/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 64 by schoenebeck, Thu May 6 20:06:20 2004 UTC revision 1700 by persson, Sun Feb 17 12:40:59 2008 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 - 2007 Christian Schoenebeck                       *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     // FIXME: no support for layers (nor crossfades) yet  
   
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          Active = false;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
39          pVCAManipulator  = NULL;          KeyGroup = 0;
40          pVCFCManipulator = NULL;          SynthesisMode = 0; // set all mode bits to 0 first
41          pVCOManipulator  = NULL;          // select synthesis implementation (asm core is not supported ATM)
42          pLFO1  = NULL;          #if 0 // CONFIG_ASM && ARCH_X86
43          pLFO2  = NULL;          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44          pLFO3  = NULL;          #else
45            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46            #endif
47            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49            finalSynthesisParameters.filterLeft.Reset();
50            finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
     }  
   
     void Voice::SetOutput(AudioOutputDevice* pAudioOutputDevice) {  
         this->pOutputLeft        = pAudioOutputDevice->Channel(0)->Buffer();  
         this->pOutputRight       = pAudioOutputDevice->Channel(1)->Buffer();  
         this->MaxSamplesPerCycle = pAudioOutputDevice->MaxSamplesPerCycle();  
         this->SampleRate         = pAudioOutputDevice->SampleRate();  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 102  namespace LinuxSampler { namespace gig { Line 66  namespace LinuxSampler { namespace gig {
66       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
67       *  needed.       *  needed.
68       *       *
69       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
70       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
71       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
72       *  @returns            0 on success, a value < 0 if something failed       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
73         *  @param VoiceType      - type of this voice
74         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
75         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
76         *           (either due to an error or e.g. because no region is
77         *           defined for the given key)
78       */       */
79      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
81             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
82             exit(EXIT_FAILURE);          Orphan = false;
83          }  
84            #if CONFIG_DEVMODE
85          Active          = true;          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
86          MIDIKey         = pNoteOnEvent->Key;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
87          pRegion         = pInstrument->GetRegion(MIDIKey);          }
88          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          #endif // CONFIG_DEVMODE
89          Pos             = 0;  
90          Delay           = pNoteOnEvent->FragmentPos();          Type            = VoiceType;
91          pTriggerEvent   = pNoteOnEvent;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
92            PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
93          if (!pRegion) {          Delay           = itNoteOnEvent->FragmentPos();
94              std::cerr << "Audio Thread: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          itTriggerEvent  = itNoteOnEvent;
95              Kill();          itKillEvent     = Pool<Event>::Iterator();
96              return -1;          KeyGroup        = iKeyGroup;
97          }          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
98    
99          //TODO: current MIDI controller values are not taken into account yet          // calculate volume
100          ::gig::DimensionRegion* pDimRgn = NULL;          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
101          for (int i = pRegion->Dimensions - 1; i >= 0; i--) { // Check if instrument has a velocity split  
102              if (pRegion->pDimensionDefinitions[i].dimension == ::gig::dimension_velocity) {          // For 16 bit samples, we downscale by 32768 to convert from
103                  uint DimValues[5] = {0,0,0,0,0};          // int16 value range to DSP value range (which is
104                      DimValues[i] = pNoteOnEvent->Velocity;          // -1.0..1.0). For 24 bit, we downscale from int32.
105                  pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
106    
107            volume *= pDimRgn->SampleAttenuation * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;
108    
109            // the volume of release triggered samples depends on note length
110            if (Type == type_release_trigger) {
111                float noteLength = float(pEngine->FrameTime + Delay -
112                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
113                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
114                if (attenuation <= 0) return -1;
115                volume *= attenuation;
116            }
117    
118            // select channel mode (mono or stereo)
119            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
120            // select bit depth (16 or 24)
121            SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
122    
123            // get starting crossfade volume level
124            float crossfadeVolume;
125            switch (pDimRgn->AttenuationController.type) {
126                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                    crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
128                  break;                  break;
129              }              case ::gig::attenuation_ctrl_t::type_velocity:
130          }                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131          if (!pDimRgn) { // if there was no velocity split                  break;
132              pDimRgn = pRegion->GetDimensionRegionByValue(0,0,0,0,0);              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133          }                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                    break;
135                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136                default:
137                    crossfadeVolume = 1.0f;
138            }
139    
140            VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141            VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143            float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
157    
158          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
159              MaxRAMPos = cachedsamples - (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
160    
161              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
162              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
163    
164              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
165                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
166                  Kill();                  KillImmediately();
167                  return -1;                  return -1;
168              }              }
169              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
170          }          }
171          else { // RAM only voice          else { // RAM only voice
172              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
173              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
174              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
175          }          }
176            if (RAMLoop) {
177                loop.uiTotalCycles = pSample->LoopPlayCount;
178                loop.uiCyclesLeft  = pSample->LoopPlayCount;
179                loop.uiStart       = loopinfo.LoopStart;
180                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
181                loop.uiSize        = loopinfo.LoopLength;
182            }
183    
184          // calculate initial pitch value          // calculate initial pitch value
185          {          {
186              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
             if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;  
             this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents);  
             this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents  
         }  
187    
188                // GSt behaviour: maximum transpose up is 40 semitones. If
189                // MIDI key is more than 40 semitones above unity note,
190                // the transpose is not done.
191                if (pDimRgn->PitchTrack && (MIDIKey - (int) pDimRgn->UnityNote) < 40) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
192    
193          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
194                this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
195            }
196    
197            // the length of the decay and release curves are dependent on the velocity
198            const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
199    
200          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
201          {          {
# Line 196  namespace LinuxSampler { namespace gig { Line 206  namespace LinuxSampler { namespace gig {
206                      eg1controllervalue = 0;                      eg1controllervalue = 0;
207                      break;                      break;
208                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
209                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
210                      break;                      break;
211                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
212                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
213                      break;                      break;
214                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
215                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
216                      break;                      break;
217              }              }
218              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
219    
220              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
221              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
222              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
223              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
224                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
225              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
226                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
227                            pDimRgn->EG1Hold,  
228                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
229                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
230                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
231                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
232                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
233                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
234                            Delay);                          pDimRgn->EG1Sustain,
235                            pDimRgn->EG1Release * eg1release * velrelease,
236                            velocityAttenuation,
237                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
238            }
239    
240    #ifdef CONFIG_INTERPOLATE_VOLUME
241            // setup initial volume in synthesis parameters
242    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
243            if (pEngineChannel->GetMute()) {
244                finalSynthesisParameters.fFinalVolumeLeft  = 0;
245                finalSynthesisParameters.fFinalVolumeRight = 0;
246          }          }
247            else
248    #else
249            {
250                float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
251    
252                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
253                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
254            }
255    #endif
256    #endif
257    
     #if ENABLE_FILTER  
258          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
259          {          {
260              // get current value of EG2 controller              // get current value of EG2 controller
# Line 235  namespace LinuxSampler { namespace gig { Line 264  namespace LinuxSampler { namespace gig {
264                      eg2controllervalue = 0;                      eg2controllervalue = 0;
265                      break;                      break;
266                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
267                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
268                      break;                      break;
269                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
270                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
271                      break;                      break;
272                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
273                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
274                      break;                      break;
275              }              }
276              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
277    
278              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
279              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
280              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
281              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
282    
283              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
284                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
285                            false,                          false,
286                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
287                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
288                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
289                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
290                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
291                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
292                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
293          }          }
     #endif // ENABLE_FILTER  
294    
295    
296          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
297          {          {
298            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
299            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
300                float eg3depth = (bPortamento)
301                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
302                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
303                float eg3time = (bPortamento)
304                                    ? pEngineChannel->PortamentoTime
305                                    : pDimRgn->EG3Attack;
306                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
307                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
308          }          }
309    
310    
# Line 279  namespace LinuxSampler { namespace gig { Line 315  namespace LinuxSampler { namespace gig {
315                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
316                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
317                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
318                        bLFO1Enabled         = (lfo1_internal_depth > 0);
319                      break;                      break;
320                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
321                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
322                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
323                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
324                      break;                      break;
325                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
326                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
327                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
328                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
329                      break;                      break;
330                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
331                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
332                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
333                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
334                      break;                      break;
335                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
336                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
337                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
338                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
339                      break;                      break;
340                  default:                  default:
341                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
342                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
343                        bLFO1Enabled         = false;
344                }
345                if (bLFO1Enabled) {
346                    pLFO1->trigger(pDimRgn->LFO1Frequency,
347                                   start_level_min,
348                                   lfo1_internal_depth,
349                                   pDimRgn->LFO1ControlDepth,
350                                   pDimRgn->LFO1FlipPhase,
351                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
352                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
353              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngine->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           this->SampleRate,  
                           Delay);  
354          }          }
355    
356      #if ENABLE_FILTER  
357          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
358          {          {
359              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 317  namespace LinuxSampler { namespace gig { Line 361  namespace LinuxSampler { namespace gig {
361                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
362                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
363                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
364                        bLFO2Enabled         = (lfo2_internal_depth > 0);
365                      break;                      break;
366                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
367                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
368                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
369                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
370                      break;                      break;
371                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
372                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
373                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
374                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
375                      break;                      break;
376                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
377                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
378                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
379                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
380                      break;                      break;
381                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
382                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
383                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
384                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
385                      break;                      break;
386                  default:                  default:
387                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
388                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
389                        bLFO2Enabled         = false;
390                }
391                if (bLFO2Enabled) {
392                    pLFO2->trigger(pDimRgn->LFO2Frequency,
393                                   start_level_max,
394                                   lfo2_internal_depth,
395                                   pDimRgn->LFO2ControlDepth,
396                                   pDimRgn->LFO2FlipPhase,
397                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
398                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
399              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngine->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           Delay);  
400          }          }
401      #endif // ENABLE_FILTER  
402    
403          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
404          {          {
# Line 354  namespace LinuxSampler { namespace gig { Line 407  namespace LinuxSampler { namespace gig {
407                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
408                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
409                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
410                        bLFO3Enabled         = (lfo3_internal_depth > 0);
411                      break;                      break;
412                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
413                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
414                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
415                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
416                      break;                      break;
417                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
418                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
419                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
420                        bLFO3Enabled         = true;
421                      break;                      break;
422                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
423                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
424                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
425                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
426                      break;                      break;
427                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
428                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
429                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
430                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
431                      break;                      break;
432                  default:                  default:
433                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
434                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
435                        bLFO3Enabled         = false;
436                }
437                if (bLFO3Enabled) {
438                    pLFO3->trigger(pDimRgn->LFO3Frequency,
439                                   start_level_mid,
440                                   lfo3_internal_depth,
441                                   pDimRgn->LFO3ControlDepth,
442                                   false,
443                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
444                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
445              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngine->ControllerTable[pLFO3->ExtController],  
                           false,  
                           this->SampleRate,  
                           Delay);  
446          }          }
447    
448      #if ENABLE_FILTER  
449          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
450          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
451          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
452          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
453          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
454          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
455              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
456              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
457                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
458              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
459              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
460                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 422  namespace LinuxSampler { namespace gig { Line 484  namespace LinuxSampler { namespace gig {
484                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
485                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
486                      break;                      break;
487                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
488                        VCFCutoffCtrl.controller = 128;
489                        break;
490                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
491                  default:                  default:
492                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
493                      break;                      break;
494              }              }
495              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
496    
497              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
498              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
499              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
500              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
501                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 450  namespace LinuxSampler { namespace gig { Line 514  namespace LinuxSampler { namespace gig {
514                  default:                  default:
515                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
516              }              }
517              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
518    
519              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
520              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
521              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
522              #else // override filter type              #else // override filter type
523              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
524              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
525              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
526    
527              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
528              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
529    
530              // calculate cutoff frequency              // calculate cutoff frequency
531              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
532              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
533                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
534              }              }
535              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
536    
537              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
538              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
539                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
540                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
541                    // VCFVelocityScale in this case means Minimum cutoff
542                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
543                }
544                else {
545                    cvalue = pDimRgn->VCFCutoff;
546                }
547                cutoff *= float(cvalue);
548                if (cutoff > 127.0f) cutoff = 127.0f;
549    
550              FilterLeft.SetParameters(cutoff,  resonance, SampleRate);              // calculate resonance
551              FilterRight.SetParameters(cutoff, resonance, SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
552    
553              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
554                VCFResonanceCtrl.fvalue = resonance;
555          }          }
556          else {          else {
557              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
558              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
559          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
560    
561          return 0; // success          return 0; // success
562      }      }
# Line 509  namespace LinuxSampler { namespace gig { Line 574  namespace LinuxSampler { namespace gig {
574       */       */
575      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
576    
577          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
578          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
579    
580          switch (this->PlaybackState) {          switch (this->PlaybackState) {
581    
582                case playback_state_init:
583                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
584                    // no break - continue with playback_state_ram
585    
586              case playback_state_ram: {              case playback_state_ram: {
587                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
588                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
589                        // render current fragment
590                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
591    
592                      if (DiskVoice) {                      if (DiskVoice) {
593                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
594                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
595                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
596                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
597                          }                          }
598                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
599                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
600                      }                      }
601                  }                  }
# Line 559  namespace LinuxSampler { namespace gig { Line 607  namespace LinuxSampler { namespace gig {
607                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
608                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
609                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
610                              Kill();                              KillImmediately();
611                              return;                              return;
612                          }                          }
613                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
614                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
615                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
616                      }                      }
617    
618                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
619    
620                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
621                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
622                          DiskStreamRef.pStream->WriteSilence((MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
623                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
624                                // remember how many sample words there are before any silence has been added
625                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
626                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
627                            }
628                      }                      }
629    
630                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
631                      Interpolate(Samples, ptr, Delay);  
632                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
633                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
634    
635                        const int iPos = (int) finalSynthesisParameters.dPos;
636                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
637                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
638                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
639    
640                        // change state of voice to 'end' if we really reached the end of the sample data
641                        if (RealSampleWordsLeftToRead >= 0) {
642                            RealSampleWordsLeftToRead -= readSampleWords;
643                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
644                        }
645                  }                  }
646                  break;                  break;
647    
648              case playback_state_end:              case playback_state_end:
649                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
650                  break;                  break;
651          }          }
652    
   
     #if ENABLE_FILTER  
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
653          // Reset delay          // Reset delay
654          Delay = 0;          Delay = 0;
655    
656          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
657    
658          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
659          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
660      }      }
661    
662      /**      /**
# Line 605  namespace LinuxSampler { namespace gig { Line 664  namespace LinuxSampler { namespace gig {
664       *  suspended / not running.       *  suspended / not running.
665       */       */
666      void Voice::Reset() {      void Voice::Reset() {
667          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
668          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
669          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
670          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
671          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
672          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
673          Active = false;          PlaybackState = playback_state_end;
674            itTriggerEvent = Pool<Event>::Iterator();
675            itKillEvent    = Pool<Event>::Iterator();
676      }      }
677    
678      /**      /**
679       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
680       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
681       *       *
682       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
683         * @param End     - youngest time stamp where processing should be stopped
684       */       */
685      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
686            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
687                if (itEvent->Type == Event::type_release) {
688                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
689                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
690                } else if (itEvent->Type == Event::type_cancel_release) {
691                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
692                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
693                }
694            }
695        }
696    
697          // dispatch control change events      /**
698          Event* pCCEvent = pEngine->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
699          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
700              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();       *
701          }       * @param itEvent - iterator pointing to the next event to be processed
702          while (pCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
703              if (pCCEvent->Controller) { // if valid MIDI controller       */
704                  #if ENABLE_FILTER      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
705                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
706                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);              if (itEvent->Type == Event::type_control_change &&
707                    itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
708                    if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
709                        processCutoffEvent(itEvent);
710                  }                  }
711                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
712                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      processResonanceEvent(itEvent);
713                  }                  }
714                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
715                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(pCCEvent);  
716                  }                  }
717                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
718                  if (pCCEvent->Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(pCCEvent);  
719                  }                  }
720                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
721                  if (pCCEvent->Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(pCCEvent);  
722                  }                  }
723              }                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
724                        itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
725              pCCEvent = pEngine->pCCEvents->next();                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
         }  
   
   
         // process pitch events  
         {  
             RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];  
             Event* pVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
726                  }                  }
727              }                  if (itEvent->Param.CC.Controller == 7) { // volume
728              float pitch;                      VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
729              while (pVCOEvent) {                  } else if (itEvent->Param.CC.Controller == 10) { // panpot
730                  Event* pNextVCOEvent = pVCOEventList->next();                      PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
731                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
732                  }                  }
733                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
734                  pVCOEvent = pNextVCOEvent;                  processPitchEvent(itEvent);
735              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
736          }          }
737        }
738    
739        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
740            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
741            finalSynthesisParameters.fFinalPitch *= pitch;
742            PitchBend = pitch;
743        }
744    
745      #if ENABLE_FILTER      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
746          // process filter cutoff events          int ccvalue = itEvent->Param.CC.Value;
747          {          if (VCFCutoffCtrl.value == ccvalue) return;
748              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];          VCFCutoffCtrl.value == ccvalue;
749              Event* pCutoffEvent = pCutoffEventList->first();          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
750              if (Delay) { // skip events that happened before this voice was triggered          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
751                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();          float cutoff = CutoffBase * float(ccvalue);
752              }          if (cutoff > 127.0f) cutoff = 127.0f;
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 pCutoffEvent = pNextCutoffEvent;  
             }  
             if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
753    
754          // process filter resonance events          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
755          {          fFinalCutoff = cutoff;
756              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];      }
             Event* pResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();  
             }  
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = pResonanceEvent->Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
757    
758                  pResonanceEvent = pNextResonanceEvent;      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
759              }          // convert absolute controller value to differential
760              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time          const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
761          }          VCFResonanceCtrl.value = itEvent->Param.CC.Value;
762      #endif // ENABLE_FILTER          const float resonancedelta = (float) ctrldelta;
763            fFinalResonance += resonancedelta;
764            // needed for initialization of parameter
765            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
766      }      }
767    
768      /**      /**
769       *  Interpolates the input audio data (no loop).       *  Synthesizes the current audio fragment for this voice.
770       *       *
771       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
772       *                   fragment cycle       *                   fragment cycle
773       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
774       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
775       */       */
776      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
777          int i = Skip;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];
778            finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];
779            finalSynthesisParameters.pSrc      = pSrc;
780    
781          // FIXME: assuming either mono or stereo          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
782          if (this->pSample->Channels == 2) { // Stereo Sample          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
783              while (i < Samples) {  
784                  InterpolateOneStep_Stereo(pSrc, i,          if (Skip) { // skip events that happened before this voice was triggered
785                                            pEngine->pSynthesisParameters[Event::destination_vca][i],              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
786                                            pEngine->pSynthesisParameters[Event::destination_vco][i],              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
                                           pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                           pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
             }  
         }  
         else { // Mono Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
             }  
787          }          }
     }  
788    
789      /**          uint killPos;
790       *  Interpolates the input audio data, this method honors looping.          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
791    
792          // FIXME: assuming either mono or stereo          uint i = Skip;
793          if (pSample->Channels == 2) { // Stereo Sample          while (i < Samples) {
794              if (pSample->LoopPlayCount) {              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
795                  // render loop (loop count limited)  
796                  while (i < Samples && LoopCyclesLeft) {              // initialize all final synthesis parameters
797                      InterpolateOneStep_Stereo(pSrc, i,              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
798                                                pEngine->pSynthesisParameters[Event::destination_vca][i],              fFinalCutoff    = VCFCutoffCtrl.fvalue;
799                                                pEngine->pSynthesisParameters[Event::destination_vco][i],              fFinalResonance = VCFResonanceCtrl.fvalue;
800                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
801                                                pEngine->pSynthesisParameters[Event::destination_vcfr][i]);              // process MIDI control change and pitchbend events for this subfragment
802                      if (Pos > pSample->LoopEnd) {              processCCEvents(itCCEvent, iSubFragmentEnd);
803                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
804                          LoopCyclesLeft--;              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
805                      }  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
806                  }              if (pEngineChannel->GetMute()) fFinalVolume = 0;
807                  // render on without loop  #endif
808                  while (i < Samples) {  
809                      InterpolateOneStep_Stereo(pSrc, i,              // process transition events (note on, note off & sustain pedal)
810                                                pEngine->pSynthesisParameters[Event::destination_vca][i],              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
811                                                pEngine->pSynthesisParameters[Event::destination_vco][i],  
812                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i],              // if the voice was killed in this subfragment, or if the
813                                                pEngine->pSynthesisParameters[Event::destination_vcfr][i]);              // filter EG is finished, switch EG1 to fade out stage
814                  }              if ((itKillEvent && killPos <= iSubFragmentEnd) ||
815                    (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
816                     EG2.getSegmentType() == EGADSR::segment_end)) {
817                    EG1.enterFadeOutStage();
818                    itKillEvent = Pool<Event>::Iterator();
819              }              }
820              else { // render loop (endless loop)  
821                  while (i < Samples) {              // process envelope generators
822                      InterpolateOneStep_Stereo(pSrc, i,              switch (EG1.getSegmentType()) {
823                                                pEngine->pSynthesisParameters[Event::destination_vca][i],                  case EGADSR::segment_lin:
824                                                pEngine->pSynthesisParameters[Event::destination_vco][i],                      fFinalVolume *= EG1.processLin();
825                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i],                      break;
826                                                pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                  case EGADSR::segment_exp:
827                      if (Pos > pSample->LoopEnd) {                      fFinalVolume *= EG1.processExp();
828                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                      break;
829                      }                  case EGADSR::segment_end:
830                  }                      fFinalVolume *= EG1.getLevel();
831                        break; // noop
832              }              }
833          }              switch (EG2.getSegmentType()) {
834          else { // Mono Sample                  case EGADSR::segment_lin:
835              if (pSample->LoopPlayCount) {                      fFinalCutoff *= EG2.processLin();
836                  // render loop (loop count limited)                      break;
837                  while (i < Samples && LoopCyclesLeft) {                  case EGADSR::segment_exp:
838                      InterpolateOneStep_Mono(pSrc, i,                      fFinalCutoff *= EG2.processExp();
839                                              pEngine->pSynthesisParameters[Event::destination_vca][i],                      break;
840                                              pEngine->pSynthesisParameters[Event::destination_vco][i],                  case EGADSR::segment_end:
841                                              pEngine->pSynthesisParameters[Event::destination_vcfc][i],                      fFinalCutoff *= EG2.getLevel();
842                                              pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                      break; // noop
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                 }  
843              }              }
844              else { // render loop (endless loop)              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
845                  while (i < Samples) {  
846                      InterpolateOneStep_Mono(pSrc, i,              // process low frequency oscillators
847                                              pEngine->pSynthesisParameters[Event::destination_vca][i],              if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
848                                              pEngine->pSynthesisParameters[Event::destination_vco][i],              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
849                                              pEngine->pSynthesisParameters[Event::destination_vcfc][i],              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
850                                              pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
851                      if (Pos > pSample->LoopEnd) {              // if filter enabled then update filter coefficients
852                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
853                      }                  finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
854                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
855                }
856    
857                // do we need resampling?
858                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
859                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
860                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
861                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
862                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
863    
864                // prepare final synthesis parameters structure
865                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
866    #ifdef CONFIG_INTERPOLATE_VOLUME
867                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
868                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
869                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
870                finalSynthesisParameters.fFinalVolumeDeltaRight =
871                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
872                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
873    #else
874                finalSynthesisParameters.fFinalVolumeLeft  =
875                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
876                finalSynthesisParameters.fFinalVolumeRight =
877                    fFinalVolume * VolumeRight * PanRightSmoother.render();
878    #endif
879                // render audio for one subfragment
880                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
881    
882                // stop the rendering if volume EG is finished
883                if (EG1.getSegmentType() == EGADSR::segment_end) break;
884    
885                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
886    
887                // increment envelopes' positions
888                if (EG1.active()) {
889    
890                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
891                    if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
892                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
893                  }                  }
894    
895                    EG1.increment(1);
896                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
897                }
898                if (EG2.active()) {
899                    EG2.increment(1);
900                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
901              }              }
902                EG3.increment(1);
903                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
904    
905                Pos = newPos;
906                i = iSubFragmentEnd;
907          }          }
908      }      }
909    
910        /** @brief Update current portamento position.
911         *
912         * Will be called when portamento mode is enabled to get the final
913         * portamento position of this active voice from where the next voice(s)
914         * might continue to slide on.
915         *
916         * @param itNoteOffEvent - event which causes this voice to die soon
917         */
918        void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
919            const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
920            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
921        }
922    
923      /**      /**
924       *  Immediately kill the voice.       *  Immediately kill the voice. This method should not be used to kill
925         *  a normal, active voice, because it doesn't take care of things like
926         *  fading down the volume level to avoid clicks and regular processing
927         *  until the kill event actually occured!
928         *
929         * If it's necessary to know when the voice's disk stream was actually
930         * deleted, then one can set the optional @a bRequestNotification
931         * parameter and this method will then return the handle of the disk
932         * stream (unique identifier) and one can use this handle to poll the
933         * disk thread if this stream has been deleted. In any case this method
934         * will return immediately and will not block until the stream actually
935         * was deleted.
936         *
937         * @param bRequestNotification - (optional) whether the disk thread shall
938         *                                provide a notification once it deleted
939         *                               the respective disk stream
940         *                               (default=false)
941         * @returns handle to the voice's disk stream or @c Stream::INVALID_HANDLE
942         *          if the voice did not use a disk stream at all
943         * @see Kill()
944       */       */
945      void Voice::Kill() {      Stream::Handle Voice::KillImmediately(bool bRequestNotification) {
946            Stream::Handle hStream = Stream::INVALID_HANDLE;
947          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
948              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef, bRequestNotification);
949                hStream = DiskStreamRef.hStream;
950          }          }
951          Reset();          Reset();
952            return hStream;
953        }
954    
955        /**
956         *  Kill the voice in regular sense. Let the voice render audio until
957         *  the kill event actually occured and then fade down the volume level
958         *  very quickly and let the voice die finally. Unlike a normal release
959         *  of a voice, a kill process cannot be cancalled and is therefore
960         *  usually used for voice stealing and key group conflicts.
961         *
962         *  @param itKillEvent - event which caused the voice to be killed
963         */
964        void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
965            #if CONFIG_DEVMODE
966            if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
967            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
968            #endif // CONFIG_DEVMODE
969    
970            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
971            this->itKillEvent = itKillEvent;
972      }      }
973    
974  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.64  
changed lines
  Added in v.1700

  ViewVC Help
Powered by ViewVC