/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 64 by schoenebeck, Thu May 6 20:06:20 2004 UTC revision 799 by persson, Sat Nov 5 10:59:37 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     // FIXME: no support for layers (nor crossfades) yet  
   
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          Active = false;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
45          pVCAManipulator  = NULL;          KeyGroup = 0;
46          pVCFCManipulator = NULL;          SynthesisMode = 0; // set all mode bits to 0 first
47          pVCOManipulator  = NULL;          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48          pLFO1  = NULL;          #if CONFIG_ASM && ARCH_X86
49          pLFO2  = NULL;          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50          pLFO3  = NULL;          #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
     }  
   
     void Voice::SetOutput(AudioOutputDevice* pAudioOutputDevice) {  
         this->pOutputLeft        = pAudioOutputDevice->Channel(0)->Buffer();  
         this->pOutputRight       = pAudioOutputDevice->Channel(1)->Buffer();  
         this->MaxSamplesPerCycle = pAudioOutputDevice->MaxSamplesPerCycle();  
         this->SampleRate         = pAudioOutputDevice->SampleRate();  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 102  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @returns            0 on success, a value < 0 if something failed       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79         *  @param VoiceType      - type of this voice
80         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89          }          #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91          Active          = true;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          MIDIKey         = pNoteOnEvent->Key;          }
93          pRegion         = pInstrument->GetRegion(MIDIKey);          #endif // CONFIG_DEVMODE
94          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
95          Pos             = 0;          Type            = VoiceType;
96          Delay           = pNoteOnEvent->FragmentPos();          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pTriggerEvent   = pNoteOnEvent;          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
98            Delay           = itNoteOnEvent->FragmentPos();
99          if (!pRegion) {          itTriggerEvent  = itNoteOnEvent;
100              std::cerr << "Audio Thread: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          itKillEvent     = Pool<Event>::Iterator();
101              Kill();          KeyGroup        = iKeyGroup;
102              return -1;          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103          }  
104            // calculate volume
105          //TODO: current MIDI controller values are not taken into account yet          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
106          ::gig::DimensionRegion* pDimRgn = NULL;  
107          for (int i = pRegion->Dimensions - 1; i >= 0; i--) { // Check if instrument has a velocity split          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108              if (pRegion->pDimensionDefinitions[i].dimension == ::gig::dimension_velocity) {  
109                  uint DimValues[5] = {0,0,0,0,0};          Volume *= pDimRgn->SampleAttenuation;
110                      DimValues[i] = pNoteOnEvent->Velocity;  
111                  pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          // the volume of release triggered samples depends on note length
112            if (Type == type_release_trigger) {
113                float noteLength = float(pEngine->FrameTime + Delay -
114                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                if (attenuation <= 0) return -1;
117                Volume *= attenuation;
118            }
119    
120            // select channel mode (mono or stereo)
121            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123            // get starting crossfade volume level
124            switch (pDimRgn->AttenuationController.type) {
125                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
126                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
127                  break;                  break;
128              }              case ::gig::attenuation_ctrl_t::type_velocity:
129          }                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
130          if (!pDimRgn) { // if there was no velocity split                  break;
131              pDimRgn = pRegion->GetDimensionRegionByValue(0,0,0,0,0);              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
132                    CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
133                    break;
134                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
135                default:
136                    CrossfadeVolume = 1.0f;
137          }          }
138    
139          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140            PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
141    
142            finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143            Pos = pDimRgn->SampleStartOffset;
144    
145          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
146          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
147          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
148    
149          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
150              MaxRAMPos = cachedsamples - (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
151    
152              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
153              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
154    
155              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
156                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
157                  Kill();                  KillImmediately();
158                  return -1;                  return -1;
159              }              }
160              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
161          }          }
162          else { // RAM only voice          else { // RAM only voice
163              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
164              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
165              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
166          }          }
167            if (RAMLoop) {
168                loop.uiTotalCycles = pSample->LoopPlayCount;
169                loop.uiCyclesLeft  = pSample->LoopPlayCount;
170                loop.uiStart       = pSample->LoopStart;
171                loop.uiEnd         = pSample->LoopEnd;
172                loop.uiSize        = pSample->LoopSize;
173            }
174    
175          // calculate initial pitch value          // calculate initial pitch value
176          {          {
177              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
178              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
179              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents);              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
180              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
181          }          }
182    
183            // the length of the decay and release curves are dependent on the velocity
184          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
185    
186          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
187          {          {
# Line 199  namespace LinuxSampler { namespace gig { Line 195  namespace LinuxSampler { namespace gig {
195                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
196                      break;                      break;
197                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
198                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
199                      break;                      break;
200                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
201                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
202                      break;                      break;
203              }              }
204              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
205    
206              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
207              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
208              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
209              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
210                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
211              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
212                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
213                            pDimRgn->EG1Hold,  
214                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
215                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
216                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
217                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
218                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
219                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
220                            Delay);                          pDimRgn->EG1Sustain,
221                            pDimRgn->EG1Release * eg1release * velrelease,
222                            velocityAttenuation,
223                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
224          }          }
225    
226    
     #if ENABLE_FILTER  
227          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
228          {          {
229              // get current value of EG2 controller              // get current value of EG2 controller
# Line 238  namespace LinuxSampler { namespace gig { Line 236  namespace LinuxSampler { namespace gig {
236                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
237                      break;                      break;
238                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
239                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
240                      break;                      break;
241                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
242                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
243                      break;                      break;
244              }              }
245              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
246    
247              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
248              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
249              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
250              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
251    
252              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
253                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
254                            false,                          false,
255                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
256                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
257                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
258                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
259                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
260                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
261                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
262          }          }
     #endif // ENABLE_FILTER  
263    
264    
265          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
266          {          {
267            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
268            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);            EG3.trigger(eg3depth, pDimRgn->EG3Attack, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
269          }          }
270    
271    
# Line 279  namespace LinuxSampler { namespace gig { Line 276  namespace LinuxSampler { namespace gig {
276                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
277                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
278                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
279                        bLFO1Enabled         = (lfo1_internal_depth > 0);
280                      break;                      break;
281                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
282                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
283                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
284                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
285                      break;                      break;
286                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
287                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
288                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
289                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
290                      break;                      break;
291                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
292                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
293                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
294                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
295                      break;                      break;
296                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
297                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
298                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
299                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
300                      break;                      break;
301                  default:                  default:
302                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
303                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
304                        bLFO1Enabled         = false;
305              }              }
306              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
307                            lfo1_internal_depth,                                               start_level_max,
308                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
309                            pEngine->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
310                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
311                            this->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
312          }          }
313    
314      #if ENABLE_FILTER  
315          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
316          {          {
317              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 317  namespace LinuxSampler { namespace gig { Line 319  namespace LinuxSampler { namespace gig {
319                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
320                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
321                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
322                        bLFO2Enabled         = (lfo2_internal_depth > 0);
323                      break;                      break;
324                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
325                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
326                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
327                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
328                      break;                      break;
329                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
330                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
331                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
332                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
333                      break;                      break;
334                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
335                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
336                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
337                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
338                      break;                      break;
339                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
340                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
341                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
342                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
343                      break;                      break;
344                  default:                  default:
345                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
346                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
347                        bLFO2Enabled         = false;
348              }              }
349              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
350                            lfo2_internal_depth,                                               start_level_max,
351                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
352                            pEngine->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
353                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
354                            Delay);                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
355          }          }
356      #endif // ENABLE_FILTER  
357    
358          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
359          {          {
# Line 354  namespace LinuxSampler { namespace gig { Line 362  namespace LinuxSampler { namespace gig {
362                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
363                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
364                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
365                        bLFO3Enabled         = (lfo3_internal_depth > 0);
366                      break;                      break;
367                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
368                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
369                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
370                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
371                      break;                      break;
372                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
373                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
374                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
375                        bLFO3Enabled         = false; // see TODO comment in line above
376                      break;                      break;
377                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
378                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
379                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
380                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
381                      break;                      break;
382                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
383                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
384                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
385                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
386                      break;                      break;
387                  default:                  default:
388                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
389                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
390                        bLFO3Enabled         = false;
391              }              }
392              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
393                            lfo3_internal_depth,                                               start_level_mid,
394                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
395                            pEngine->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
396                            false,                                               false,
397                            this->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
398          }          }
399    
400      #if ENABLE_FILTER  
401          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
402          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
403          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
404          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
405          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
406          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
407              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
408              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
409                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
410              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
411              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
412                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 428  namespace LinuxSampler { namespace gig { Line 442  namespace LinuxSampler { namespace gig {
442                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
443                      break;                      break;
444              }              }
445              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
446    
447              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
448              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
449              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
450              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
451                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 450  namespace LinuxSampler { namespace gig { Line 464  namespace LinuxSampler { namespace gig {
464                  default:                  default:
465                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
466              }              }
467              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
468    
469              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
470              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
471              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
472              #else // override filter type              #else // override filter type
473              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
474              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
475              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
476    
477              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
478              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
479    
480              // calculate cutoff frequency              // calculate cutoff frequency
481              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
482              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
483                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
484              }              }
485              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
486    
487              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
488              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
489                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
490                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
491                    // VCFVelocityScale in this case means Minimum cutoff
492                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
493                }
494                else {
495                    cvalue = pDimRgn->VCFCutoff;
496                }
497                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
498                if (cutoff > 1.0) cutoff = 1.0;
499                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
500                if (cutoff < 1.0) cutoff = 1.0;
501    
502              FilterLeft.SetParameters(cutoff,  resonance, SampleRate);              // calculate resonance
503              FilterRight.SetParameters(cutoff, resonance, SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
504    
505              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
506                VCFResonanceCtrl.fvalue = resonance;
507          }          }
508          else {          else {
509              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
510              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
511          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
512    
513          return 0; // success          return 0; // success
514      }      }
# Line 509  namespace LinuxSampler { namespace gig { Line 526  namespace LinuxSampler { namespace gig {
526       */       */
527      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
528    
529          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
530          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
531    
532          switch (this->PlaybackState) {          switch (this->PlaybackState) {
533    
534                case playback_state_init:
535                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
536                    // no break - continue with playback_state_ram
537    
538              case playback_state_ram: {              case playback_state_ram: {
539                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
540                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
541                        // render current fragment
542                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
543    
544                      if (DiskVoice) {                      if (DiskVoice) {
545                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
546                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
547                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
548                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
549                          }                          }
550                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
551                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
552                      }                      }
553                  }                  }
# Line 559  namespace LinuxSampler { namespace gig { Line 559  namespace LinuxSampler { namespace gig {
559                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
560                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
561                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
562                              Kill();                              KillImmediately();
563                              return;                              return;
564                          }                          }
565                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
566                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
567                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
568                      }                      }
569    
570                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
571    
572                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
573                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
574                          DiskStreamRef.pStream->WriteSilence((MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
575                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
576                                // remember how many sample words there are before any silence has been added
577                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
578                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
579                            }
580                      }                      }
581    
582                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
583                      Interpolate(Samples, ptr, Delay);  
584                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
585                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
586    
587                        const int iPos = (int) finalSynthesisParameters.dPos;
588                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
589                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
590                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
591    
592                        // change state of voice to 'end' if we really reached the end of the sample data
593                        if (RealSampleWordsLeftToRead >= 0) {
594                            RealSampleWordsLeftToRead -= readSampleWords;
595                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
596                        }
597                  }                  }
598                  break;                  break;
599    
600              case playback_state_end:              case playback_state_end:
601                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
602                  break;                  break;
603          }          }
604    
   
     #if ENABLE_FILTER  
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
605          // Reset delay          // Reset delay
606          Delay = 0;          Delay = 0;
607    
608          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
609    
610          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
611          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
612      }      }
613    
614      /**      /**
# Line 605  namespace LinuxSampler { namespace gig { Line 616  namespace LinuxSampler { namespace gig {
616       *  suspended / not running.       *  suspended / not running.
617       */       */
618      void Voice::Reset() {      void Voice::Reset() {
619          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
620          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
621          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
622          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
623          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
624          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
625          Active = false;          PlaybackState = playback_state_end;
626            itTriggerEvent = Pool<Event>::Iterator();
627            itKillEvent    = Pool<Event>::Iterator();
628      }      }
629    
630      /**      /**
631       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
632       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
633       *       *
634       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
635         * @param End     - youngest time stamp where processing should be stopped
636       */       */
637      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
638            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
639          // dispatch control change events              if (itEvent->Type == Event::type_release) {
640          Event* pCCEvent = pEngine->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
641          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
642              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              } else if (itEvent->Type == Event::type_cancel_release) {
643          }                  EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
644          while (pCCEvent) {                  EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
             if (pCCEvent->Controller) { // if valid MIDI controller  
                 #if ENABLE_FILTER  
                 if (pCCEvent->Controller == VCFCutoffCtrl.controller) {  
                     pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);  
                 }  
                 if (pCCEvent->Controller == VCFResonanceCtrl.controller) {  
                     pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(pCCEvent);  
                 }  
                 #if ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(pCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(pCCEvent);  
                 }  
             }  
   
             pCCEvent = pEngine->pCCEvents->next();  
         }  
   
   
         // process pitch events  
         {  
             RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];  
             Event* pVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (pVCOEvent) {  
                 Event* pNextVCOEvent = pVCOEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
   
                 pVCOEvent = pNextVCOEvent;  
             }  
             if (pVCOEventList->last()) this->PitchBend = pitch;  
         }  
   
   
     #if ENABLE_FILTER  
         // process filter cutoff events  
         {  
             RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             Event* pCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();  
             }  
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 pCutoffEvent = pNextCutoffEvent;  
             }  
             if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
   
         // process filter resonance events  
         {  
             RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];  
             Event* pResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();  
             }  
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = pResonanceEvent->Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
   
                 pResonanceEvent = pNextResonanceEvent;  
645              }              }
             if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time  
646          }          }
     #endif // ENABLE_FILTER  
647      }      }
648    
649      /**      /**
650       *  Interpolates the input audio data (no loop).       * Process given list of MIDI control change and pitch bend events for
651         * the given time.
652       *       *
653       *  @param Samples - number of sample points to be rendered in this audio       * @param itEvent - iterator pointing to the next event to be processed
654       *                   fragment cycle       * @param End     - youngest time stamp where processing should be stopped
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
655       */       */
656      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
657          int i = Skip;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
658                if (itEvent->Type == Event::type_control_change &&
659          // FIXME: assuming either mono or stereo                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
660          if (this->pSample->Channels == 2) { // Stereo Sample                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
661              while (i < Samples) {                      processCutoffEvent(itEvent);
662                  InterpolateOneStep_Stereo(pSrc, i,                  }
663                                            pEngine->pSynthesisParameters[Event::destination_vca][i],                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
664                                            pEngine->pSynthesisParameters[Event::destination_vco][i],                      processResonanceEvent(itEvent);
665                                            pEngine->pSynthesisParameters[Event::destination_vcfc][i],                  }
666                                            pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
667              }                      pLFO1->update(itEvent->Param.CC.Value);
668          }                  }
669          else { // Mono Sample                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
670              while (i < Samples) {                      pLFO2->update(itEvent->Param.CC.Value);
671                  InterpolateOneStep_Mono(pSrc, i,                  }
672                                          pEngine->pSynthesisParameters[Event::destination_vca][i],                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
673                                          pEngine->pSynthesisParameters[Event::destination_vco][i],                      pLFO3->update(itEvent->Param.CC.Value);
674                                          pEngine->pSynthesisParameters[Event::destination_vcfc][i],                  }
675                                          pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
676              }                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
677          }                      processCrossFadeEvent(itEvent);
678                    }
679                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
680                    processPitchEvent(itEvent);
681                }
682            }
683        }
684    
685        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
686            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
687            finalSynthesisParameters.fFinalPitch *= pitch;
688            PitchBend = pitch;
689        }
690    
691        void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
692            CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
693            #if CONFIG_PROCESS_MUTED_CHANNELS
694            const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
695            #else
696            const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
697            #endif
698            fFinalVolume = effectiveVolume;
699        }
700    
701        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
702            int ccvalue = itEvent->Param.CC.Value;
703            if (VCFCutoffCtrl.value == ccvalue) return;
704            VCFCutoffCtrl.value == ccvalue;
705            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
706            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
707            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
708            if (cutoff > 1.0) cutoff = 1.0;
709            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
710            if (cutoff < 1.0) cutoff = 1.0;
711    
712            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
713            fFinalCutoff = cutoff;
714        }
715    
716        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
717            // convert absolute controller value to differential
718            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
719            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
720            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
721            fFinalResonance += resonancedelta;
722            // needed for initialization of parameter
723            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
724      }      }
725    
726      /**      /**
727       *  Interpolates the input audio data, this method honors looping.       *  Synthesizes the current audio fragment for this voice.
728       *       *
729       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
730       *                   fragment cycle       *                   fragment cycle
731       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
732       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
733       */       */
734      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
735          int i = Skip;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
736            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
737            finalSynthesisParameters.pSrc      = pSrc;
738    
739          // FIXME: assuming either mono or stereo          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
740          if (pSample->Channels == 2) { // Stereo Sample          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
741              if (pSample->LoopPlayCount) {  
742                  // render loop (loop count limited)          if (Skip) { // skip events that happened before this voice was triggered
743                  while (i < Samples && LoopCyclesLeft) {              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
744                      InterpolateOneStep_Stereo(pSrc, i,              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
745                                                pEngine->pSynthesisParameters[Event::destination_vca][i],          }
746                                                pEngine->pSynthesisParameters[Event::destination_vco][i],  
747                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i],          uint killPos;
748                                                pEngine->pSynthesisParameters[Event::destination_vcfr][i]);          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
749                      if (Pos > pSample->LoopEnd) {  
750                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;          uint i = Skip;
751                          LoopCyclesLeft--;          while (i < Samples) {
752                      }              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
753                  }  
754                  // render on without loop              // initialize all final synthesis parameters
755                  while (i < Samples) {              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
756                      InterpolateOneStep_Stereo(pSrc, i,              #if CONFIG_PROCESS_MUTED_CHANNELS
757                                                pEngine->pSynthesisParameters[Event::destination_vca][i],              fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
758                                                pEngine->pSynthesisParameters[Event::destination_vco][i],              #else
759                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i],              fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
760                                                pEngine->pSynthesisParameters[Event::destination_vcfr][i]);              #endif
761                  }              fFinalCutoff    = VCFCutoffCtrl.fvalue;
762                fFinalResonance = VCFResonanceCtrl.fvalue;
763    
764                // process MIDI control change and pitchbend events for this subfragment
765                processCCEvents(itCCEvent, iSubFragmentEnd);
766    
767                // process transition events (note on, note off & sustain pedal)
768                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
769    
770                // if the voice was killed in this subfragment switch EG1 to fade out stage
771                if (itKillEvent && killPos <= iSubFragmentEnd) {
772                    EG1.enterFadeOutStage();
773                    itKillEvent = Pool<Event>::Iterator();
774              }              }
775              else { // render loop (endless loop)  
776                  while (i < Samples) {              // process envelope generators
777                      InterpolateOneStep_Stereo(pSrc, i,              switch (EG1.getSegmentType()) {
778                                                pEngine->pSynthesisParameters[Event::destination_vca][i],                  case EGADSR::segment_lin:
779                                                pEngine->pSynthesisParameters[Event::destination_vco][i],                      fFinalVolume *= EG1.processLin();
780                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i],                      break;
781                                                pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                  case EGADSR::segment_exp:
782                      if (Pos > pSample->LoopEnd) {                      fFinalVolume *= EG1.processExp();
783                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                      break;
784                      }                  case EGADSR::segment_end:
785                  }                      fFinalVolume *= EG1.getLevel();
786                        break; // noop
787              }              }
788          }              switch (EG2.getSegmentType()) {
789          else { // Mono Sample                  case EGADSR::segment_lin:
790              if (pSample->LoopPlayCount) {                      fFinalCutoff *= EG2.processLin();
791                  // render loop (loop count limited)                      break;
792                  while (i < Samples && LoopCyclesLeft) {                  case EGADSR::segment_exp:
793                      InterpolateOneStep_Mono(pSrc, i,                      fFinalCutoff *= EG2.processExp();
794                                              pEngine->pSynthesisParameters[Event::destination_vca][i],                      break;
795                                              pEngine->pSynthesisParameters[Event::destination_vco][i],                  case EGADSR::segment_end:
796                                              pEngine->pSynthesisParameters[Event::destination_vcfc][i],                      fFinalCutoff *= EG2.getLevel();
797                                              pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                      break; // noop
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                 }  
798              }              }
799              else { // render loop (endless loop)              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(EG3.render());
800                  while (i < Samples) {  
801                      InterpolateOneStep_Mono(pSrc, i,              // process low frequency oscillators
802                                              pEngine->pSynthesisParameters[Event::destination_vca][i],              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
803                                              pEngine->pSynthesisParameters[Event::destination_vco][i],              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
804                                              pEngine->pSynthesisParameters[Event::destination_vcfc][i],              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
805                                              pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
806                      if (Pos > pSample->LoopEnd) {              // if filter enabled then update filter coefficients
807                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
808                      }                  finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
809                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
810                }
811    
812                // do we need resampling?
813                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
814                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
815                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
816                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
817                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
818    
819                // prepare final synthesis parameters structure
820                finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
821                finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
822                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
823    
824                // render audio for one subfragment
825                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
826    
827                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
828    
829                // increment envelopes' positions
830                if (EG1.active()) {
831    
832                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
833                    if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
834                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
835                  }                  }
836    
837                    EG1.increment(1);
838                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
839              }              }
840                if (EG2.active()) {
841                    EG2.increment(1);
842                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
843                }
844                EG3.increment(1);
845                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
846    
847                Pos = newPos;
848                i = iSubFragmentEnd;
849          }          }
850      }      }
851    
852      /**      /**
853       *  Immediately kill the voice.       *  Immediately kill the voice. This method should not be used to kill
854         *  a normal, active voice, because it doesn't take care of things like
855         *  fading down the volume level to avoid clicks and regular processing
856         *  until the kill event actually occured!
857         *
858         *  @see Kill()
859       */       */
860      void Voice::Kill() {      void Voice::KillImmediately() {
861          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
862              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
863          }          }
864          Reset();          Reset();
865      }      }
866    
867        /**
868         *  Kill the voice in regular sense. Let the voice render audio until
869         *  the kill event actually occured and then fade down the volume level
870         *  very quickly and let the voice die finally. Unlike a normal release
871         *  of a voice, a kill process cannot be cancalled and is therefore
872         *  usually used for voice stealing and key group conflicts.
873         *
874         *  @param itKillEvent - event which caused the voice to be killed
875         */
876        void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
877            #if CONFIG_DEVMODE
878            if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
879            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
880            #endif // CONFIG_DEVMODE
881    
882            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
883            this->itKillEvent = itKillEvent;
884        }
885    
886  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.64  
changed lines
  Added in v.799

  ViewVC Help
Powered by ViewVC