/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 687 by schoenebeck, Tue Jul 12 22:37:21 2005 UTC revision 781 by schoenebeck, Mon Sep 26 10:17:00 2005 UTC
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 32  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
47          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
# Line 66  namespace LinuxSampler { namespace gig { Line 50  namespace LinuxSampler { namespace gig {
50          #else          #else
51          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52          #endif          #endif
53          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
56          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 184  namespace LinuxSampler { namespace gig { Line 139  namespace LinuxSampler { namespace gig {
139          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
141    
142          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143    
144          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
145          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
# Line 195  namespace LinuxSampler { namespace gig { Line 150  namespace LinuxSampler { namespace gig {
150    
151              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
152              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
153                  RAMLoop        = true;                  RAMLoop            = true;
154                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiTotalCycles = pSample->LoopPlayCount;
155                    loop.uiCyclesLeft  = pSample->LoopPlayCount;
156                    loop.uiStart       = pSample->LoopStart;
157                    loop.uiEnd         = pSample->LoopEnd;
158                    loop.uiSize        = pSample->LoopSize;
159              }              }
160              else RAMLoop = false;              else RAMLoop = false;
161    
# Line 210  namespace LinuxSampler { namespace gig { Line 169  namespace LinuxSampler { namespace gig {
169          else { // RAM only voice          else { // RAM only voice
170              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
171              if (pSample->Loops) {              if (pSample->Loops) {
172                  RAMLoop        = true;                  RAMLoop           = true;
173                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiCyclesLeft = pSample->LoopPlayCount;
174              }              }
175              else RAMLoop = false;              else RAMLoop = false;
176              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
# Line 222  namespace LinuxSampler { namespace gig { Line 181  namespace LinuxSampler { namespace gig {
181          {          {
182              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
183              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
184              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
185              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
186          }          }
187    
# Line 249  namespace LinuxSampler { namespace gig { Line 208  namespace LinuxSampler { namespace gig {
208              }              }
209              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
210    
211              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
212              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
213              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
214              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
215                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
216              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
217                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
218                            pDimRgn->EG1Hold,  
219                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
220                            (pDimRgn->EG1Decay1 + eg1decay) * velrelease,                          pDimRgn->EG1Attack * eg1attack,
221                            (pDimRgn->EG1Decay2 + eg1decay) * velrelease,                          pDimRgn->EG1Hold,
222                            pDimRgn->EG1InfiniteSustain,                          pSample->LoopStart,
223                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
224                            (pDimRgn->EG1Release + eg1release) * velrelease,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
225                            // the SSE synthesis implementation requires                          pDimRgn->EG1InfiniteSustain,
226                            // the vca start to be 16 byte aligned                          pDimRgn->EG1Sustain,
227                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?                          pDimRgn->EG1Release * eg1release * velrelease,
228                            Delay & 0xfffffffc : Delay,                          velocityAttenuation,
229                            velocityAttenuation);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
230          }          }
231    
232    
# Line 291  namespace LinuxSampler { namespace gig { Line 250  namespace LinuxSampler { namespace gig {
250              }              }
251              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
252    
253              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
254              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
255              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
256              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
257    
258              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
259                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
260                            false,                          false,
261                            pSample->LoopStart,                          pSample->LoopStart,
262                            (pDimRgn->EG2Decay1 + eg2decay) * velrelease,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
263                            (pDimRgn->EG2Decay2 + eg2decay) * velrelease,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
264                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2InfiniteSustain,
265                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Sustain,
266                            (pDimRgn->EG2Release + eg2release) * velrelease,                          pDimRgn->EG2Release * eg2release * velrelease,
267                            Delay,                          velocityAttenuation,
268                            velocityAttenuation);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
269          }          }
270    
271    
272          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
273          {          {
274            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
275            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);            EG3.trigger(eg3depth, pDimRgn->EG3Attack, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
276          }          }
277    
278    
# Line 351  namespace LinuxSampler { namespace gig { Line 310  namespace LinuxSampler { namespace gig {
310                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
311                      bLFO1Enabled         = false;                      bLFO1Enabled         = false;
312              }              }
313              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
314                                                 start_level_max,
315                                               lfo1_internal_depth,                                               lfo1_internal_depth,
316                                               pDimRgn->LFO1ControlDepth,                                               pDimRgn->LFO1ControlDepth,
                                              pEngineChannel->ControllerTable[pLFO1->ExtController],  
317                                               pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
318                                               pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                                              Delay);  
319          }          }
320    
321    
# Line 395  namespace LinuxSampler { namespace gig { Line 353  namespace LinuxSampler { namespace gig {
353                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
354                      bLFO2Enabled         = false;                      bLFO2Enabled         = false;
355              }              }
356              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
357                                                 start_level_max,
358                                               lfo2_internal_depth,                                               lfo2_internal_depth,
359                                               pDimRgn->LFO2ControlDepth,                                               pDimRgn->LFO2ControlDepth,
                                              pEngineChannel->ControllerTable[pLFO2->ExtController],  
360                                               pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
361                                               pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                                              Delay);  
362          }          }
363    
364    
# Line 439  namespace LinuxSampler { namespace gig { Line 396  namespace LinuxSampler { namespace gig {
396                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
397                      bLFO3Enabled         = false;                      bLFO3Enabled         = false;
398              }              }
399              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
400                                                 start_level_mid,
401                                               lfo3_internal_depth,                                               lfo3_internal_depth,
402                                               pDimRgn->LFO3ControlDepth,                                               pDimRgn->LFO3ControlDepth,
                                              pEngineChannel->ControllerTable[pLFO3->ExtController],  
403                                               false,                                               false,
404                                               pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                                              Delay);  
405          }          }
406    
407    
# Line 518  namespace LinuxSampler { namespace gig { Line 474  namespace LinuxSampler { namespace gig {
474              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
475    
476              #ifndef CONFIG_OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
477              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
478              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
479              #else // override filter type              #else // override filter type
480              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
481              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
# Line 529  namespace LinuxSampler { namespace gig { Line 485  namespace LinuxSampler { namespace gig {
485              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
486    
487              // calculate cutoff frequency              // calculate cutoff frequency
488              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
489                  ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX              if (pDimRgn->VCFKeyboardTracking) {
490                  : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
491                }
492                CutoffBase = cutoff;
493    
494                int cvalue;
495                if (VCFCutoffCtrl.controller) {
496                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
497                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
498                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
499                }
500                else {
501                    cvalue = pDimRgn->VCFCutoff;
502                }
503                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
504                if (cutoff > 1.0) cutoff = 1.0;
505                cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN;
506    
507              // calculate resonance              // calculate resonance
508              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0              float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0
# Line 542  namespace LinuxSampler { namespace gig { Line 513  namespace LinuxSampler { namespace gig {
513    
514              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;
515              VCFResonanceCtrl.fvalue = resonance;              VCFResonanceCtrl.fvalue = resonance;
   
             FilterUpdateCounter = -1;  
516          }          }
517          else {          else {
518              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 567  namespace LinuxSampler { namespace gig { Line 536  namespace LinuxSampler { namespace gig {
536      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
537    
538          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
539          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
540    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         if (bLFO1Enabled) pLFO1->Process(Samples);  
         if (bLFO2Enabled) pLFO2->Process(Samples);  
         if (bLFO3Enabled) {  
             if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
541          switch (this->PlaybackState) {          switch (this->PlaybackState) {
542    
543              case playback_state_init:              case playback_state_init:
# Line 614  namespace LinuxSampler { namespace gig { Line 552  namespace LinuxSampler { namespace gig {
552    
553                      if (DiskVoice) {                      if (DiskVoice) {
554                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
555                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
556                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
557                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
558                          }                          }
559                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
560                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
561                      }                      }
562                  }                  }
# Line 634  namespace LinuxSampler { namespace gig { Line 571  namespace LinuxSampler { namespace gig {
571                              KillImmediately();                              KillImmediately();
572                              return;                              return;
573                          }                          }
574                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
575                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
576                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
577                      }                      }
578    
# Line 656  namespace LinuxSampler { namespace gig { Line 593  namespace LinuxSampler { namespace gig {
593                      // render current audio fragment                      // render current audio fragment
594                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
595    
596                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
597                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
598                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
599                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
600    
601                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
602                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 674  namespace LinuxSampler { namespace gig { Line 611  namespace LinuxSampler { namespace gig {
611                  break;                  break;
612          }          }
613    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
614          // Reset delay          // Reset delay
615          Delay = 0;          Delay = 0;
616    
617          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
618    
619          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
620          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
621      }      }
622    
623      /**      /**
# Line 693  namespace LinuxSampler { namespace gig { Line 625  namespace LinuxSampler { namespace gig {
625       *  suspended / not running.       *  suspended / not running.
626       */       */
627      void Voice::Reset() {      void Voice::Reset() {
628          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
629          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
630          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
631          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
632          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 708  namespace LinuxSampler { namespace gig { Line 637  namespace LinuxSampler { namespace gig {
637      }      }
638    
639      /**      /**
640       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
641       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
642       *       *
643       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
644         * @param End     - youngest time stamp where processing should be stopped
645       */       */
646      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
647            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
648          // dispatch control change events              if (itEvent->Type == Event::type_release) {
649          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();                  EG1.update(EGADSR::event_release, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
650          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
651              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;              } else if (itEvent->Type == Event::type_cancel_release) {
652          }                  EG1.update(EGADSR::event_cancel_release, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
653          while (itCCEvent) {                  EG2.update(EGADSR::event_cancel_release, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
             if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
                 if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {  
                     *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {  
                     *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(itCCEvent);  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(itCCEvent);  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(itCCEvent);  
                 }  
                 if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&  
                     itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event  
                     *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;  
                 }  
654              }              }
   
             ++itCCEvent;  
655          }          }
656        }
657    
658        /**
659          // process pitch events       * Process given list of MIDI control change and pitch bend events for
660          {       * the given time.
661              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];       *
662              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();       * @param itEvent - iterator pointing to the next event to be processed
663              if (Delay) { // skip events that happened before this voice was triggered       * @param End     - youngest time stamp where processing should be stopped
664                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;       */
665              }      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
666              // apply old pitchbend value until first pitch event occurs          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
667              if (this->PitchBend != 1.0) {              if (itEvent->Type == Event::type_control_change &&
668                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
669                  for (uint i = Delay; i < end; i++) {                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
670                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      processCutoffEvent(itEvent);
671                    }
672                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
673                        processResonanceEvent(itEvent);
674                  }                  }
675              }                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
676              float pitch;                      pLFO1->update(itEvent->Param.CC.Value);
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
677                  }                  }
678                    if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
679                  itVCOEvent = itNextVCOEvent;                      pLFO2->update(itEvent->Param.CC.Value);
             }  
             if (!pVCOEventList->isEmpty()) {  
                 this->PitchBend = pitch;  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
   
         // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)  
         {  
             RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];  
             RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
680                  }                  }
681                    if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
682                  itVCAEvent = itNextVCAEvent;                      pLFO3->update(itEvent->Param.CC.Value);
             }  
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
   
         // process filter cutoff events  
         {  
             RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
683                  }                  }
684                    if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
685                  itCutoffEvent = itNextCutoffEvent;                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
686              }                      processCrossFadeEvent(itEvent);
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
   
         // process filter resonance events  
         {  
             RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
687                  }                  }
688                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
689                  itResonanceEvent = itNextResonanceEvent;                  processPitchEvent(itEvent);
690              }              }
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
691          }          }
692      }      }
693    
694      /**      void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
695       * Calculate all necessary, final biquad filter parameters.          const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
696       *          finalSynthesisParameters.fFinalPitch *= pitch;
697       * @param Samples - number of samples to be rendered in this audio fragment cycle          PitchBend = pitch;
698       */      }
     void Voice::CalculateBiquadParameters(uint Samples) {  
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                 }  
             }  
699    
700              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'      void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
701              bq    = (float*) &pEngine->pBasicFilterParameters[i];          CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
702              bq[0] = bqbase.b0;          #if CONFIG_PROCESS_MUTED_CHANNELS
703              bq[1] = bqbase.b1;          const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
704              bq[2] = bqbase.b2;          #else
705              bq[3] = bqbase.a1;          const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
706              bq[4] = bqbase.a2;          #endif
707            fFinalVolume = effectiveVolume;
708              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'      }
709              bq    = (float*) &pEngine->pMainFilterParameters[i];  
710              bq[0] = bqmain.b0;      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
711              bq[1] = bqmain.b1;          int ccvalue = itEvent->Param.CC.Value;
712              bq[2] = bqmain.b2;          if (VCFCutoffCtrl.value == ccvalue) return;
713              bq[3] = bqmain.a1;          VCFCutoffCtrl.value == ccvalue;
714              bq[4] = bqmain.a2;          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
715          }          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
716            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
717            if (cutoff > 1.0) cutoff = 1.0;
718            cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN - CONFIG_FILTER_CUTOFF_MIN;
719            VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
720            fFinalCutoff = cutoff;
721        }
722    
723        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
724            // convert absolute controller value to differential
725            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
726            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
727            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
728            fFinalResonance += resonancedelta;
729            // needed for initialization of parameter
730            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
731      }      }
732    
733      /**      /**
# Line 929  namespace LinuxSampler { namespace gig { Line 739  namespace LinuxSampler { namespace gig {
739       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
740       */       */
741      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
742          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
743            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
744            finalSynthesisParameters.pSrc      = pSrc;
745    
746            RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
747            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
748    
749            if (Skip) { // skip events that happened before this voice was triggered
750                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
751                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
752            }
753    
754            uint i = Skip;
755            while (i < Samples) {
756                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
757    
758                // initialize all final synthesis parameters
759                finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
760                #if CONFIG_PROCESS_MUTED_CHANNELS
761                fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
762                #else
763                fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
764                #endif
765                fFinalCutoff    = VCFCutoffCtrl.fvalue;
766                fFinalResonance = VCFResonanceCtrl.fvalue;
767    
768                // process MIDI control change and pitchbend events for this subfragment
769                processCCEvents(itCCEvent, iSubFragmentEnd);
770    
771                // process transition events (note on, note off & sustain pedal)
772                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
773    
774                // process envelope generators
775                switch (EG1.getSegmentType()) {
776                    case EGADSR::segment_lin:
777                        fFinalVolume *= EG1.processLin();
778                        break;
779                    case EGADSR::segment_exp:
780                        fFinalVolume *= EG1.processExp();
781                        break;
782                    case EGADSR::segment_end:
783                        fFinalVolume *= EG1.getLevel();
784                        break; // noop
785                }
786                switch (EG2.getSegmentType()) {
787                    case EGADSR::segment_lin:
788                        fFinalCutoff *= EG2.processLin();
789                        break;
790                    case EGADSR::segment_exp:
791                        fFinalCutoff *= EG2.processExp();
792                        break;
793                    case EGADSR::segment_end:
794                        fFinalCutoff *= EG2.getLevel();
795                        break; // noop
796                }
797                if (EG3.active()) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(EG3.render());
798    
799                // process low frequency oscillators
800                if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
801                if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
802                if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
803    
804                // if filter enabled then update filter coefficients
805                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
806                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
807                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
808                }
809    
810                // do we need resampling?
811                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
812                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
813                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
814                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
815                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
816    
817                // prepare final synthesis parameters structure
818                finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
819                finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
820                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
821    
822                // render audio for one subfragment
823                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
824    
825                // increment envelopes' positions
826                if (EG1.active()) {
827                    EG1.increment(1);
828                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
829                }
830                if (EG2.active()) {
831                    EG2.increment(1);
832                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, finalSynthesisParameters.dPos, finalSynthesisParameters.fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
833                }
834                EG3.increment(1);
835                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
836    
837                i = iSubFragmentEnd;
838            }
839      }      }
840    
841      /**      /**

Legend:
Removed from v.687  
changed lines
  Added in v.781

  ViewVC Help
Powered by ViewVC