/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 246 by schoenebeck, Sun Sep 19 14:12:55 2004 UTC revision 796 by persson, Sun Oct 30 08:35:13 2005 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 Christian Schoenebeck                              *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 29  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          Active = false;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46            SynthesisMode = 0; // set all mode bits to 0 first
47            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48            #if CONFIG_ASM && ARCH_X86
49            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50            #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 103  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param pNoteOnEvent        - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
80       *  @returns 0 on success, a value < 0 if something failed       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89            #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92            }
93            #endif // CONFIG_DEVMODE
94    
95            Type            = VoiceType;
96            MIDIKey         = itNoteOnEvent->Param.Note.Key;
97            PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
98            Delay           = itNoteOnEvent->FragmentPos();
99            itTriggerEvent  = itNoteOnEvent;
100            itKillEvent     = Pool<Event>::Iterator();
101            KeyGroup        = iKeyGroup;
102            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104            // calculate volume
105            const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
106    
107            Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109            Volume *= pDimRgn->SampleAttenuation;
110    
111            // the volume of release triggered samples depends on note length
112            if (Type == type_release_trigger) {
113                float noteLength = float(pEngine->FrameTime + Delay -
114                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                if (attenuation <= 0) return -1;
117                Volume *= attenuation;
118          }          }
119    
120          Type            = type_normal;          // select channel mode (mono or stereo)
121          Active          = true;          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
         MIDIKey         = pNoteOnEvent->Param.Note.Key;  
         pRegion         = pInstrument->GetRegion(MIDIKey);  
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
         Delay           = pNoteOnEvent->FragmentPos();  
         pTriggerEvent   = pNoteOnEvent;  
         pKillEvent      = NULL;  
   
         if (!pRegion) {  
             std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;  
             KillImmediately();  
             return -1;  
         }  
   
         KeyGroup = pRegion->KeyGroup;  
   
         // get current dimension values to select the right dimension region  
         //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
         uint DimValues[5] = {0,0,0,0,0};  
         for (int i = pRegion->Dimensions - 1; i >= 0; i--) {  
             switch (pRegion->pDimensionDefinitions[i].dimension) {  
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             pEngine->LaunchVoice(pNoteOnEvent, iNewLayer, ReleaseTriggerVoice);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = pNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
# Line 245  namespace LinuxSampler { namespace gig { Line 126  namespace LinuxSampler { namespace gig {
126                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
127                  break;                  break;
128              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
129                  CrossfadeVolume = CrossfadeAttenuation(pNoteOnEvent->Param.Note.Velocity);                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
130                  break;                  break;
131              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
132                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
133                  break;                  break;
134              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
135              default:              default:
136                  CrossfadeVolume = 1.0f;                  CrossfadeVolume = 1.0f;
137          }          }
138    
139          PanLeft  = float(RTMath::Max(pDimRgn->Pan, 0)) / -64.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140          PanRight = float(RTMath::Min(pDimRgn->Pan, 0)) /  63.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
   
         pSample = pDimRgn->pSample; // sample won't change until the voice is finished  
141    
142          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143            Pos = pDimRgn->SampleStartOffset;
144    
145          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
146          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
147          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
148    
149          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
150              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
151    
152              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
153              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
154                  RAMLoop        = true;                  RAMLoop            = true;
155                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiTotalCycles = pSample->LoopPlayCount;
156                    loop.uiCyclesLeft  = pSample->LoopPlayCount;
157                    loop.uiStart       = pSample->LoopStart;
158                    loop.uiEnd         = pSample->LoopEnd;
159                    loop.uiSize        = pSample->LoopSize;
160              }              }
161              else RAMLoop = false;              else RAMLoop = false;
162    
# Line 286  namespace LinuxSampler { namespace gig { Line 170  namespace LinuxSampler { namespace gig {
170          else { // RAM only voice          else { // RAM only voice
171              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
172              if (pSample->Loops) {              if (pSample->Loops) {
173                  RAMLoop        = true;                  RAMLoop           = true;
174                  LoopCyclesLeft = pSample->LoopPlayCount;                  loop.uiCyclesLeft = pSample->LoopPlayCount;
175              }              }
176              else RAMLoop = false;              else RAMLoop = false;
177              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
# Line 296  namespace LinuxSampler { namespace gig { Line 180  namespace LinuxSampler { namespace gig {
180    
181          // calculate initial pitch value          // calculate initial pitch value
182          {          {
183              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
184              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
185              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
186              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
187          }          }
188    
189            // the length of the decay and release curves are dependent on the velocity
190          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
191    
192          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
193          {          {
# Line 318  namespace LinuxSampler { namespace gig { Line 201  namespace LinuxSampler { namespace gig {
201                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
202                      break;                      break;
203                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
204                      eg1controllervalue = pNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
205                      break;                      break;
206                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
207                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
208                      break;                      break;
209              }              }
210              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
211    
212              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
213              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
214              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
215              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
216                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
217              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
218                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
219                            pDimRgn->EG1Hold,  
220                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
221                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
222                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
223                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
224                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
225                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
226                            Delay);                          pDimRgn->EG1Sustain,
227                            pDimRgn->EG1Release * eg1release * velrelease,
228                            velocityAttenuation,
229                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
230          }          }
231    
232    
     #if ENABLE_FILTER  
233          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
234          {          {
235              // get current value of EG2 controller              // get current value of EG2 controller
# Line 357  namespace LinuxSampler { namespace gig { Line 242  namespace LinuxSampler { namespace gig {
242                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
243                      break;                      break;
244                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
245                      eg2controllervalue = pNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
246                      break;                      break;
247                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
248                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
249                      break;                      break;
250              }              }
251              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
252    
253              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
254              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
255              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
256              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
257    
258              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
259                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
260                            false,                          false,
261                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
262                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
263                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
264                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
265                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
266                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
267                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
268          }          }
     #endif // ENABLE_FILTER  
269    
270    
271          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
272          {          {
273            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
274            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);            EG3.trigger(eg3depth, pDimRgn->EG3Attack, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
275          }          }
276    
277    
# Line 398  namespace LinuxSampler { namespace gig { Line 282  namespace LinuxSampler { namespace gig {
282                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
283                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
284                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
285                        bLFO1Enabled         = (lfo1_internal_depth > 0);
286                      break;                      break;
287                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
288                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
289                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
290                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
291                      break;                      break;
292                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
293                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
294                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
295                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
296                      break;                      break;
297                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
298                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
299                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
300                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
301                      break;                      break;
302                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
303                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
304                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
305                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
306                      break;                      break;
307                  default:                  default:
308                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
309                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
310                        bLFO1Enabled         = false;
311              }              }
312              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
313                            lfo1_internal_depth,                                               start_level_max,
314                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
315                            pEngine->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
316                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
317                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
318          }          }
319    
320      #if ENABLE_FILTER  
321          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
322          {          {
323              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 436  namespace LinuxSampler { namespace gig { Line 325  namespace LinuxSampler { namespace gig {
325                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
326                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
327                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
328                        bLFO2Enabled         = (lfo2_internal_depth > 0);
329                      break;                      break;
330                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
331                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
332                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
333                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
334                      break;                      break;
335                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
336                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
337                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
338                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
339                      break;                      break;
340                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
341                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
342                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
343                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
344                      break;                      break;
345                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
346                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
347                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
348                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
349                      break;                      break;
350                  default:                  default:
351                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
352                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
353                        bLFO2Enabled         = false;
354              }              }
355              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
356                            lfo2_internal_depth,                                               start_level_max,
357                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
358                            pEngine->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
359                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
360                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
361          }          }
362      #endif // ENABLE_FILTER  
363    
364          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
365          {          {
# Line 474  namespace LinuxSampler { namespace gig { Line 368  namespace LinuxSampler { namespace gig {
368                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
369                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
370                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
371                        bLFO3Enabled         = (lfo3_internal_depth > 0);
372                      break;                      break;
373                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
374                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
375                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
376                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
377                      break;                      break;
378                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
379                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
380                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
381                        bLFO3Enabled         = false; // see TODO comment in line above
382                      break;                      break;
383                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
384                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
385                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
386                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
387                      break;                      break;
388                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
389                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
390                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
391                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
392                      break;                      break;
393                  default:                  default:
394                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
395                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
396                        bLFO3Enabled         = false;
397              }              }
398              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
399                            lfo3_internal_depth,                                               start_level_mid,
400                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
401                            pEngine->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
402                            false,                                               false,
403                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
404          }          }
405    
406      #if ENABLE_FILTER  
407          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
408          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
409          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
410          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
411          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
412          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
413              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
414              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
415                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
416              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
417              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
418                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 548  namespace LinuxSampler { namespace gig { Line 448  namespace LinuxSampler { namespace gig {
448                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
449                      break;                      break;
450              }              }
451              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
452    
453              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
454              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
455              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
456              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
457                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 570  namespace LinuxSampler { namespace gig { Line 470  namespace LinuxSampler { namespace gig {
470                  default:                  default:
471                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
472              }              }
473              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
474    
475              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
476              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
477              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
478              #else // override filter type              #else // override filter type
479              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
480              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
481              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
482    
483              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
484              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
485    
486              // calculate cutoff frequency              // calculate cutoff frequency
487              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - pNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
488              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
489                  resonance += (float) (pNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
490              }              }
491              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
492    
493              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
494              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
495                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
496                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
497                    // VCFVelocityScale in this case means Minimum cutoff
498                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
499                }
500                else {
501                    cvalue = pDimRgn->VCFCutoff;
502                }
503                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
504                if (cutoff > 1.0) cutoff = 1.0;
505                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
506                if (cutoff < 1.0) cutoff = 1.0;
507    
508              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
509              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
510    
511              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
512                VCFResonanceCtrl.fvalue = resonance;
513          }          }
514          else {          else {
515              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
516              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
517          }          }
     #endif // ENABLE_FILTER  
518    
519          return 0; // success          return 0; // success
520      }      }
# Line 625  namespace LinuxSampler { namespace gig { Line 532  namespace LinuxSampler { namespace gig {
532       */       */
533      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
534    
535          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
536          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, pKillEvent);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
537    
538          switch (this->PlaybackState) {          switch (this->PlaybackState) {
539    
540                case playback_state_init:
541                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
542                    // no break - continue with playback_state_ram
543    
544              case playback_state_ram: {              case playback_state_ram: {
545                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
546                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
547                        // render current fragment
548                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
549    
550                      if (DiskVoice) {                      if (DiskVoice) {
551                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
552                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
553                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
554                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
555                          }                          }
556                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
557                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
558                      }                      }
559                  }                  }
# Line 683  namespace LinuxSampler { namespace gig { Line 568  namespace LinuxSampler { namespace gig {
568                              KillImmediately();                              KillImmediately();
569                              return;                              return;
570                          }                          }
571                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
572                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
573                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
574                      }                      }
575    
576                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
577    
578                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
579                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
580                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
581                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
582                                // remember how many sample words there are before any silence has been added
583                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
584                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
585                            }
586                      }                      }
587    
588                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
589                      InterpolateNoLoop(Samples, ptr, Delay);  
590                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
591                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
592    
593                        const int iPos = (int) finalSynthesisParameters.dPos;
594                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
595                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
596                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
597    
598                        // change state of voice to 'end' if we really reached the end of the sample data
599                        if (RealSampleWordsLeftToRead >= 0) {
600                            RealSampleWordsLeftToRead -= readSampleWords;
601                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
602                        }
603                  }                  }
604                  break;                  break;
605    
606              case playback_state_end:              case playback_state_end:
607                  KillImmediately(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
608                  break;                  break;
609          }          }
610    
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
     #if ENABLE_FILTER  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
611          // Reset delay          // Reset delay
612          Delay = 0;          Delay = 0;
613    
614          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
615    
616          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
617          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
618      }      }
619    
620      /**      /**
# Line 727  namespace LinuxSampler { namespace gig { Line 622  namespace LinuxSampler { namespace gig {
622       *  suspended / not running.       *  suspended / not running.
623       */       */
624      void Voice::Reset() {      void Voice::Reset() {
625          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
626          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
627          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
628          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
629          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
630          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
631          Active = false;          PlaybackState = playback_state_end;
632            itTriggerEvent = Pool<Event>::Iterator();
633            itKillEvent    = Pool<Event>::Iterator();
634      }      }
635    
636      /**      /**
637       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
638       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
639       *       *
640       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
641         * @param End     - youngest time stamp where processing should be stopped
642       */       */
643      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
644            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
645          // dispatch control change events              if (itEvent->Type == Event::type_release) {
646          Event* pCCEvent = pEngine->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
647          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
648              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              } else if (itEvent->Type == Event::type_cancel_release) {
649                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
650                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
651                }
652          }          }
653          while (pCCEvent) {      }
654              if (pCCEvent->Param.CC.Controller) { // if valid MIDI controller  
655                  #if ENABLE_FILTER      /**
656                  if (pCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {       * Process given list of MIDI control change and pitch bend events for
657                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);       * the given time.
658                  }       *
659                  if (pCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {       * @param itEvent - iterator pointing to the next event to be processed
660                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);       * @param End     - youngest time stamp where processing should be stopped
661         */
662        void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
663            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
664                if (itEvent->Type == Event::type_control_change &&
665                    itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
666                    if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
667                        processCutoffEvent(itEvent);
668                    }
669                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
670                        processResonanceEvent(itEvent);
671                  }                  }
672                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
673                  if (pCCEvent->Param.CC.Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(pCCEvent);  
674                  }                  }
675                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
676                  if (pCCEvent->Param.CC.Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(pCCEvent);  
677                  }                  }
678                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
679                  if (pCCEvent->Param.CC.Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(pCCEvent);  
680                  }                  }
681                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
682                      pCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
683                      pEngine->pSynthesisEvents[Event::destination_vca]->alloc_assign(*pCCEvent);                      processCrossFadeEvent(itEvent);
684                  }                  }
685                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
686                    processPitchEvent(itEvent);
687              }              }
   
             pCCEvent = pEngine->pCCEvents->next();  
688          }          }
689        }
690    
691        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
692            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
693            finalSynthesisParameters.fFinalPitch *= pitch;
694            PitchBend = pitch;
695        }
696    
697        void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
698            CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
699            #if CONFIG_PROCESS_MUTED_CHANNELS
700            const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
701            #else
702            const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
703            #endif
704            fFinalVolume = effectiveVolume;
705        }
706    
707        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
708            int ccvalue = itEvent->Param.CC.Value;
709            if (VCFCutoffCtrl.value == ccvalue) return;
710            VCFCutoffCtrl.value == ccvalue;
711            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
712            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
713            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
714            if (cutoff > 1.0) cutoff = 1.0;
715            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
716            if (cutoff < 1.0) cutoff = 1.0;
717    
718            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
719            fFinalCutoff = cutoff;
720        }
721    
722        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
723            // convert absolute controller value to differential
724            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
725            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
726            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
727            fFinalResonance += resonancedelta;
728            // needed for initialization of parameter
729            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
730        }
731    
732          // process pitch events      /**
733          {       *  Synthesizes the current audio fragment for this voice.
734              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];       *
735              Event* pVCOEvent = pVCOEventList->first();       *  @param Samples - number of sample points to be rendered in this audio
736              if (Delay) { // skip events that happened before this voice was triggered       *                   fragment cycle
737                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();       *  @param pSrc    - pointer to input sample data
738              }       *  @param Skip    - number of sample points to skip in output buffer
739              // apply old pitchbend value until first pitch event occurs       */
740              if (this->PitchBend != 1.0) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
741                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
742                  for (uint i = Delay; i < end; i++) {          finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
743                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;          finalSynthesisParameters.pSrc      = pSrc;
                 }  
             }  
             float pitch;  
             while (pVCOEvent) {  
                 Event* pNextVCOEvent = pVCOEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
744    
745                  pVCOEvent = pNextVCOEvent;          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
746              }          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
747              if (pVCOEventList->last()) this->PitchBend = pitch;  
748            if (Skip) { // skip events that happened before this voice was triggered
749                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
750                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
751          }          }
752    
753          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          uint killPos;
754          {          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
             RTEList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];  
             Event* pVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCAEvent && pVCAEvent->FragmentPos() <= Delay) pVCAEvent = pVCAEventList->next();  
             }  
             float crossfadevolume;  
             while (pVCAEvent) {  
                 Event* pNextVCAEvent = pVCAEventList->next();  
755    
756                  // calculate the influence length of this event (in sample points)          uint i = Skip;
757                  uint end = (pNextVCAEvent) ? pNextVCAEvent->FragmentPos() : Samples;          while (i < Samples) {
758                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
759    
760                  crossfadevolume = CrossfadeAttenuation(pVCAEvent->Param.CC.Value);              // initialize all final synthesis parameters
761                finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
762                #if CONFIG_PROCESS_MUTED_CHANNELS
763                fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
764                #else
765                fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
766                #endif
767                fFinalCutoff    = VCFCutoffCtrl.fvalue;
768                fFinalResonance = VCFResonanceCtrl.fvalue;
769    
770                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;              // process MIDI control change and pitchbend events for this subfragment
771                processCCEvents(itCCEvent, iSubFragmentEnd);
772    
773                  // apply volume value to the volume parameter sequence              // process transition events (note on, note off & sustain pedal)
774                  for (uint i = pVCAEvent->FragmentPos(); i < end; i++) {              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
775    
776                  pVCAEvent = pNextVCAEvent;              // if the voice was killed in this subfragment switch EG1 to fade out stage
777                if (itKillEvent && killPos <= iSubFragmentEnd) {
778                    EG1.enterFadeOutStage();
779                    itKillEvent = Pool<Event>::Iterator();
780              }              }
             if (pVCAEventList->last()) this->CrossfadeVolume = crossfadevolume;  
         }  
   
     #if ENABLE_FILTER  
         // process filter cutoff events  
         {  
             RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             Event* pCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();  
             }  
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) pCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
781    
782                  pCutoffEvent = pNextCutoffEvent;              // process envelope generators
783                switch (EG1.getSegmentType()) {
784                    case EGADSR::segment_lin:
785                        fFinalVolume *= EG1.processLin();
786                        break;
787                    case EGADSR::segment_exp:
788                        fFinalVolume *= EG1.processExp();
789                        break;
790                    case EGADSR::segment_end:
791                        fFinalVolume *= EG1.getLevel();
792                        break; // noop
793              }              }
794              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              switch (EG2.getSegmentType()) {
795          }                  case EGADSR::segment_lin:
796                        fFinalCutoff *= EG2.processLin();
797                        break;
798                    case EGADSR::segment_exp:
799                        fFinalCutoff *= EG2.processExp();
800                        break;
801                    case EGADSR::segment_end:
802                        fFinalCutoff *= EG2.getLevel();
803                        break; // noop
804                }
805                if (EG3.active()) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(EG3.render());
806    
807          // process filter resonance events              // process low frequency oscillators
808          {              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
809              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
810              Event* pResonanceEvent = pResonanceEventList->first();              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();  
             }  
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = pResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = pResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
811    
812                  pResonanceEvent = pNextResonanceEvent;              // if filter enabled then update filter coefficients
813                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
814                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
815                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
816              }              }
             if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     #endif // ENABLE_FILTER  
     }  
817    
818      #if ENABLE_FILTER              // do we need resampling?
819      /**              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
820       * Calculate all necessary, final biquad filter parameters.              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
821       *              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
822       * @param Samples - number of samples to be rendered in this audio fragment cycle                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
823       */              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
     void Voice::CalculateBiquadParameters(uint Samples) {  
         if (!FilterLeft.Enabled) return;  
824    
825          biquad_param_t bqbase;              // prepare final synthesis parameters structure
826          biquad_param_t bqmain;              finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
827          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];              finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
828          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
         FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {  
                 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                 prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                 FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
             }  
   
             //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'  
             bq    = (float*) &pEngine->pBasicFilterParameters[i];  
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
     }  
     #endif // ENABLE_FILTER  
829    
830      /**              // render audio for one subfragment
831       *  Interpolates the input audio data (without looping).              RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
832    
833          // FIXME: assuming either mono or stereo              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) InterpolateStereo(pSrc, i);  
         }  
         else { // Mono Sample  
             while (i < Samples) InterpolateMono(pSrc, i);  
         }  
     }  
834    
835      /**              // increment envelopes' positions
836       *  Interpolates the input audio data, this method honors looping.              if (EG1.active()) {
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
837    
838          // FIXME: assuming either mono or stereo                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
839          if (pSample->Channels == 2) { // Stereo Sample                  if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
840              if (pSample->LoopPlayCount) {                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateStereo(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
841                  }                  }
842    
843                    EG1.increment(1);
844                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
845              }              }
846          }              if (EG2.active()) {
847          else { // Mono Sample                  EG2.increment(1);
848              if (pSample->LoopPlayCount) {                  if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateMono(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
849              }              }
850                EG3.increment(1);
851                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
852    
853                Pos = newPos;
854                i = iSubFragmentEnd;
855          }          }
856      }      }
857    
# Line 1047  namespace LinuxSampler { namespace gig { Line 877  namespace LinuxSampler { namespace gig {
877       *  of a voice, a kill process cannot be cancalled and is therefore       *  of a voice, a kill process cannot be cancalled and is therefore
878       *  usually used for voice stealing and key group conflicts.       *  usually used for voice stealing and key group conflicts.
879       *       *
880       *  @param pKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
881       */       */
882      void Voice::Kill(Event* pKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
883          if (pTriggerEvent && pKillEvent->FragmentPos() <= pTriggerEvent->FragmentPos()) return;          #if CONFIG_DEVMODE
884          this->pKillEvent = pKillEvent;          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
885            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
886            #endif // CONFIG_DEVMODE
887    
888            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
889            this->itKillEvent = itKillEvent;
890      }      }
891    
892  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.246  
changed lines
  Added in v.796

  ViewVC Help
Powered by ViewVC