/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 64 by schoenebeck, Thu May 6 20:06:20 2004 UTC revision 696 by persson, Sat Jul 16 19:37:52 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 22  Line 23 
23    
24  #include "EGADSR.h"  #include "EGADSR.h"
25  #include "Manipulator.h"  #include "Manipulator.h"
26    #include "../../common/Features.h"
27    #include "Synthesizer.h"
28    
29  #include "Voice.h"  #include "Voice.h"
30    
31  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
32    
     // FIXME: no support for layers (nor crossfades) yet  
   
33      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
34    
35        const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());
36    
37      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
38          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);
39        }
40    
41        int Voice::CalculateFilterUpdateMask() {
42            if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;
43            int power_of_two;
44            for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);
45            return (1 << power_of_two) - 1;
46      }      }
47    
48      Voice::Voice() {      Voice::Voice() {
49          pEngine     = NULL;          pEngine     = NULL;
50          pDiskThread = NULL;          pDiskThread = NULL;
51          Active = false;          PlaybackState = playback_state_end;
52          pEG1   = NULL;          pEG1   = NULL;
53          pEG2   = NULL;          pEG2   = NULL;
54          pEG3   = NULL;          pEG3   = NULL;
# Line 48  namespace LinuxSampler { namespace gig { Line 58  namespace LinuxSampler { namespace gig {
58          pLFO1  = NULL;          pLFO1  = NULL;
59          pLFO2  = NULL;          pLFO2  = NULL;
60          pLFO3  = NULL;          pLFO3  = NULL;
61            KeyGroup = 0;
62            SynthesisMode = 0; // set all mode bits to 0 first
63            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
64            #if CONFIG_ASM && ARCH_X86
65            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
66            #else
67            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
68            #endif
69            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);
70    
71            FilterLeft.Reset();
72            FilterRight.Reset();
73      }      }
74    
75      Voice::~Voice() {      Voice::~Voice() {
# Line 62  namespace LinuxSampler { namespace gig { Line 84  namespace LinuxSampler { namespace gig {
84          if (pVCOManipulator)  delete pVCOManipulator;          if (pVCOManipulator)  delete pVCOManipulator;
85      }      }
86    
     void Voice::SetOutput(AudioOutputDevice* pAudioOutputDevice) {  
         this->pOutputLeft        = pAudioOutputDevice->Channel(0)->Buffer();  
         this->pOutputRight       = pAudioOutputDevice->Channel(1)->Buffer();  
         this->MaxSamplesPerCycle = pAudioOutputDevice->MaxSamplesPerCycle();  
         this->SampleRate         = pAudioOutputDevice->SampleRate();  
     }  
   
87      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
88          this->pEngine = pEngine;          this->pEngine = pEngine;
89    
# Line 102  namespace LinuxSampler { namespace gig { Line 117  namespace LinuxSampler { namespace gig {
117       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
118       *  needed.       *  needed.
119       *       *
120       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
121       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
122       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
123       *  @returns            0 on success, a value < 0 if something failed       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
124         *  @param VoiceType      - type of this voice
125         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
126         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
127         *           (either due to an error or e.g. because no region is
128         *           defined for the given key)
129       */       */
130      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
131          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
132             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
133             exit(EXIT_FAILURE);  
134          }          #if CONFIG_DEVMODE
135            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
136          Active          = true;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
137          MIDIKey         = pNoteOnEvent->Key;          }
138          pRegion         = pInstrument->GetRegion(MIDIKey);          #endif // CONFIG_DEVMODE
139          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
140          Pos             = 0;          Type            = VoiceType;
141          Delay           = pNoteOnEvent->FragmentPos();          MIDIKey         = itNoteOnEvent->Param.Note.Key;
142          pTriggerEvent   = pNoteOnEvent;          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
143            Delay           = itNoteOnEvent->FragmentPos();
144          if (!pRegion) {          itTriggerEvent  = itNoteOnEvent;
145              std::cerr << "Audio Thread: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          itKillEvent     = Pool<Event>::Iterator();
146              Kill();          KeyGroup        = iKeyGroup;
147              return -1;          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
148          }  
149            // calculate volume
150          //TODO: current MIDI controller values are not taken into account yet          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
151          ::gig::DimensionRegion* pDimRgn = NULL;  
152          for (int i = pRegion->Dimensions - 1; i >= 0; i--) { // Check if instrument has a velocity split          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
153              if (pRegion->pDimensionDefinitions[i].dimension == ::gig::dimension_velocity) {  
154                  uint DimValues[5] = {0,0,0,0,0};          Volume *= pDimRgn->SampleAttenuation;
155                      DimValues[i] = pNoteOnEvent->Velocity;  
156                  pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          // the volume of release triggered samples depends on note length
157            if (Type == type_release_trigger) {
158                float noteLength = float(pEngine->FrameTime + Delay -
159                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
160                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
161                if (attenuation <= 0) return -1;
162                Volume *= attenuation;
163            }
164    
165            // select channel mode (mono or stereo)
166            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
167    
168            // get starting crossfade volume level
169            switch (pDimRgn->AttenuationController.type) {
170                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
171                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
172                  break;                  break;
173              }              case ::gig::attenuation_ctrl_t::type_velocity:
174          }                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
175          if (!pDimRgn) { // if there was no velocity split                  break;
176              pDimRgn = pRegion->GetDimensionRegionByValue(0,0,0,0,0);              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
177                    CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
178                    break;
179                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
180                default:
181                    CrossfadeVolume = 1.0f;
182          }          }
183    
184          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
185            PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
186    
187            Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
188    
189          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
190          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
191          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
192    
193          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
194              MaxRAMPos = cachedsamples - (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
195    
196              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
197              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
# Line 159  namespace LinuxSampler { namespace gig { Line 202  namespace LinuxSampler { namespace gig {
202    
203              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
204                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
205                  Kill();                  KillImmediately();
206                  return -1;                  return -1;
207              }              }
208              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
# Line 177  namespace LinuxSampler { namespace gig { Line 220  namespace LinuxSampler { namespace gig {
220    
221          // calculate initial pitch value          // calculate initial pitch value
222          {          {
223              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
224              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
225              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents);              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));
226              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
227          }          }
228    
229            // the length of the decay and release curves are dependent on the velocity
230          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
231    
232          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
233          {          {
# Line 199  namespace LinuxSampler { namespace gig { Line 241  namespace LinuxSampler { namespace gig {
241                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
242                      break;                      break;
243                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
244                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
245                      break;                      break;
246                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
247                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
248                      break;                      break;
249              }              }
250              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
251    
252              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
253              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
254              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
255              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
256                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
257                double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
258                double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
259    
260              pEG1->Trigger(pDimRgn->EG1PreAttack,              pEG1->Trigger(pDimRgn->EG1PreAttack,
261                            pDimRgn->EG1Attack + eg1attack,                            pDimRgn->EG1Attack * eg1attack,
262                            pDimRgn->EG1Hold,                            pDimRgn->EG1Hold,
263                            pSample->LoopStart,                            pSample->LoopStart,
264                            pDimRgn->EG1Decay1 + eg1decay,                            pDimRgn->EG1Decay1 * eg1decay * velrelease,
265                            pDimRgn->EG1Decay2 + eg1decay,                            pDimRgn->EG1Decay2 * eg1decay * velrelease,
266                            pDimRgn->EG1InfiniteSustain,                            pDimRgn->EG1InfiniteSustain,
267                            pDimRgn->EG1Sustain,                            pDimRgn->EG1Sustain,
268                            pDimRgn->EG1Release + eg1release,                            pDimRgn->EG1Release * eg1release * velrelease,
269                            Delay);                            // the SSE synthesis implementation requires
270                              // the vca start to be 16 byte aligned
271                              SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?
272                              Delay & 0xfffffffc : Delay,
273                              velocityAttenuation);
274          }          }
275    
276    
     #if ENABLE_FILTER  
277          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
278          {          {
279              // get current value of EG2 controller              // get current value of EG2 controller
# Line 238  namespace LinuxSampler { namespace gig { Line 286  namespace LinuxSampler { namespace gig {
286                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
287                      break;                      break;
288                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
289                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
290                      break;                      break;
291                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
292                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
293                      break;                      break;
294              }              }
295              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
296    
297              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
298              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
299              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
300              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
301    
302              pEG2->Trigger(pDimRgn->EG2PreAttack,              pEG2->Trigger(pDimRgn->EG2PreAttack,
303                            pDimRgn->EG2Attack + eg2attack,                            pDimRgn->EG2Attack * eg2attack,
304                            false,                            false,
305                            pSample->LoopStart,                            pSample->LoopStart,
306                            pDimRgn->EG2Decay1 + eg2decay,                            pDimRgn->EG2Decay1 * eg2decay * velrelease,
307                            pDimRgn->EG2Decay2 + eg2decay,                            pDimRgn->EG2Decay2 * eg2decay * velrelease,
308                            pDimRgn->EG2InfiniteSustain,                            pDimRgn->EG2InfiniteSustain,
309                            pDimRgn->EG2Sustain,                            pDimRgn->EG2Sustain,
310                            pDimRgn->EG2Release + eg2release,                            pDimRgn->EG2Release * eg2release * velrelease,
311                            Delay);                            Delay,
312                              velocityAttenuation);
313          }          }
     #endif // ENABLE_FILTER  
314    
315    
316          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
# Line 279  namespace LinuxSampler { namespace gig { Line 327  namespace LinuxSampler { namespace gig {
327                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
328                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
329                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
330                        bLFO1Enabled         = (lfo1_internal_depth > 0);
331                      break;                      break;
332                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
333                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
334                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
335                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
336                      break;                      break;
337                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
338                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
339                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
340                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
341                      break;                      break;
342                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
343                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
344                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
345                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
346                      break;                      break;
347                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
348                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
349                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
350                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
351                      break;                      break;
352                  default:                  default:
353                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
354                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
355                        bLFO1Enabled         = false;
356              }              }
357              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,
358                            lfo1_internal_depth,                                               lfo1_internal_depth,
359                            pDimRgn->LFO1ControlDepth,                                               pDimRgn->LFO1ControlDepth,
360                            pEngine->ControllerTable[pLFO1->ExtController],                                               pEngineChannel->ControllerTable[pLFO1->ExtController],
361                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
362                            this->SampleRate,                                               pEngine->SampleRate,
363                            Delay);                                               Delay);
364          }          }
365    
366      #if ENABLE_FILTER  
367          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
368          {          {
369              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 317  namespace LinuxSampler { namespace gig { Line 371  namespace LinuxSampler { namespace gig {
371                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
374                        bLFO2Enabled         = (lfo2_internal_depth > 0);
375                      break;                      break;
376                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
377                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
378                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
379                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
380                      break;                      break;
381                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
382                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
383                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
384                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
385                      break;                      break;
386                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
387                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
388                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
389                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
390                      break;                      break;
391                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
392                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
393                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
394                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
395                      break;                      break;
396                  default:                  default:
397                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
398                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
399                        bLFO2Enabled         = false;
400              }              }
401              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,
402                            lfo2_internal_depth,                                               lfo2_internal_depth,
403                            pDimRgn->LFO2ControlDepth,                                               pDimRgn->LFO2ControlDepth,
404                            pEngine->ControllerTable[pLFO2->ExtController],                                               pEngineChannel->ControllerTable[pLFO2->ExtController],
405                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
406                            Delay);                                               pEngine->SampleRate,
407                                                 Delay);
408          }          }
409      #endif // ENABLE_FILTER  
410    
411          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
412          {          {
# Line 354  namespace LinuxSampler { namespace gig { Line 415  namespace LinuxSampler { namespace gig {
415                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
416                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
417                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
418                        bLFO3Enabled         = (lfo3_internal_depth > 0);
419                      break;                      break;
420                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
421                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
422                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
423                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
424                      break;                      break;
425                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
426                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
427                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
428                        bLFO3Enabled         = false; // see TODO comment in line above
429                      break;                      break;
430                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
431                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
432                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
433                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
434                      break;                      break;
435                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
436                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
437                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
438                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
439                      break;                      break;
440                  default:                  default:
441                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
442                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
443                        bLFO3Enabled         = false;
444              }              }
445              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,
446                            lfo3_internal_depth,                                               lfo3_internal_depth,
447                            pDimRgn->LFO3ControlDepth,                                               pDimRgn->LFO3ControlDepth,
448                            pEngine->ControllerTable[pLFO3->ExtController],                                               pEngineChannel->ControllerTable[pLFO3->ExtController],
449                            false,                                               false,
450                            this->SampleRate,                                               pEngine->SampleRate,
451                            Delay);                                               Delay);
452          }          }
453    
454      #if ENABLE_FILTER  
455          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
456          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
457          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
458          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
459          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
460          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
461              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
462              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
463                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
464              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
465              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
466                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 428  namespace LinuxSampler { namespace gig { Line 496  namespace LinuxSampler { namespace gig {
496                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
497                      break;                      break;
498              }              }
499              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
500    
501              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
502              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
503              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
504              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
505                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 450  namespace LinuxSampler { namespace gig { Line 518  namespace LinuxSampler { namespace gig {
518                  default:                  default:
519                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
520              }              }
521              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
522    
523              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
524              FilterLeft.SetType(pDimRgn->VCFType);              FilterLeft.SetType(pDimRgn->VCFType);
525              FilterRight.SetType(pDimRgn->VCFType);              FilterRight.SetType(pDimRgn->VCFType);
526              #else // override filter type              #else // override filter type
527              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
528              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
529              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
530    
531              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
532              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
533    
534              // calculate cutoff frequency              // calculate cutoff frequency
535              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = (!VCFCutoffCtrl.controller)
536                  ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX
537                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;
538    
539              // calculate resonance              // calculate resonance
540              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
541              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
542                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
543              }              }
544              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
545    
546              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;
547              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
548    
             FilterLeft.SetParameters(cutoff,  resonance, SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, SampleRate);  
   
549              FilterUpdateCounter = -1;              FilterUpdateCounter = -1;
550          }          }
551          else {          else {
552              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
553              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
554          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
555    
556          return 0; // success          return 0; // success
557      }      }
# Line 509  namespace LinuxSampler { namespace gig { Line 569  namespace LinuxSampler { namespace gig {
569       */       */
570      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
571    
572            // select default values for synthesis mode bits
573            SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);
574            SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);
575            SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
576    
577          // Reset the synthesis parameter matrix          // Reset the synthesis parameter matrix
578          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume);  
579            pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);
580          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);          pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
     #if ENABLE_FILTER  
581          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
582          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);          pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);
     #endif // ENABLE_FILTER  
   
583    
584          // Apply events to the synthesis parameter matrix          // Apply events to the synthesis parameter matrix
585          ProcessEvents(Samples);          ProcessEvents(Samples);
586    
   
587          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment          // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
588          pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
589      #if ENABLE_FILTER          pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
590          pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);          if (pEG3->Process(Samples)) { // if pitch EG is active
591      #endif // ENABLE_FILTER              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
592          pEG3->Process(Samples);              SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
593          pLFO1->Process(Samples);          }
594      #if ENABLE_FILTER          if (bLFO1Enabled) pLFO1->Process(Samples);
595          pLFO2->Process(Samples);          if (bLFO2Enabled) pLFO2->Process(Samples);
596      #endif // ENABLE_FILTER          if (bLFO3Enabled) {
597          pLFO3->Process(Samples);              if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active
598                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
599                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
600                }
601            }
602    
603            if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))
604                CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters
605    
606          switch (this->PlaybackState) {          switch (this->PlaybackState) {
607    
608                case playback_state_init:
609                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
610                    // no break - continue with playback_state_ram
611    
612              case playback_state_ram: {              case playback_state_ram: {
613                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
614                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
615                        // render current fragment
616                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
617    
618                      if (DiskVoice) {                      if (DiskVoice) {
619                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
620                          if (Pos > MaxRAMPos) {                          if (Pos > MaxRAMPos) {
# Line 559  namespace LinuxSampler { namespace gig { Line 634  namespace LinuxSampler { namespace gig {
634                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
635                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
636                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
637                              Kill();                              KillImmediately();
638                              return;                              return;
639                          }                          }
640                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));
641                          Pos -= RTMath::DoubleToInt(Pos);                          Pos -= int(Pos);
642                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
643                      }                      }
644    
645                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
646    
647                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
648                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
649                          DiskStreamRef.pStream->WriteSilence((MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
650                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
651                                // remember how many sample words there are before any silence has been added
652                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
653                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
654                            }
655                      }                      }
656    
657                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
658                      Interpolate(Samples, ptr, Delay);  
659                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
660                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
661    
662                        const int iPos = (int) Pos;
663                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
664                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
665                        Pos -= iPos; // just keep fractional part of Pos
666    
667                        // change state of voice to 'end' if we really reached the end of the sample data
668                        if (RealSampleWordsLeftToRead >= 0) {
669                            RealSampleWordsLeftToRead -= readSampleWords;
670                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
671                        }
672                  }                  }
673                  break;                  break;
674    
675              case playback_state_end:              case playback_state_end:
676                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
677                  break;                  break;
678          }          }
679    
   
     #if ENABLE_FILTER  
680          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
681          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();          pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();
682          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();          pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();
683      #endif // ENABLE_FILTER          pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();
684    
685          // Reset delay          // Reset delay
686          Delay = 0;          Delay = 0;
687    
688          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
689    
690          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
691          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();
692      }      }
693    
694      /**      /**
# Line 608  namespace LinuxSampler { namespace gig { Line 699  namespace LinuxSampler { namespace gig {
699          pLFO1->Reset();          pLFO1->Reset();
700          pLFO2->Reset();          pLFO2->Reset();
701          pLFO3->Reset();          pLFO3->Reset();
702            FilterLeft.Reset();
703            FilterRight.Reset();
704          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
705          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
706          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
707          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
708          Active = false;          PlaybackState = playback_state_end;
709            itTriggerEvent = Pool<Event>::Iterator();
710            itKillEvent    = Pool<Event>::Iterator();
711      }      }
712    
713      /**      /**
# Line 625  namespace LinuxSampler { namespace gig { Line 720  namespace LinuxSampler { namespace gig {
720      void Voice::ProcessEvents(uint Samples) {      void Voice::ProcessEvents(uint Samples) {
721    
722          // dispatch control change events          // dispatch control change events
723          Event* pCCEvent = pEngine->pCCEvents->first();          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();
724          if (Delay) { // skip events that happened before this voice was triggered          if (Delay) { // skip events that happened before this voice was triggered
725              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;
726          }          }
727          while (pCCEvent) {          while (itCCEvent) {
728              if (pCCEvent->Controller) { // if valid MIDI controller              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
729                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
730                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
731                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);                  }
732                    if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
733                        *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
734                  }                  }
735                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
736                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      pLFO1->SendEvent(itCCEvent);
737                  }                  }
738                  #endif // ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
739                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO2->SendEvent(itCCEvent);
                     pLFO1->SendEvent(pCCEvent);  
740                  }                  }
741                  #if ENABLE_FILTER                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
742                  if (pCCEvent->Controller == pLFO2->ExtController) {                      pLFO3->SendEvent(itCCEvent);
                     pLFO2->SendEvent(pCCEvent);  
743                  }                  }
744                  #endif // ENABLE_FILTER                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
745                  if (pCCEvent->Controller == pLFO3->ExtController) {                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
746                      pLFO3->SendEvent(pCCEvent);                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;
747                  }                  }
748              }              }
749    
750              pCCEvent = pEngine->pCCEvents->next();              ++itCCEvent;
751          }          }
752    
753    
754          // process pitch events          // process pitch events
755          {          {
756              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];
757              Event* pVCOEvent = pVCOEventList->first();              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();
758              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
759                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;
760              }              }
761              // apply old pitchbend value until first pitch event occurs              // apply old pitchbend value until first pitch event occurs
762              if (this->PitchBend != 1.0) {              if (this->PitchBend != 1.0) {
763                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;
764                  for (uint i = Delay; i < end; i++) {                  for (uint i = Delay; i < end; i++) {
765                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;
766                  }                  }
767              }              }
768              float pitch;              float pitch;
769              while (pVCOEvent) {              while (itVCOEvent) {
770                  Event* pNextVCOEvent = pVCOEventList->next();                  RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;
771                    ++itNextVCOEvent;
772    
773                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
774                  uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;                  uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;
775    
776                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents                  pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
777    
778                  // apply pitch value to the pitch parameter sequence                  // apply pitch value to the pitch parameter sequence
779                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {                  for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {
780                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;
781                  }                  }
782    
783                  pVCOEvent = pNextVCOEvent;                  itVCOEvent = itNextVCOEvent;
784                }
785                if (!pVCOEventList->isEmpty()) {
786                    this->PitchBend = pitch;
787                    SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
788                    SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
789              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
790          }          }
791    
792            // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
793            {
794                RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];
795                RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();
796                if (Delay) { // skip events that happened before this voice was triggered
797                    while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;
798                }
799                float crossfadevolume;
800                while (itVCAEvent) {
801                    RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;
802                    ++itNextVCAEvent;
803    
804                    // calculate the influence length of this event (in sample points)
805                    uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;
806    
807                    crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);
808    
809                    float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;
810    
811                    // apply volume value to the volume parameter sequence
812                    for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {
813                        pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;
814                    }
815    
816                    itVCAEvent = itNextVCAEvent;
817                }
818                if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
819            }
820    
     #if ENABLE_FILTER  
821          // process filter cutoff events          // process filter cutoff events
822          {          {
823              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];
824              Event* pCutoffEvent = pCutoffEventList->first();              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();
825              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
826                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;
827              }              }
828              float cutoff;              float cutoff;
829              while (pCutoffEvent) {              while (itCutoffEvent) {
830                  Event* pNextCutoffEvent = pCutoffEventList->next();                  RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;
831                    ++itNextCutoffEvent;
832    
833                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
834                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;
835    
836                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;
837    
838                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
839                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {
840                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;
841                  }                  }
842    
843                  pCutoffEvent = pNextCutoffEvent;                  itCutoffEvent = itNextCutoffEvent;
844              }              }
845              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time
846          }          }
847    
848          // process filter resonance events          // process filter resonance events
849          {          {
850              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];
851              Event* pResonanceEvent = pResonanceEventList->first();              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();
852              if (Delay) { // skip events that happened before this voice was triggered              if (Delay) { // skip events that happened before this voice was triggered
853                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;
854              }              }
855              while (pResonanceEvent) {              while (itResonanceEvent) {
856                  Event* pNextResonanceEvent = pResonanceEventList->next();                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;
857                    ++itNextResonanceEvent;
858    
859                  // calculate the influence length of this event (in sample points)                  // calculate the influence length of this event (in sample points)
860                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;
861    
862                  // convert absolute controller value to differential                  // convert absolute controller value to differential
863                  int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;                  int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;
864                  VCFResonanceCtrl.value = pResonanceEvent->Value;                  VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;
865    
866                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
867    
868                  // apply cutoff frequency to the cutoff parameter sequence                  // apply cutoff frequency to the cutoff parameter sequence
869                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {
870                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;
871                  }                  }
872    
873                  pResonanceEvent = pNextResonanceEvent;                  itResonanceEvent = itNextResonanceEvent;
874              }              }
875              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
876          }          }
     #endif // ENABLE_FILTER  
877      }      }
878    
879      /**      /**
880       *  Interpolates the input audio data (no loop).       * Calculate all necessary, final biquad filter parameters.
881       *       *
882       *  @param Samples - number of sample points to be rendered in this audio       * @param Samples - number of samples to be rendered in this audio fragment cycle
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
883       */       */
884      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::CalculateBiquadParameters(uint Samples) {
885          int i = Skip;          biquad_param_t bqbase;
886            biquad_param_t bqmain;
887          // FIXME: assuming either mono or stereo          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];
888          if (this->pSample->Channels == 2) { // Stereo Sample          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];
889              while (i < Samples) {          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
890                  InterpolateOneStep_Stereo(pSrc, i,          FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
891                                            pEngine->pSynthesisParameters[Event::destination_vca][i],          pEngine->pBasicFilterParameters[0] = bqbase;
892                                            pEngine->pSynthesisParameters[Event::destination_vco][i],          pEngine->pMainFilterParameters[0]  = bqmain;
893                                            pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
894                                            pEngine->pSynthesisParameters[Event::destination_vcfr][i]);          float* bq;
895              }          for (int i = 1; i < Samples; i++) {
896          }              // recalculate biquad parameters if cutoff or resonance differ from previous sample point
897          else { // Mono Sample              if (!(i & FILTER_UPDATE_MASK)) {
898              while (i < Samples) {                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||
899                  InterpolateOneStep_Mono(pSrc, i,                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)
900                                          pEngine->pSynthesisParameters[Event::destination_vca][i],                  {
901                                          pEngine->pSynthesisParameters[Event::destination_vco][i],                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];
902                                          pEngine->pSynthesisParameters[Event::destination_vcfc][i],                      prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];
903                                          pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                      FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
904                        FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
905                    }
906              }              }
907    
908                //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'
909                bq    = (float*) &pEngine->pBasicFilterParameters[i];
910                bq[0] = bqbase.b0;
911                bq[1] = bqbase.b1;
912                bq[2] = bqbase.b2;
913                bq[3] = bqbase.a1;
914                bq[4] = bqbase.a2;
915    
916                // same as 'pEngine->pMainFilterParameters[i] = bqmain;'
917                bq    = (float*) &pEngine->pMainFilterParameters[i];
918                bq[0] = bqmain.b0;
919                bq[1] = bqmain.b1;
920                bq[2] = bqmain.b2;
921                bq[3] = bqmain.a1;
922                bq[4] = bqmain.a2;
923          }          }
924      }      }
925    
926      /**      /**
927       *  Interpolates the input audio data, this method honors looping.       *  Synthesizes the current audio fragment for this voice.
928       *       *
929       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
930       *                   fragment cycle       *                   fragment cycle
931       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
932       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
933       */       */
934      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
935          int i = Skip;          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);
   
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
         }  
936      }      }
937    
938      /**      /**
939       *  Immediately kill the voice.       *  Immediately kill the voice. This method should not be used to kill
940         *  a normal, active voice, because it doesn't take care of things like
941         *  fading down the volume level to avoid clicks and regular processing
942         *  until the kill event actually occured!
943         *
944         *  @see Kill()
945       */       */
946      void Voice::Kill() {      void Voice::KillImmediately() {
947          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
948              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
949          }          }
950          Reset();          Reset();
951      }      }
952    
953        /**
954         *  Kill the voice in regular sense. Let the voice render audio until
955         *  the kill event actually occured and then fade down the volume level
956         *  very quickly and let the voice die finally. Unlike a normal release
957         *  of a voice, a kill process cannot be cancalled and is therefore
958         *  usually used for voice stealing and key group conflicts.
959         *
960         *  @param itKillEvent - event which caused the voice to be killed
961         */
962        void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
963            #if CONFIG_DEVMODE
964            if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
965            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
966            #endif // CONFIG_DEVMODE
967    
968            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
969            this->itKillEvent = itKillEvent;
970        }
971    
972  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.64  
changed lines
  Added in v.696

  ViewVC Help
Powered by ViewVC