup = 0;          KeyGroup = 0;
40          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
41          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
42          #if ARCH_X86          #if CONFIG_ASM && ARCH_X86
43          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44          #else          #else
45          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46          #endif          #endif
47          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
50          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 117  namespace LinuxSampler { namespace gig { Line 66  namespace LinuxSampler { namespace gig {
66       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
67       *  needed.       *  needed.
68       *       *
69       *  @param pEngineChannel       - engine channel on which this voice was ordered       *  @param pEngineChannel - engine channel on which this voice was ordered
70       *  @param itNoteOnEvent        - event that caused triggering of this voice       *  @param itNoteOnEvent  - event that caused triggering of this voice
71       *  @param PitchBend            - MIDI detune factor (-8192 ... +8191)       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
72       *  @param pInstrument          - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
73       *  @param iLayer               - layer number this voice refers to (only if this is a layered sound of course)       *  @param VoiceType      - type of this voice
74       *  @param ReleaseTriggerVoice  - if this new voice is a release trigger voice (optional, default = false)       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
      *  @param VoiceStealingAllowed - wether the voice is allowed to steal voices for further subvoices  
75       *  @returns 0 on success, a value < 0 if the voice wasn't triggered       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
76       *           (either due to an error or e.g. because no region is       *           (either due to an error or e.g. because no region is
77       *           defined for the given key)       *           defined for the given key)
78       */       */
79      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealingAllowed) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          this->pEngineChannel = pEngineChannel;          this->pEngineChannel = pEngineChannel;
81          if (!pInstrument) {          this->pDimRgn        = pDimRgn;
82             dmsg(1,("voice::trigger: !pInstrument\n"));  
            exit(EXIT_FAILURE);  
         }  
83          #if CONFIG_DEVMODE          #if CONFIG_DEVMODE
84          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
85              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
86          }          }
87          #endif // CONFIG_DEVMODE          #endif // CONFIG_DEVMODE
88    
89          Type            = type_normal;          Type            = VoiceType;
90          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
         pRegion         = pInstrument->GetRegion(MIDIKey);  
91          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
92          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
93          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
94          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
95            KeyGroup        = iKeyGroup;
96            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
97    
98          if (!pRegion) {          // calculate volume
99              dmsg(4, ("gig::Voice: No Region defined for MIDI key %d\n", MIDIKey));          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             return -1;  
         }  
100    
101          // only mark the first voice of a layered voice (group) to be in a          float volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
         // key group, so the layered voices won't kill each other  
         KeyGroup = (iLayer == 0 && !ReleaseTriggerVoice) ? pRegion->KeyGroup : 0;  
102    
103          // get current dimension values to select the right dimension region          volume *= pDimRgn->SampleAttenuation;
         //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
         uint DimValues[8] = { 0 };  
         for (int i = pRegion->Dimensions - 1; i >= 0; i--) {  
             switch (pRegion->pDimensionDefinitions[i].dimension) {  
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pEngineChannel->CurrentKeyDimension;  
                     break;  
                 case ::gig::dimension_roundrobin:  
                     DimValues[i] = (uint) pEngineChannel->pMIDIKeyInfo[MIDIKey].RoundRobinIndex; // incremented for each note on  
                     break;  
                 case ::gig::dimension_random:  
                     pEngine->RandomSeed = pEngine->RandomSeed * 1103515245 + 12345; // classic pseudo random number generator  
                     DimValues[i] = (uint) pEngine->RandomSeed >> (32 - pRegion->pDimensionDefinitions[i].bits); // highest bits are most random  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngineChannel->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngineChannel->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngineChannel->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngineChannel->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngineChannel->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngineChannel->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngineChannel->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngineChannel->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngineChannel->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngineChannel->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngineChannel->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngineChannel->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngineChannel->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngineChannel->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngineChannel->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngineChannel->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngineChannel->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues);  
104    
105          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          // the volume of release triggered samples depends on note length
106          if (!pSample || !pSample->SamplesTotal) return -1; // no need to continue if sample is silent          if (Type == type_release_trigger) {
107                float noteLength = float(pEngine->FrameTime + Delay -
108                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
109                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
110                if (attenuation <= 0) return -1;
111                volume *= attenuation;
112            }
113    
114          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
115          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
116    
117          // get starting crossfade volume level          // get starting crossfade volume level
118            float crossfadeVolume;
119          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
120              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
121                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
122                  break;                  break;
123              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
124                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
125                  break;                  break;
126              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
127                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
130              default:              default:
131                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
132          }          }
133    
134          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
135          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
136    
137            float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
138            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
139            VolumeSmoother.trigger(pEngineChannel->GlobalVolume, subfragmentRate);
140            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
141            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
142    
143          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
144            Pos = pDimRgn->SampleStartOffset;
145    
146          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
147          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
148          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
149    
150            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
151    
152          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
153              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
154    
155              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
156              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
157    
158              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
159                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
160                  KillImmediately();                  KillImmediately();
161                  return -1;                  return -1;
# Line 316  namespace LinuxSampler { namespace gig { Line 164  namespace LinuxSampler { namespace gig {
164          }          }
165          else { // RAM only voice          else { // RAM only voice
166              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
167              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
168              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
169          }          }
170            if (RAMLoop) {
171                loop.uiTotalCycles = pSample->LoopPlayCount;
172                loop.uiCyclesLeft  = pSample->LoopPlayCount;
173                loop.uiStart       = loopinfo.LoopStart;
174                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
175                loop.uiSize        = loopinfo.LoopLength;
176            }
177    
178          // calculate initial pitch value          // calculate initial pitch value
179          {          {
180              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
181              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
182              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
183              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
184          }          }
185    
         const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);  
   
         Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)  
   
         Volume *= pDimRgn->SampleAttenuation;  
   
186          // the length of the decay and release curves are dependent on the velocity          // the length of the decay and release curves are dependent on the velocity
187          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
188    
# Line 362  namespace LinuxSampler { namespace gig { Line 206  namespace LinuxSampler { namespace gig {
206              }              }
207              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
208    
209              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
210              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
211              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
212              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
213                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
214              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
215                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
216                            pDimRgn->EG1Hold,  
217                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
218                            (pDimRgn->EG1Decay1 + eg1decay) * velrelease,                          pDimRgn->EG1Attack * eg1attack,
219                            (pDimRgn->EG1Decay2 + eg1decay) * velrelease,                          pDimRgn->EG1Hold,
220                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
221                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
222                            (pDimRgn->EG1Release + eg1release) * velrelease,                          pDimRgn->EG1InfiniteSustain,
223                            // the SSE synthesis implementation requires                          pDimRgn->EG1Sustain,
224                            // the vca start to be 16 byte aligned                          pDimRgn->EG1Release * eg1release * velrelease,
225                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?                          velocityAttenuation,
226                            Delay & 0xfffffffc : Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
227                            velocityAttenuation);          }
228          }  
229    #ifdef CONFIG_INTERPOLATE_VOLUME
230            // setup initial volume in synthesis parameters
231    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
232            if (pEngineChannel->GetMute()) {
233                finalSynthesisParameters.fFinalVolumeLeft  = 0;
234                finalSynthesisParameters.fFinalVolumeRight = 0;
235            }
236            else
237    #else
238            {
239                float finalVolume = pEngineChannel->GlobalVolume * crossfadeVolume * EG1.getLevel();
240    
241                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
242                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
243            }
244    #endif
245    #endif
246    
247          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
248          {          {
# Line 404  namespace LinuxSampler { namespace gig { Line 264  namespace LinuxSampler { namespace gig {
264              }              }
265              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
266    
267              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
268              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
269              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
270              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
271    
272              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
273                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
274                            false,                          false,
275                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
276                            (pDimRgn->EG2Decay1 + eg2decay) * velrelease,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
277                            (pDimRgn->EG2Decay2 + eg2decay) * velrelease,                          pDimRgn->EG2InfiniteSustain,
278                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
279                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
280                            (pDimRgn->EG2Release + eg2release) * velrelease,                          velocityAttenuation,
281                            Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           velocityAttenuation);  
282          }          }
283    
284    
285          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
286          {          {
287            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
288            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
289                float eg3depth = (bPortamento)
290                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
291                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
292                float eg3time = (bPortamento)
293                                    ? pEngineChannel->PortamentoTime
294                                    : pDimRgn->EG3Attack;
295                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
296                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
297          }          }
298    
299    
# Line 437  namespace LinuxSampler { namespace gig { Line 304  namespace LinuxSampler { namespace gig {
304                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
305                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
306                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
307                        bLFO1Enabled         = (lfo1_internal_depth > 0);
308                      break;                      break;
309                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
310                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
311                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
312                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
313                      break;                      break;
314                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
315                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
316                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
317                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
318                      break;                      break;
319                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
320                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
321                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
322                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
323                      break;                      break;
324                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
325                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
326                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
327                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
328                      break;                      break;
329                  default:                  default:
330                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
331                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
332                        bLFO1Enabled         = false;
333                }
334                if (bLFO1Enabled) {
335                    pLFO1->trigger(pDimRgn->LFO1Frequency,
336                                   start_level_max,
337                                   lfo1_internal_depth,
338                                   pDimRgn->LFO1ControlDepth,
339                                   pDimRgn->LFO1FlipPhase,
340                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
341                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
342              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngineChannel->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
343          }          }
344    
345    
# Line 475  namespace LinuxSampler { namespace gig { Line 350  namespace LinuxSampler { namespace gig {
350                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
351                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
352                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
353                        bLFO2Enabled         = (lfo2_internal_depth > 0);
354                      break;                      break;
355                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
356                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
357                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
358                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
359                      break;                      break;
360                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
361                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
362                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
363                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
364                      break;                      break;
365                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
366                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
367                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
368                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
369                      break;                      break;
370                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
371                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
372                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
373                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
374                      break;                      break;
375                  default:                  default:
376                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
377                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
378                        bLFO2Enabled         = false;
379                }
380                if (bLFO2Enabled) {
381                    pLFO2->trigger(pDimRgn->LFO2Frequency,
382                                   start_level_max,
383                                   lfo2_internal_depth,
384                                   pDimRgn->LFO2ControlDepth,
385                                   pDimRgn->LFO2FlipPhase,
386                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
387                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
388              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngineChannel->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
389          }          }
390    
391    
# Line 513  namespace LinuxSampler { namespace gig { Line 396  namespace LinuxSampler { namespace gig {
396                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
397                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
398                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
399                        bLFO3Enabled         = (lfo3_internal_depth > 0);
400                      break;                      break;
401                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
402                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
403                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
404                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
405                      break;                      break;
406                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
407                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
408                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
409                        bLFO3Enabled         = false; // see TODO comment in line above
410                      break;                      break;
411                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
412                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
413                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
414                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
415                      break;                      break;
416                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
417                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
418                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
419                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
420                      break;                      break;
421                  default:                  default:
422                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
423                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
424                        bLFO3Enabled         = false;
425                }
426                if (bLFO3Enabled) {
427                    pLFO3->trigger(pDimRgn->LFO3Frequency,
428                                   start_level_mid,
429                                   lfo3_internal_depth,
430                                   pDimRgn->LFO3ControlDepth,
431                                   false,
432                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
433                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
434              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngineChannel->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
435          }          }
436    
437    
# Line 613  namespace LinuxSampler { namespace gig { Line 504  namespace LinuxSampler { namespace gig {
504              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
505    
506              #ifndef CONFIG_OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
507              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
508              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
509              #else // override filter type              #else // override filter type
510              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
511              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
# Line 624  namespace LinuxSampler { namespace gig { Line 515  namespace LinuxSampler { namespace gig {
515              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
516    
517              // calculate cutoff frequency              // calculate cutoff frequency
518              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
519              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
520                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
521              }              }
522              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
523    
524              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;              int cvalue;
525              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
526                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
527                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
528                    // VCFVelocityScale in this case means Minimum cutoff
529                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
530                }
531                else {
532                    cvalue = pDimRgn->VCFCutoff;
533                }
534                cutoff *= float(cvalue);
535                if (cutoff > 127.0f) cutoff = 127.0f;
536    
537                // calculate resonance
538                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
539    
540              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
541                VCFResonanceCtrl.fvalue = resonance;
542          }          }
543          else {          else {
544              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 662  namespace LinuxSampler { namespace gig { Line 562  namespace LinuxSampler { namespace gig {
562      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
563    
564          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
565          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
566    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         pLFO1->Process(Samples);  
         pLFO2->Process(Samples);  
         if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
567          switch (this->PlaybackState) {          switch (this->PlaybackState) {
568    
569              case playback_state_init:              case playback_state_init:
# Line 707  namespace LinuxSampler { namespace gig { Line 578  namespace LinuxSampler { namespace gig {
578    
579                      if (DiskVoice) {                      if (DiskVoice) {
580                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
581                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
582                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
583                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
584                          }                          }
585                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
586                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
587                      }                      }
588                  }                  }
# Line 727  namespace LinuxSampler { namespace gig { Line 597  namespace LinuxSampler { namespace gig {
597                              KillImmediately();                              KillImmediately();
598                              return;                              return;
599                          }                          }
600                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
601                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
602                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
603                      }                      }
604    
# Line 749  namespace LinuxSampler { namespace gig { Line 619  namespace LinuxSampler { namespace gig {
619                      // render current audio fragment                      // render current audio fragment
620                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
621    
622                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
623                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
624                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
625                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
626    
627                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
628                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 767  namespace LinuxSampler { namespace gig { Line 637  namespace LinuxSampler { namespace gig {
637                  break;                  break;
638          }          }
639    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
640          // Reset delay          // Reset delay
641          Delay = 0;          Delay = 0;
642    
643          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
644    
645          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
646          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
647      }      }
648    
649      /**      /**
# Line 786  namespace LinuxSampler { namespace gig { Line 651  namespace LinuxSampler { namespace gig {
651       *  suspended / not running.       *  suspended / not running.
652       */       */
653      void Voice::Reset() {      void Voice::Reset() {
654          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
655          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
656          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
657          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
658          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 801  namespace LinuxSampler { namespace gig { Line 663  namespace LinuxSampler { namespace gig {
663      }      }
664    
665      /**      /**
666       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
667       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
668       *       *
669       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
670         * @param End     - youngest time stamp where processing should be stopped
671       */       */
672      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
673            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
674                if (itEvent->Type == Event::type_release) {
675                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
676                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
677                } else if (itEvent->Type == Event::type_cancel_release) {
678                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
679                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
680                }
681            }
682        }
683    
684          // dispatch control change events      /**
685          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
686          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
687              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
688          }       * @param itEvent - iterator pointing to the next event to be processed
689          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
690              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
691                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
692                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
693                  }              if (itEvent->Type == Event::type_control_change &&
694                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
695                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
696                        processCutoffEvent(itEvent);
697                    }
698                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
699                        processResonanceEvent(itEvent);
700                  }                  }
701                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
702                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
703                  }                  }
704                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
705                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
706                  }                  }
707                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
708                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
709                  }                  }
710                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
711                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
712                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
713                  }                  }
714                    if (itEvent->Param.CC.Controller == 7) { // volume
715                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value] * CONFIG_GLOBAL_ATTENUATION);
716                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
717                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
718                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
719                    }
720                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
721                    processPitchEvent(itEvent);
722              }              }
723            }
724        }
725    
726        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
727            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
728            finalSynthesisParameters.fFinalPitch *= pitch;
729            PitchBend = pitch;
730        }
731    
732        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
733            int ccvalue = itEvent->Param.CC.Value;
734            if (VCFCutoffCtrl.value == ccvalue) return;
735            VCFCutoffCtrl.value == ccvalue;
736            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
737            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
738            float cutoff = CutoffBase * float(ccvalue);
739            if (cutoff > 127.0f) cutoff = 127.0f;
740    
741            VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
742            fFinalCutoff = cutoff;
743        }
744    
745        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
746            // convert absolute controller value to differential
747            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
748            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
749            const float resonancedelta = (float) ctrldelta;
750            fFinalResonance += resonancedelta;
751            // needed for initialization of parameter
752            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
753        }
754    
755              ++itCCEvent;      /**
756         *  Synthesizes the current audio fragment for this voice.
757         *
758         *  @param Samples - number of sample points to be rendered in this audio
759         *                   fragment cycle
760         *  @param pSrc    - pointer to input sample data
761         *  @param Skip    - number of sample points to skip in output buffer
762         */
763        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
764            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
765            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
766            finalSynthesisParameters.pSrc      = pSrc;
767    
768            RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
769            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
770    
771            if (Skip) { // skip events that happened before this voice was triggered
772                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
773                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
774          }          }
775    
776            uint killPos;
777            if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
778    
779          // process pitch events          uint i = Skip;
780          {          while (i < Samples) {
781              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
782              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();  
783              if (Delay) { // skip events that happened before this voice was triggered              // initialize all final synthesis parameters
784                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
785              }              fFinalCutoff    = VCFCutoffCtrl.fvalue;
786              // apply old pitchbend value until first pitch event occurs              fFinalResonance = VCFResonanceCtrl.fvalue;
787              if (this->PitchBend != 1.0) {  
788                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;              // process MIDI control change and pitchbend events for this subfragment
789                  for (uint i = Delay; i < end; i++) {              processCCEvents(itCCEvent, iSubFragmentEnd);
790                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
791                  }              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
792    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
793                if (pEngineChannel->GetMute()) fFinalVolume = 0;
794    #endif
795    
796                // process transition events (note on, note off & sustain pedal)
797                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
798    
799                // if the voice was killed in this subfragment switch EG1 to fade out stage
800                if (itKillEvent && killPos <= iSubFragmentEnd) {
801                    EG1.enterFadeOutStage();
802                    itKillEvent = Pool<Event>::Iterator();
803              }              }
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
804    
805                  itVCOEvent = itNextVCOEvent;              // process envelope generators
806                switch (EG1.getSegmentType()) {
807                    case EGADSR::segment_lin:
808                        fFinalVolume *= EG1.processLin();
809                        break;
810                    case EGADSR::segment_exp:
811                        fFinalVolume *= EG1.processExp();
812                        break;
813                    case EGADSR::segment_end:
814                        fFinalVolume *= EG1.getLevel();
815                        break; // noop
816              }              }
817              if (!pVCOEventList->isEmpty()) {              switch (EG2.getSegmentType()) {
818                  this->PitchBend = pitch;                  case EGADSR::segment_lin:
819                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);                      fFinalCutoff *= EG2.processLin();
820                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);                      break;
821                    case EGADSR::segment_exp:
822                        fFinalCutoff *= EG2.processExp();
823                        break;
824                    case EGADSR::segment_end:
825                        fFinalCutoff *= EG2.getLevel();
826                        break; // noop
827              }              }
828          }              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
829    
830          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)              // process low frequency oscillators
831          {              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
832              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
833              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
834    
835                  itVCAEvent = itNextVCAEvent;              // if filter enabled then update filter coefficients
836                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
837                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
838                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
839              }              }
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
840    
841          // process filter cutoff events              // do we need resampling?
842          {              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
843              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
844              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
845              if (Delay) { // skip events that happened before this voice was triggered                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
846                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
847    
848                  itCutoffEvent = itNextCutoffEvent;              // prepare final synthesis parameters structure
849              }              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
850              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  #ifdef CONFIG_INTERPOLATE_VOLUME
851          }              finalSynthesisParameters.fFinalVolumeDeltaLeft  =
852                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
853                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
854                finalSynthesisParameters.fFinalVolumeDeltaRight =
855                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
856                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
857    #else
858                finalSynthesisParameters.fFinalVolumeLeft  =
859                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
860                finalSynthesisParameters.fFinalVolumeRight =
861                    fFinalVolume * VolumeRight * PanRightSmoother.render();
862    #endif
863                // render audio for one subfragment
864                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
865    
866          // process filter resonance events              // stop the rendering if volume EG is finished
867          {              if (EG1.getSegmentType() == EGADSR::segment_end) break;
             RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
868    
869                  itResonanceEvent = itNextResonanceEvent;              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
             }  
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     }  
870    
871      /**              // increment envelopes' positions
872       * Calculate all necessary, final biquad filter parameters.              if (EG1.active()) {
873       *  
874       * @param Samples - number of samples to be rendered in this audio fragment cycle                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
875       */                  if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
876      void Voice::CalculateBiquadParameters(uint Samples) {                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
877                  }                  }
878    
879                    EG1.increment(1);
880                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
881              }              }
882                if (EG2.active()) {
883                    EG2.increment(1);
884                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
885                }
886                EG3.increment(1);
887                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
888    
889              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
890              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
891          }          }
892      }      }
893    
894      /**      /** @brief Update current portamento position.
      *  Synthesizes the current audio fragment for this voice.  
895       *       *
896       *  @param Samples - number of sample points to be rendered in this audio       * Will be called when portamento mode is enabled to get the final
897       *                   fragment cycle       * portamento position of this active voice from where the next voice(s)
898       *  @param pSrc    - pointer to input sample data       * might continue to slide on.
899       *  @param Skip    - number of sample points to skip in output buffer       *
900         * @param itNoteOffEvent - event which causes this voice to die soon
901       */       */
902      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
903          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
904            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
905      }      }
906    
907      /**      /**

Legend:
Removed from v.614  
changed lines
  Added in v.877

  ViewVC Help
Powered by ViewVC