/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 64 by schoenebeck, Thu May 6 20:06:20 2004 UTC revision 832 by persson, Sun Feb 5 10:24:05 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     // FIXME: no support for layers (nor crossfades) yet  
   
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          Active = false;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
45          pVCAManipulator  = NULL;          KeyGroup = 0;
46          pVCFCManipulator = NULL;          SynthesisMode = 0; // set all mode bits to 0 first
47          pVCOManipulator  = NULL;          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48          pLFO1  = NULL;          #if CONFIG_ASM && ARCH_X86
49          pLFO2  = NULL;          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50          pLFO3  = NULL;          #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
     }  
   
     void Voice::SetOutput(AudioOutputDevice* pAudioOutputDevice) {  
         this->pOutputLeft        = pAudioOutputDevice->Channel(0)->Buffer();  
         this->pOutputRight       = pAudioOutputDevice->Channel(1)->Buffer();  
         this->MaxSamplesPerCycle = pAudioOutputDevice->MaxSamplesPerCycle();  
         this->SampleRate         = pAudioOutputDevice->SampleRate();  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 102  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @returns            0 on success, a value < 0 if something failed       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79         *  @param VoiceType      - type of this voice
80         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89          }          #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91          Active          = true;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          MIDIKey         = pNoteOnEvent->Key;          }
93          pRegion         = pInstrument->GetRegion(MIDIKey);          #endif // CONFIG_DEVMODE
94          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
95          Pos             = 0;          Type            = VoiceType;
96          Delay           = pNoteOnEvent->FragmentPos();          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pTriggerEvent   = pNoteOnEvent;          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
98            Delay           = itNoteOnEvent->FragmentPos();
99          if (!pRegion) {          itTriggerEvent  = itNoteOnEvent;
100              std::cerr << "Audio Thread: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          itKillEvent     = Pool<Event>::Iterator();
101              Kill();          KeyGroup        = iKeyGroup;
102              return -1;          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103          }  
104            // calculate volume
105          //TODO: current MIDI controller values are not taken into account yet          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
106          ::gig::DimensionRegion* pDimRgn = NULL;  
107          for (int i = pRegion->Dimensions - 1; i >= 0; i--) { // Check if instrument has a velocity split          float volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108              if (pRegion->pDimensionDefinitions[i].dimension == ::gig::dimension_velocity) {  
109                  uint DimValues[5] = {0,0,0,0,0};          volume *= pDimRgn->SampleAttenuation;
110                      DimValues[i] = pNoteOnEvent->Velocity;  
111                  pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          // the volume of release triggered samples depends on note length
112            if (Type == type_release_trigger) {
113                float noteLength = float(pEngine->FrameTime + Delay -
114                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                if (attenuation <= 0) return -1;
117                volume *= attenuation;
118            }
119    
120            // select channel mode (mono or stereo)
121            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123            // get starting crossfade volume level
124            float crossfadeVolume;
125            switch (pDimRgn->AttenuationController.type) {
126                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                    crossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
128                  break;                  break;
129              }              case ::gig::attenuation_ctrl_t::type_velocity:
130          }                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131          if (!pDimRgn) { // if there was no velocity split                  break;
132              pDimRgn = pRegion->GetDimensionRegionByValue(0,0,0,0,0);              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133          }                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                    break;
135                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136                default:
137                    crossfadeVolume = 1.0f;
138            }
139    
140            VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141            VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143            float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->GlobalVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
157              MaxRAMPos = cachedsamples - (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
158    
159              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
160              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
161    
162              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
163                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
164                  Kill();                  KillImmediately();
165                  return -1;                  return -1;
166              }              }
167              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
168          }          }
169          else { // RAM only voice          else { // RAM only voice
170              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
171              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
172              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
173          }          }
174            if (RAMLoop) {
175                loop.uiTotalCycles = pSample->LoopPlayCount;
176                loop.uiCyclesLeft  = pSample->LoopPlayCount;
177                loop.uiStart       = pSample->LoopStart;
178                loop.uiEnd         = pSample->LoopEnd;
179                loop.uiSize        = pSample->LoopSize;
180            }
181    
182          // calculate initial pitch value          // calculate initial pitch value
183          {          {
184              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
185              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
186              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents);              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
187              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
188          }          }
189    
190            // the length of the decay and release curves are dependent on the velocity
191          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
192    
193          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
194          {          {
# Line 199  namespace LinuxSampler { namespace gig { Line 202  namespace LinuxSampler { namespace gig {
202                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
203                      break;                      break;
204                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
205                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
206                      break;                      break;
207                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
208                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
209                      break;                      break;
210              }              }
211              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
212    
213              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
214              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
215              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
216              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
217                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
218              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
219                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
220                            pDimRgn->EG1Hold,  
221                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
222                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
223                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
224                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
225                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
226                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
227                            Delay);                          pDimRgn->EG1Sustain,
228                            pDimRgn->EG1Release * eg1release * velrelease,
229                            velocityAttenuation,
230                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
231            }
232    
233    #ifdef CONFIG_INTERPOLATE_VOLUME
234            // setup initial volume in synthesis parameters
235    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
236            if (pEngineChannel->GetMute()) {
237                finalSynthesisParameters.fFinalVolumeLeft  = 0;
238                finalSynthesisParameters.fFinalVolumeRight = 0;
239          }          }
240            else
241    #else
242            {
243                float finalVolume = pEngineChannel->GlobalVolume * crossfadeVolume * EG1.getLevel();
244    
245                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
246                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
247            }
248    #endif
249    #endif
250    
     #if ENABLE_FILTER  
251          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
252          {          {
253              // get current value of EG2 controller              // get current value of EG2 controller
# Line 238  namespace LinuxSampler { namespace gig { Line 260  namespace LinuxSampler { namespace gig {
260                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
261                      break;                      break;
262                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
263                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
264                      break;                      break;
265                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
266                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
267                      break;                      break;
268              }              }
269              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
270    
271              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
272              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
273              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
274              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
275    
276              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
277                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
278                            false,                          false,
279                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
280                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
281                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
282                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
283                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
284                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
285                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
286          }          }
     #endif // ENABLE_FILTER  
287    
288    
289          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
290          {          {
291            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
292            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
293                float eg3depth = (bPortamento)
294                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
295                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
296                float eg3time = (bPortamento)
297                                    ? pEngineChannel->PortamentoTime
298                                    : pDimRgn->EG3Attack;
299                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
300                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
301          }          }
302    
303    
# Line 279  namespace LinuxSampler { namespace gig { Line 308  namespace LinuxSampler { namespace gig {
308                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
309                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
310                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
311                        bLFO1Enabled         = (lfo1_internal_depth > 0);
312                      break;                      break;
313                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
314                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
315                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
316                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
317                      break;                      break;
318                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
319                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
320                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
321                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
322                      break;                      break;
323                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
324                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
325                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
326                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
327                      break;                      break;
328                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
329                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
330                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
331                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
332                      break;                      break;
333                  default:                  default:
334                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
335                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
336                        bLFO1Enabled         = false;
337              }              }
338              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
339                            lfo1_internal_depth,                                               start_level_max,
340                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
341                            pEngine->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
342                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
343                            this->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
344          }          }
345    
346      #if ENABLE_FILTER  
347          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
348          {          {
349              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 317  namespace LinuxSampler { namespace gig { Line 351  namespace LinuxSampler { namespace gig {
351                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
352                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
353                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
354                        bLFO2Enabled         = (lfo2_internal_depth > 0);
355                      break;                      break;
356                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
357                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
358                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
359                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
360                      break;                      break;
361                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
362                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
363                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
364                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
365                      break;                      break;
366                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
367                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
368                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
369                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
370                      break;                      break;
371                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
372                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
373                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
374                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
375                      break;                      break;
376                  default:                  default:
377                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
378                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
379                        bLFO2Enabled         = false;
380              }              }
381              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
382                            lfo2_internal_depth,                                               start_level_max,
383                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
384                            pEngine->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
385                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
386                            Delay);                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
387          }          }
388      #endif // ENABLE_FILTER  
389    
390          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
391          {          {
# Line 354  namespace LinuxSampler { namespace gig { Line 394  namespace LinuxSampler { namespace gig {
394                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
395                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
396                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
397                        bLFO3Enabled         = (lfo3_internal_depth > 0);
398                      break;                      break;
399                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
400                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
401                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
402                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
403                      break;                      break;
404                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
405                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
406                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
407                        bLFO3Enabled         = false; // see TODO comment in line above
408                      break;                      break;
409                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
410                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
411                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
412                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
413                      break;                      break;
414                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
415                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
416                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
417                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
418                      break;                      break;
419                  default:                  default:
420                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
421                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
422                        bLFO3Enabled         = false;
423              }              }
424              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
425                            lfo3_internal_depth,                                               start_level_mid,
426                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
427                            pEngine->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
428                            false,                                               false,
429                            this->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
430          }          }
431    
432      #if ENABLE_FILTER  
433          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
434          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
435          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
436          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
437          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
438          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
439              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
440              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
441                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
442              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
443              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
444                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 428  namespace LinuxSampler { namespace gig { Line 474  namespace LinuxSampler { namespace gig {
474                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
475                      break;                      break;
476              }              }
477              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
478    
479              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
480              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
481              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
482              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
483                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 450  namespace LinuxSampler { namespace gig { Line 496  namespace LinuxSampler { namespace gig {
496                  default:                  default:
497                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
498              }              }
499              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
500    
501              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
502              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
503              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
504              #else // override filter type              #else // override filter type
505              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
506              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
507              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
508    
509              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
510              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
511    
512              // calculate cutoff frequency              // calculate cutoff frequency
513              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
514              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
515                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
516              }              }
517              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
518    
519              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
520              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
521                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
522                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
523                    // VCFVelocityScale in this case means Minimum cutoff
524                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
525                }
526                else {
527                    cvalue = pDimRgn->VCFCutoff;
528                }
529                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
530                if (cutoff > 1.0) cutoff = 1.0;
531                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
532                if (cutoff < 1.0) cutoff = 1.0;
533    
534              FilterLeft.SetParameters(cutoff,  resonance, SampleRate);              // calculate resonance
535              FilterRight.SetParameters(cutoff, resonance, SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
536    
537              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
538                VCFResonanceCtrl.fvalue = resonance;
539          }          }
540          else {          else {
541              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
542              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
543          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
544    
545          return 0; // success          return 0; // success
546      }      }
# Line 509  namespace LinuxSampler { namespace gig { Line 558  namespace LinuxSampler { namespace gig {
558       */       */
559      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
560    
561          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
562          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
563    
564          switch (this->PlaybackState) {          switch (this->PlaybackState) {
565    
566                case playback_state_init:
567                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
568                    // no break - continue with playback_state_ram
569    
570              case playback_state_ram: {              case playback_state_ram: {
571                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
572                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
573                        // render current fragment
574                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
575    
576                      if (DiskVoice) {                      if (DiskVoice) {
577                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
578                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
579                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
580                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
581                          }                          }
582                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
583                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
584                      }                      }
585                  }                  }
# Line 559  namespace LinuxSampler { namespace gig { Line 591  namespace LinuxSampler { namespace gig {
591                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
592                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
593                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
594                              Kill();                              KillImmediately();
595                              return;                              return;
596                          }                          }
597                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
598                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
599                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
600                      }                      }
601    
602                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
603    
604                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
605                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
606                          DiskStreamRef.pStream->WriteSilence((MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
607                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
608                                // remember how many sample words there are before any silence has been added
609                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
610                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
611                            }
612                      }                      }
613    
614                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
615                      Interpolate(Samples, ptr, Delay);  
616                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
617                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
618    
619                        const int iPos = (int) finalSynthesisParameters.dPos;
620                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
621                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
622                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
623    
624                        // change state of voice to 'end' if we really reached the end of the sample data
625                        if (RealSampleWordsLeftToRead >= 0) {
626                            RealSampleWordsLeftToRead -= readSampleWords;
627                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
628                        }
629                  }                  }
630                  break;                  break;
631    
632              case playback_state_end:              case playback_state_end:
633                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
634                  break;                  break;
635          }          }
636    
   
     #if ENABLE_FILTER  
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
637          // Reset delay          // Reset delay
638          Delay = 0;          Delay = 0;
639    
640          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
641    
642          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
643          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
644      }      }
645    
646      /**      /**
# Line 605  namespace LinuxSampler { namespace gig { Line 648  namespace LinuxSampler { namespace gig {
648       *  suspended / not running.       *  suspended / not running.
649       */       */
650      void Voice::Reset() {      void Voice::Reset() {
651          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
652          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
653          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
654          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
655          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
656          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
657          Active = false;          PlaybackState = playback_state_end;
658            itTriggerEvent = Pool<Event>::Iterator();
659            itKillEvent    = Pool<Event>::Iterator();
660      }      }
661    
662      /**      /**
663       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
664       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
665       *       *
666       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
667         * @param End     - youngest time stamp where processing should be stopped
668       */       */
669      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
670            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
671          // dispatch control change events              if (itEvent->Type == Event::type_release) {
672          Event* pCCEvent = pEngine->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
673          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
674              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              } else if (itEvent->Type == Event::type_cancel_release) {
675          }                  EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
676          while (pCCEvent) {                  EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
             if (pCCEvent->Controller) { // if valid MIDI controller  
                 #if ENABLE_FILTER  
                 if (pCCEvent->Controller == VCFCutoffCtrl.controller) {  
                     pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);  
                 }  
                 if (pCCEvent->Controller == VCFResonanceCtrl.controller) {  
                     pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(pCCEvent);  
                 }  
                 #if ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(pCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(pCCEvent);  
                 }  
             }  
   
             pCCEvent = pEngine->pCCEvents->next();  
         }  
   
   
         // process pitch events  
         {  
             RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];  
             Event* pVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (pVCOEvent) {  
                 Event* pNextVCOEvent = pVCOEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
   
                 pVCOEvent = pNextVCOEvent;  
             }  
             if (pVCOEventList->last()) this->PitchBend = pitch;  
         }  
   
   
     #if ENABLE_FILTER  
         // process filter cutoff events  
         {  
             RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             Event* pCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();  
             }  
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 pCutoffEvent = pNextCutoffEvent;  
677              }              }
             if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
678          }          }
   
         // process filter resonance events  
         {  
             RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];  
             Event* pResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();  
             }  
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = pResonanceEvent->Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
   
                 pResonanceEvent = pNextResonanceEvent;  
             }  
             if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     #endif // ENABLE_FILTER  
679      }      }
680    
681      /**      /**
682       *  Interpolates the input audio data (no loop).       * Process given list of MIDI control change and pitch bend events for
683         * the given time.
684       *       *
685       *  @param Samples - number of sample points to be rendered in this audio       * @param itEvent - iterator pointing to the next event to be processed
686       *                   fragment cycle       * @param End     - youngest time stamp where processing should be stopped
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
687       */       */
688      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
689          int i = Skip;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
690                if (itEvent->Type == Event::type_control_change &&
691          // FIXME: assuming either mono or stereo                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
692          if (this->pSample->Channels == 2) { // Stereo Sample                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
693              while (i < Samples) {                      processCutoffEvent(itEvent);
694                  InterpolateOneStep_Stereo(pSrc, i,                  }
695                                            pEngine->pSynthesisParameters[Event::destination_vca][i],                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
696                                            pEngine->pSynthesisParameters[Event::destination_vco][i],                      processResonanceEvent(itEvent);
697                                            pEngine->pSynthesisParameters[Event::destination_vcfc][i],                  }
698                                            pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
699              }                      pLFO1->update(itEvent->Param.CC.Value);
700          }                  }
701          else { // Mono Sample                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
702              while (i < Samples) {                      pLFO2->update(itEvent->Param.CC.Value);
703                  InterpolateOneStep_Mono(pSrc, i,                  }
704                                          pEngine->pSynthesisParameters[Event::destination_vca][i],                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
705                                          pEngine->pSynthesisParameters[Event::destination_vco][i],                      pLFO3->update(itEvent->Param.CC.Value);
706                                          pEngine->pSynthesisParameters[Event::destination_vcfc][i],                  }
707                                          pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
708              }                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
709          }                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
710                    }
711                    if (itEvent->Param.CC.Controller == 7) { // volume
712                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value] * CONFIG_GLOBAL_ATTENUATION);
713                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
714                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
715                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
716                    }
717                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
718                    processPitchEvent(itEvent);
719                }
720            }
721        }
722    
723        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
724            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
725            finalSynthesisParameters.fFinalPitch *= pitch;
726            PitchBend = pitch;
727        }
728    
729        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
730            int ccvalue = itEvent->Param.CC.Value;
731            if (VCFCutoffCtrl.value == ccvalue) return;
732            VCFCutoffCtrl.value == ccvalue;
733            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
734            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
735            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
736            if (cutoff > 1.0) cutoff = 1.0;
737            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
738            if (cutoff < 1.0) cutoff = 1.0;
739    
740            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
741            fFinalCutoff = cutoff;
742        }
743    
744        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
745            // convert absolute controller value to differential
746            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
747            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
748            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
749            fFinalResonance += resonancedelta;
750            // needed for initialization of parameter
751            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
752      }      }
753    
754      /**      /**
755       *  Interpolates the input audio data, this method honors looping.       *  Synthesizes the current audio fragment for this voice.
756       *       *
757       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
758       *                   fragment cycle       *                   fragment cycle
759       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
760       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
761       */       */
762      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
763          int i = Skip;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
764            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
765            finalSynthesisParameters.pSrc      = pSrc;
766    
767          // FIXME: assuming either mono or stereo          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
768          if (pSample->Channels == 2) { // Stereo Sample          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
769              if (pSample->LoopPlayCount) {  
770                  // render loop (loop count limited)          if (Skip) { // skip events that happened before this voice was triggered
771                  while (i < Samples && LoopCyclesLeft) {              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
772                      InterpolateOneStep_Stereo(pSrc, i,              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
773                                                pEngine->pSynthesisParameters[Event::destination_vca][i],          }
774                                                pEngine->pSynthesisParameters[Event::destination_vco][i],  
775                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i],          uint killPos;
776                                                pEngine->pSynthesisParameters[Event::destination_vcfr][i]);          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
777                      if (Pos > pSample->LoopEnd) {  
778                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;          uint i = Skip;
779                          LoopCyclesLeft--;          while (i < Samples) {
780                      }              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
781                  }  
782                  // render on without loop              // initialize all final synthesis parameters
783                  while (i < Samples) {              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
784                      InterpolateOneStep_Stereo(pSrc, i,              fFinalCutoff    = VCFCutoffCtrl.fvalue;
785                                                pEngine->pSynthesisParameters[Event::destination_vca][i],              fFinalResonance = VCFResonanceCtrl.fvalue;
786                                                pEngine->pSynthesisParameters[Event::destination_vco][i],  
787                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i],              // process MIDI control change and pitchbend events for this subfragment
788                                                pEngine->pSynthesisParameters[Event::destination_vcfr][i]);              processCCEvents(itCCEvent, iSubFragmentEnd);
789                  }  
790                float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
791    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
792                if (pEngineChannel->GetMute()) fFinalVolume = 0;
793    #endif
794    
795                // process transition events (note on, note off & sustain pedal)
796                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
797    
798                // if the voice was killed in this subfragment switch EG1 to fade out stage
799                if (itKillEvent && killPos <= iSubFragmentEnd) {
800                    EG1.enterFadeOutStage();
801                    itKillEvent = Pool<Event>::Iterator();
802              }              }
803              else { // render loop (endless loop)  
804                  while (i < Samples) {              // process envelope generators
805                      InterpolateOneStep_Stereo(pSrc, i,              switch (EG1.getSegmentType()) {
806                                                pEngine->pSynthesisParameters[Event::destination_vca][i],                  case EGADSR::segment_lin:
807                                                pEngine->pSynthesisParameters[Event::destination_vco][i],                      fFinalVolume *= EG1.processLin();
808                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i],                      break;
809                                                pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                  case EGADSR::segment_exp:
810                      if (Pos > pSample->LoopEnd) {                      fFinalVolume *= EG1.processExp();
811                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                      break;
812                      }                  case EGADSR::segment_end:
813                  }                      fFinalVolume *= EG1.getLevel();
814                        break; // noop
815              }              }
816          }              switch (EG2.getSegmentType()) {
817          else { // Mono Sample                  case EGADSR::segment_lin:
818              if (pSample->LoopPlayCount) {                      fFinalCutoff *= EG2.processLin();
819                  // render loop (loop count limited)                      break;
820                  while (i < Samples && LoopCyclesLeft) {                  case EGADSR::segment_exp:
821                      InterpolateOneStep_Mono(pSrc, i,                      fFinalCutoff *= EG2.processExp();
822                                              pEngine->pSynthesisParameters[Event::destination_vca][i],                      break;
823                                              pEngine->pSynthesisParameters[Event::destination_vco][i],                  case EGADSR::segment_end:
824                                              pEngine->pSynthesisParameters[Event::destination_vcfc][i],                      fFinalCutoff *= EG2.getLevel();
825                                              pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                      break; // noop
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                 }  
826              }              }
827              else { // render loop (endless loop)              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
828                  while (i < Samples) {  
829                      InterpolateOneStep_Mono(pSrc, i,              // process low frequency oscillators
830                                              pEngine->pSynthesisParameters[Event::destination_vca][i],              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
831                                              pEngine->pSynthesisParameters[Event::destination_vco][i],              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
832                                              pEngine->pSynthesisParameters[Event::destination_vcfc][i],              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
833                                              pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
834                      if (Pos > pSample->LoopEnd) {              // if filter enabled then update filter coefficients
835                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
836                      }                  finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
837                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
838                }
839    
840                // do we need resampling?
841                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
842                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
843                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
844                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
845                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
846    
847                // prepare final synthesis parameters structure
848                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
849    #ifdef CONFIG_INTERPOLATE_VOLUME
850                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
851                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
852                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
853                finalSynthesisParameters.fFinalVolumeDeltaRight =
854                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
855                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
856    #else
857                finalSynthesisParameters.fFinalVolumeLeft  =
858                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
859                finalSynthesisParameters.fFinalVolumeRight =
860                    fFinalVolume * VolumeRight * PanRightSmoother.render();
861    #endif
862                // render audio for one subfragment
863                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
864    
865                // stop the rendering if volume EG is finished
866                if (EG1.getSegmentType() == EGADSR::segment_end) break;
867    
868                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
869    
870                // increment envelopes' positions
871                if (EG1.active()) {
872    
873                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
874                    if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
875                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
876                  }                  }
877    
878                    EG1.increment(1);
879                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
880              }              }
881                if (EG2.active()) {
882                    EG2.increment(1);
883                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
884                }
885                EG3.increment(1);
886                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
887    
888                Pos = newPos;
889                i = iSubFragmentEnd;
890          }          }
891      }      }
892    
893        /** @brief Update current portamento position.
894         *
895         * Will be called when portamento mode is enabled to get the final
896         * portamento position of this active voice from where the next voice(s)
897         * might continue to slide on.
898         *
899         * @param itNoteOffEvent - event which causes this voice to die soon
900         */
901        void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
902            const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
903            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
904        }
905    
906      /**      /**
907       *  Immediately kill the voice.       *  Immediately kill the voice. This method should not be used to kill
908         *  a normal, active voice, because it doesn't take care of things like
909         *  fading down the volume level to avoid clicks and regular processing
910         *  until the kill event actually occured!
911         *
912         *  @see Kill()
913       */       */
914      void Voice::Kill() {      void Voice::KillImmediately() {
915          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
916              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
917          }          }
918          Reset();          Reset();
919      }      }
920    
921        /**
922         *  Kill the voice in regular sense. Let the voice render audio until
923         *  the kill event actually occured and then fade down the volume level
924         *  very quickly and let the voice die finally. Unlike a normal release
925         *  of a voice, a kill process cannot be cancalled and is therefore
926         *  usually used for voice stealing and key group conflicts.
927         *
928         *  @param itKillEvent - event which caused the voice to be killed
929         */
930        void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
931            #if CONFIG_DEVMODE
932            if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
933            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
934            #endif // CONFIG_DEVMODE
935    
936            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
937            this->itKillEvent = itKillEvent;
938        }
939    
940  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.64  
changed lines
  Added in v.832

  ViewVC Help
Powered by ViewVC