/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 244 by schoenebeck, Fri Sep 17 01:01:11 2004 UTC revision 829 by schoenebeck, Sat Jan 14 14:07:47 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 29  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          Active = false;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46            SynthesisMode = 0; // set all mode bits to 0 first
47            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48            #if CONFIG_ASM && ARCH_X86
49            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50            #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 103  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param pNoteOnEvent        - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
80       *  @returns 0 on success, a value < 0 if something failed       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89            #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92            }
93            #endif // CONFIG_DEVMODE
94    
95            Type            = VoiceType;
96            MIDIKey         = itNoteOnEvent->Param.Note.Key;
97            PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
98            Delay           = itNoteOnEvent->FragmentPos();
99            itTriggerEvent  = itNoteOnEvent;
100            itKillEvent     = Pool<Event>::Iterator();
101            KeyGroup        = iKeyGroup;
102            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104            // calculate volume
105            const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
106    
107            Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109            Volume *= pDimRgn->SampleAttenuation;
110    
111            // the volume of release triggered samples depends on note length
112            if (Type == type_release_trigger) {
113                float noteLength = float(pEngine->FrameTime + Delay -
114                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                if (attenuation <= 0) return -1;
117                Volume *= attenuation;
118          }          }
119    
120          Type            = type_normal;          // select channel mode (mono or stereo)
121          Active          = true;          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
         MIDIKey         = pNoteOnEvent->Key;  
         pRegion         = pInstrument->GetRegion(MIDIKey);  
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
         Delay           = pNoteOnEvent->FragmentPos();  
         pTriggerEvent   = pNoteOnEvent;  
         pKillEvent      = NULL;  
   
         if (!pRegion) {  
             std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;  
             KillImmediately();  
             return -1;  
         }  
   
         KeyGroup = pRegion->KeyGroup;  
   
         // get current dimension values to select the right dimension region  
         //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
         uint DimValues[5] = {0,0,0,0,0};  
         for (int i = pRegion->Dimensions - 1; i >= 0; i--) {  
             switch (pRegion->pDimensionDefinitions[i].dimension) {  
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             pEngine->LaunchVoice(pNoteOnEvent, iNewLayer, ReleaseTriggerVoice);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = pNoteOnEvent->Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pNoteOnEvent->Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
# Line 245  namespace LinuxSampler { namespace gig { Line 126  namespace LinuxSampler { namespace gig {
126                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
127                  break;                  break;
128              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
129                  CrossfadeVolume = CrossfadeAttenuation(pNoteOnEvent->Velocity);                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
130                  break;                  break;
131              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
132                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
133                  break;                  break;
134              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
135              default:              default:
136                  CrossfadeVolume = 1.0f;                  CrossfadeVolume = 1.0f;
137          }          }
138    
139          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140            PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
141    
142          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143            Pos = pDimRgn->SampleStartOffset;
144    
145          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
146          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
147          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
148    
149          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
150              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
151    
152              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
153              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
154    
155              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
156                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
# Line 282  namespace LinuxSampler { namespace gig { Line 161  namespace LinuxSampler { namespace gig {
161          }          }
162          else { // RAM only voice          else { // RAM only voice
163              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
164              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
165              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
166          }          }
167            if (RAMLoop) {
168                loop.uiTotalCycles = pSample->LoopPlayCount;
169                loop.uiCyclesLeft  = pSample->LoopPlayCount;
170                loop.uiStart       = pSample->LoopStart;
171                loop.uiEnd         = pSample->LoopEnd;
172                loop.uiSize        = pSample->LoopSize;
173            }
174    
175          // calculate initial pitch value          // calculate initial pitch value
176          {          {
177              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
178              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
179              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
180              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
181          }          }
182    
183            // the length of the decay and release curves are dependent on the velocity
184          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
185    
186          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
187          {          {
# Line 315  namespace LinuxSampler { namespace gig { Line 195  namespace LinuxSampler { namespace gig {
195                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
196                      break;                      break;
197                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
198                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
199                      break;                      break;
200                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
201                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
202                      break;                      break;
203              }              }
204              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
205    
206              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
207              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
208              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
209              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
210                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
211              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
212                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
213                            pDimRgn->EG1Hold,  
214                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
215                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
216                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
217                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
218                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
219                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
220                            Delay);                          pDimRgn->EG1Sustain,
221                            pDimRgn->EG1Release * eg1release * velrelease,
222                            velocityAttenuation,
223                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
224          }          }
225    
226    
     #if ENABLE_FILTER  
227          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
228          {          {
229              // get current value of EG2 controller              // get current value of EG2 controller
# Line 354  namespace LinuxSampler { namespace gig { Line 236  namespace LinuxSampler { namespace gig {
236                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
237                      break;                      break;
238                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
239                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
240                      break;                      break;
241                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
242                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
243                      break;                      break;
244              }              }
245              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
246    
247              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
248              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
249              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
250              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
251    
252              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
253                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
254                            false,                          false,
255                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
256                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
257                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
258                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
259                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
260                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
261                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
262          }          }
     #endif // ENABLE_FILTER  
263    
264    
265          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
266          {          {
267            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
268            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
269                float eg3depth = (bPortamento)
270                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
271                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
272                float eg3time = (bPortamento)
273                                    ? pEngineChannel->PortamentoTime
274                                    : pDimRgn->EG3Attack;
275                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
276                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
277          }          }
278    
279    
# Line 395  namespace LinuxSampler { namespace gig { Line 284  namespace LinuxSampler { namespace gig {
284                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
285                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
286                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
287                        bLFO1Enabled         = (lfo1_internal_depth > 0);
288                      break;                      break;
289                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
290                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
291                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
292                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
293                      break;                      break;
294                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
295                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
296                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
297                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
298                      break;                      break;
299                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
300                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
301                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
302                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
303                      break;                      break;
304                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
305                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
306                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
307                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
308                      break;                      break;
309                  default:                  default:
310                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
311                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
312                        bLFO1Enabled         = false;
313              }              }
314              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
315                            lfo1_internal_depth,                                               start_level_max,
316                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
317                            pEngine->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
318                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
319                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
320          }          }
321    
322      #if ENABLE_FILTER  
323          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
324          {          {
325              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 433  namespace LinuxSampler { namespace gig { Line 327  namespace LinuxSampler { namespace gig {
327                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
328                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
329                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
330                        bLFO2Enabled         = (lfo2_internal_depth > 0);
331                      break;                      break;
332                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
333                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
334                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
335                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
336                      break;                      break;
337                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
338                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
339                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
340                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
341                      break;                      break;
342                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
343                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
344                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
345                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
346                      break;                      break;
347                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
348                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
349                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
350                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
351                      break;                      break;
352                  default:                  default:
353                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
354                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
355                        bLFO2Enabled         = false;
356              }              }
357              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
358                            lfo2_internal_depth,                                               start_level_max,
359                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
360                            pEngine->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
361                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
362                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
363          }          }
364      #endif // ENABLE_FILTER  
365    
366          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
367          {          {
# Line 471  namespace LinuxSampler { namespace gig { Line 370  namespace LinuxSampler { namespace gig {
370                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
371                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
372                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
373                        bLFO3Enabled         = (lfo3_internal_depth > 0);
374                      break;                      break;
375                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
376                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
377                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
378                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
379                      break;                      break;
380                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
381                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
382                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
383                        bLFO3Enabled         = false; // see TODO comment in line above
384                      break;                      break;
385                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
386                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
387                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
388                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
389                      break;                      break;
390                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
391                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
392                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
393                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
394                      break;                      break;
395                  default:                  default:
396                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
397                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
398                        bLFO3Enabled         = false;
399              }              }
400              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
401                            lfo3_internal_depth,                                               start_level_mid,
402                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
403                            pEngine->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
404                            false,                                               false,
405                            pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
406          }          }
407    
408      #if ENABLE_FILTER  
409          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
410          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
411          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
412          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
413          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
414          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
415              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
416              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
417                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
418              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
419              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
420                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 545  namespace LinuxSampler { namespace gig { Line 450  namespace LinuxSampler { namespace gig {
450                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
451                      break;                      break;
452              }              }
453              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
454    
455              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
456              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
457              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
458              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
459                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 567  namespace LinuxSampler { namespace gig { Line 472  namespace LinuxSampler { namespace gig {
472                  default:                  default:
473                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
474              }              }
475              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
476    
477              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
478              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
479              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
480              #else // override filter type              #else // override filter type
481              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
482              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
483              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
484    
485              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
486              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
487    
488              // calculate cutoff frequency              // calculate cutoff frequency
489              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
490              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
491                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
492              }              }
493              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
494    
495              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
496              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
497                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
498                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
499                    // VCFVelocityScale in this case means Minimum cutoff
500                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
501                }
502                else {
503                    cvalue = pDimRgn->VCFCutoff;
504                }
505                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
506                if (cutoff > 1.0) cutoff = 1.0;
507                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
508                if (cutoff < 1.0) cutoff = 1.0;
509    
510              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
511              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
512    
513              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
514                VCFResonanceCtrl.fvalue = resonance;
515          }          }
516          else {          else {
517              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
518              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
519          }          }
     #endif // ENABLE_FILTER  
520    
521          return 0; // success          return 0; // success
522      }      }
# Line 622  namespace LinuxSampler { namespace gig { Line 534  namespace LinuxSampler { namespace gig {
534       */       */
535      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
536    
537          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
538          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, pKillEvent);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
539    
540          switch (this->PlaybackState) {          switch (this->PlaybackState) {
541    
542                case playback_state_init:
543                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
544                    // no break - continue with playback_state_ram
545    
546              case playback_state_ram: {              case playback_state_ram: {
547                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
548                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
549                        // render current fragment
550                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
551    
552                      if (DiskVoice) {                      if (DiskVoice) {
553                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
554                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
555                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
556                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
557                          }                          }
558                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
559                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
560                      }                      }
561                  }                  }
# Line 680  namespace LinuxSampler { namespace gig { Line 570  namespace LinuxSampler { namespace gig {
570                              KillImmediately();                              KillImmediately();
571                              return;                              return;
572                          }                          }
573                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
574                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
575                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
576                      }                      }
577    
578                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
579    
580                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
581                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
582                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
583                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
584                                // remember how many sample words there are before any silence has been added
585                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
586                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
587                            }
588                      }                      }
589    
590                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
591                      Interpolate(Samples, ptr, Delay);  
592                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
593                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
594    
595                        const int iPos = (int) finalSynthesisParameters.dPos;
596                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
597                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
598                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
599    
600                        // change state of voice to 'end' if we really reached the end of the sample data
601                        if (RealSampleWordsLeftToRead >= 0) {
602                            RealSampleWordsLeftToRead -= readSampleWords;
603                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
604                        }
605                  }                  }
606                  break;                  break;
607    
608              case playback_state_end:              case playback_state_end:
609                  KillImmediately(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
610                  break;                  break;
611          }          }
612    
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
     #if ENABLE_FILTER  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
613          // Reset delay          // Reset delay
614          Delay = 0;          Delay = 0;
615    
616          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
617    
618          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
619          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
620      }      }
621    
622      /**      /**
# Line 724  namespace LinuxSampler { namespace gig { Line 624  namespace LinuxSampler { namespace gig {
624       *  suspended / not running.       *  suspended / not running.
625       */       */
626      void Voice::Reset() {      void Voice::Reset() {
627          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
628          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
629          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
630          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
631          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
632          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
633          Active = false;          PlaybackState = playback_state_end;
634            itTriggerEvent = Pool<Event>::Iterator();
635            itKillEvent    = Pool<Event>::Iterator();
636      }      }
637    
638      /**      /**
639       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
640       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
641       *       *
642       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
643         * @param End     - youngest time stamp where processing should be stopped
644       */       */
645      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
646            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
647                if (itEvent->Type == Event::type_release) {
648                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
649                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
650                } else if (itEvent->Type == Event::type_cancel_release) {
651                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
652                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
653                }
654            }
655        }
656    
657          // dispatch control change events      /**
658          Event* pCCEvent = pEngine->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
659          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
660              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();       *
661          }       * @param itEvent - iterator pointing to the next event to be processed
662          while (pCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
663              if (pCCEvent->Controller) { // if valid MIDI controller       */
664                  #if ENABLE_FILTER      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
665                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
666                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);              if (itEvent->Type == Event::type_control_change &&
667                  }                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
668                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
669                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      processCutoffEvent(itEvent);
670                    }
671                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
672                        processResonanceEvent(itEvent);
673                  }                  }
674                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
675                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(pCCEvent);  
676                  }                  }
677                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
678                  if (pCCEvent->Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(pCCEvent);  
679                  }                  }
680                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
681                  if (pCCEvent->Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(pCCEvent);  
682                  }                  }
683                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
684                      pCCEvent->Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
685                      pEngine->pSynthesisEvents[Event::destination_vca]->alloc_assign(*pCCEvent);                      processCrossFadeEvent(itEvent);
686                  }                  }
687                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
688                    processPitchEvent(itEvent);
689              }              }
   
             pCCEvent = pEngine->pCCEvents->next();  
690          }          }
691        }
692    
693        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
694            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
695            finalSynthesisParameters.fFinalPitch *= pitch;
696            PitchBend = pitch;
697        }
698    
699        void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
700            CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
701            #if CONFIG_PROCESS_MUTED_CHANNELS
702            const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
703            #else
704            const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
705            #endif
706            fFinalVolume = effectiveVolume;
707        }
708    
709        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
710            int ccvalue = itEvent->Param.CC.Value;
711            if (VCFCutoffCtrl.value == ccvalue) return;
712            VCFCutoffCtrl.value == ccvalue;
713            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
714            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
715            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
716            if (cutoff > 1.0) cutoff = 1.0;
717            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
718            if (cutoff < 1.0) cutoff = 1.0;
719    
720            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
721            fFinalCutoff = cutoff;
722        }
723    
724        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
725            // convert absolute controller value to differential
726            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
727            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
728            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
729            fFinalResonance += resonancedelta;
730            // needed for initialization of parameter
731            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
732        }
733    
734          // process pitch events      /**
735          {       *  Synthesizes the current audio fragment for this voice.
736              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];       *
737              Event* pVCOEvent = pVCOEventList->first();       *  @param Samples - number of sample points to be rendered in this audio
738              if (Delay) { // skip events that happened before this voice was triggered       *                   fragment cycle
739                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();       *  @param pSrc    - pointer to input sample data
740              }       *  @param Skip    - number of sample points to skip in output buffer
741              // apply old pitchbend value until first pitch event occurs       */
742              if (this->PitchBend != 1.0) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
743                  uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
744                  for (uint i = Delay; i < end; i++) {          finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
745                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;          finalSynthesisParameters.pSrc      = pSrc;
                 }  
             }  
             float pitch;  
             while (pVCOEvent) {  
                 Event* pNextVCOEvent = pVCOEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
746    
747                  pVCOEvent = pNextVCOEvent;          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
748              }          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
749              if (pVCOEventList->last()) this->PitchBend = pitch;  
750            if (Skip) { // skip events that happened before this voice was triggered
751                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
752                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
753          }          }
754    
755          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          uint killPos;
756          {          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
             RTEList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];  
             Event* pVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCAEvent && pVCAEvent->FragmentPos() <= Delay) pVCAEvent = pVCAEventList->next();  
             }  
             float crossfadevolume;  
             while (pVCAEvent) {  
                 Event* pNextVCAEvent = pVCAEventList->next();  
757    
758                  // calculate the influence length of this event (in sample points)          uint i = Skip;
759                  uint end = (pNextVCAEvent) ? pNextVCAEvent->FragmentPos() : Samples;          while (i < Samples) {
760                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
761    
762                  crossfadevolume = CrossfadeAttenuation(pVCAEvent->Value);              // initialize all final synthesis parameters
763                finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
764                #if CONFIG_PROCESS_MUTED_CHANNELS
765                fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
766                #else
767                fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
768                #endif
769                fFinalCutoff    = VCFCutoffCtrl.fvalue;
770                fFinalResonance = VCFResonanceCtrl.fvalue;
771    
772                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;              // process MIDI control change and pitchbend events for this subfragment
773                processCCEvents(itCCEvent, iSubFragmentEnd);
774    
775                  // apply volume value to the volume parameter sequence              // process transition events (note on, note off & sustain pedal)
776                  for (uint i = pVCAEvent->FragmentPos(); i < end; i++) {              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
777    
778                  pVCAEvent = pNextVCAEvent;              // if the voice was killed in this subfragment switch EG1 to fade out stage
779                if (itKillEvent && killPos <= iSubFragmentEnd) {
780                    EG1.enterFadeOutStage();
781                    itKillEvent = Pool<Event>::Iterator();
782              }              }
             if (pVCAEventList->last()) this->CrossfadeVolume = crossfadevolume;  
         }  
783    
784      #if ENABLE_FILTER              // process envelope generators
785          // process filter cutoff events              switch (EG1.getSegmentType()) {
786          {                  case EGADSR::segment_lin:
787              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];                      fFinalVolume *= EG1.processLin();
788              Event* pCutoffEvent = pCutoffEventList->first();                      break;
789              if (Delay) { // skip events that happened before this voice was triggered                  case EGADSR::segment_exp:
790                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();                      fFinalVolume *= EG1.processExp();
791                        break;
792                    case EGADSR::segment_end:
793                        fFinalVolume *= EG1.getLevel();
794                        break; // noop
795              }              }
796              float cutoff;              switch (EG2.getSegmentType()) {
797              while (pCutoffEvent) {                  case EGADSR::segment_lin:
798                  Event* pNextCutoffEvent = pCutoffEventList->next();                      fFinalCutoff *= EG2.processLin();
799                        break;
800                  // calculate the influence length of this event (in sample points)                  case EGADSR::segment_exp:
801                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;                      fFinalCutoff *= EG2.processExp();
802                        break;
803                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;                  case EGADSR::segment_end:
804                        fFinalCutoff *= EG2.getLevel();
805                  // apply cutoff frequency to the cutoff parameter sequence                      break; // noop
                 for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 pCutoffEvent = pNextCutoffEvent;  
806              }              }
807              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
         }  
808    
809          // process filter resonance events              // process low frequency oscillators
810          {              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
811              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
812              Event* pResonanceEvent = pResonanceEventList->first();              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
813              if (Delay) { // skip events that happened before this voice was triggered  
814                  while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();              // if filter enabled then update filter coefficients
815                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
816                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
817                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
818              }              }
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
819    
820                  // calculate the influence length of this event (in sample points)              // do we need resampling?
821                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
822                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
823                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
824                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
825                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
826    
827                  // convert absolute controller value to differential              // prepare final synthesis parameters structure
828                  int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;              finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
829                  VCFResonanceCtrl.value = pResonanceEvent->Value;              finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
830                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
831    
832                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0              // render audio for one subfragment
833                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
834    
835                  // apply cutoff frequency to the cutoff parameter sequence              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
                 for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
836    
837                  pResonanceEvent = pNextResonanceEvent;              // increment envelopes' positions
838              }              if (EG1.active()) {
             if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     #endif // ENABLE_FILTER  
     }  
839    
840      #if ENABLE_FILTER                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
841      /**                  if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
842       * Calculate all necessary, final biquad filter parameters.                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
843       *                  }
      * @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::CalculateBiquadParameters(uint Samples) {  
         if (!FilterLeft.Enabled) return;  
844    
845          biquad_param_t bqbase;                  EG1.increment(1);
846          biquad_param_t bqmain;                  if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
847          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];              }
848          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];              if (EG2.active()) {
849          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                  EG2.increment(1);
850          pEngine->pBasicFilterParameters[0] = bqbase;                  if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {  
                 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                 prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                 FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
851              }              }
852                EG3.increment(1);
853                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
854    
855              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
856              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
857          }          }
858      }      }
     #endif // ENABLE_FILTER  
859    
860      /**      /** @brief Update current portamento position.
      *  Interpolates the input audio data (no loop).  
861       *       *
862       *  @param Samples - number of sample points to be rendered in this audio       * Will be called when portamento mode is enabled to get the final
863       *                   fragment cycle       * portamento position of this active voice from where the next voice(s)
864       *  @param pSrc    - pointer to input sample data       * might continue to slide on.
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
   
         // FIXME: assuming either mono or stereo  
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Stereo(pSrc, i,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
         }  
         else { // Mono Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
         }  
     }  
   
     /**  
      *  Interpolates the input audio data, this method honors looping.  
865       *       *
866       *  @param Samples - number of sample points to be rendered in this audio       * @param itNoteOffEvent - event which causes this voice to die soon
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
867       */       */
868      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
869          int i = Skip;          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
870            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
         // FIXME: assuming either mono or stereo  
         if (pSample->Channels == 2) { // Stereo Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Stereo(pSrc, i,  
                                               pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                               pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                               pEngine->pBasicFilterParameters[i],  
                                               pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
             }  
         }  
871      }      }
872    
873      /**      /**
# Line 1084  namespace LinuxSampler { namespace gig { Line 892  namespace LinuxSampler { namespace gig {
892       *  of a voice, a kill process cannot be cancalled and is therefore       *  of a voice, a kill process cannot be cancalled and is therefore
893       *  usually used for voice stealing and key group conflicts.       *  usually used for voice stealing and key group conflicts.
894       *       *
895       *  @param pKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
896       */       */
897      void Voice::Kill(Event* pKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
898          if (pTriggerEvent && pKillEvent->FragmentPos() <= pTriggerEvent->FragmentPos()) return;          #if CONFIG_DEVMODE
899          this->pKillEvent = pKillEvent;          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
900            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
901            #endif // CONFIG_DEVMODE
902    
903            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
904            this->itKillEvent = itKillEvent;
905      }      }
906    
907  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.244  
changed lines
  Added in v.829

  ViewVC Help
Powered by ViewVC