/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 56 by schoenebeck, Tue Apr 27 09:21:58 2004 UTC revision 829 by schoenebeck, Sat Jan 14 14:07:47 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     // FIXME: no support for layers (nor crossfades) yet  
   
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          Active = false;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
45          pVCAManipulator  = NULL;          KeyGroup = 0;
46          pVCFCManipulator = NULL;          SynthesisMode = 0; // set all mode bits to 0 first
47          pVCOManipulator  = NULL;          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48          pLFO1  = NULL;          #if CONFIG_ASM && ARCH_X86
49          pLFO2  = NULL;          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50          pLFO3  = NULL;          #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
     }  
   
     void Voice::SetOutput(AudioOutputDevice* pAudioOutputDevice) {  
         this->pOutputLeft        = pAudioOutputDevice->Channel(0)->Buffer();  
         this->pOutputRight       = pAudioOutputDevice->Channel(1)->Buffer();  
         this->MaxSamplesPerCycle = pAudioOutputDevice->MaxSamplesPerCycle();  
         this->SampleRate         = pAudioOutputDevice->SampleRate();  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(1,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
70    
71      /**      /**
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @returns            0 on success, a value < 0 if something failed       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79         *  @param VoiceType      - type of this voice
80         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89          }          #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91          Active          = true;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          MIDIKey         = pNoteOnEvent->Key;          }
93          pRegion         = pInstrument->GetRegion(MIDIKey);          #endif // CONFIG_DEVMODE
94          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
95          Pos             = 0;          Type            = VoiceType;
96          Delay           = pNoteOnEvent->FragmentPos();          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pTriggerEvent   = pNoteOnEvent;          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
98            Delay           = itNoteOnEvent->FragmentPos();
99          if (!pRegion) {          itTriggerEvent  = itNoteOnEvent;
100              std::cerr << "Audio Thread: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          itKillEvent     = Pool<Event>::Iterator();
101              Kill();          KeyGroup        = iKeyGroup;
102              return -1;          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103          }  
104            // calculate volume
105          //TODO: current MIDI controller values are not taken into account yet          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
106          ::gig::DimensionRegion* pDimRgn = NULL;  
107          for (int i = pRegion->Dimensions - 1; i >= 0; i--) { // Check if instrument has a velocity split          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108              if (pRegion->pDimensionDefinitions[i].dimension == ::gig::dimension_velocity) {  
109                  uint DimValues[5] = {0,0,0,0,0};          Volume *= pDimRgn->SampleAttenuation;
110                      DimValues[i] = pNoteOnEvent->Velocity;  
111                  pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);          // the volume of release triggered samples depends on note length
112            if (Type == type_release_trigger) {
113                float noteLength = float(pEngine->FrameTime + Delay -
114                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                if (attenuation <= 0) return -1;
117                Volume *= attenuation;
118            }
119    
120            // select channel mode (mono or stereo)
121            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123            // get starting crossfade volume level
124            switch (pDimRgn->AttenuationController.type) {
125                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
126                    CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
127                  break;                  break;
128              }              case ::gig::attenuation_ctrl_t::type_velocity:
129          }                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
130          if (!pDimRgn) { // if there was no velocity split                  break;
131              pDimRgn = pRegion->GetDimensionRegionByValue(0,0,0,0,0);              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
132                    CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
133                    break;
134                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
135                default:
136                    CrossfadeVolume = 1.0f;
137          }          }
138    
139          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140            PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
141    
142            finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143            Pos = pDimRgn->SampleStartOffset;
144    
145          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
146          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
147          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
148    
149          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
150              MaxRAMPos = cachedsamples - (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
151    
152              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
153              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
154    
155              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
156                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
157                  Kill();                  KillImmediately();
158                  return -1;                  return -1;
159              }              }
160              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
161          }          }
162          else { // RAM only voice          else { // RAM only voice
163              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
164              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
165              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
166          }          }
167            if (RAMLoop) {
168                loop.uiTotalCycles = pSample->LoopPlayCount;
169                loop.uiCyclesLeft  = pSample->LoopPlayCount;
170                loop.uiStart       = pSample->LoopStart;
171                loop.uiEnd         = pSample->LoopEnd;
172                loop.uiSize        = pSample->LoopSize;
173            }
174    
175          // calculate initial pitch value          // calculate initial pitch value
176          {          {
177              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
178              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
179              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents);              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
180              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
181          }          }
182    
183            // the length of the decay and release curves are dependent on the velocity
184          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
185    
186          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
187          {          {
# Line 199  namespace LinuxSampler { namespace gig { Line 195  namespace LinuxSampler { namespace gig {
195                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
196                      break;                      break;
197                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
198                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
199                      break;                      break;
200                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
201                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
202                      break;                      break;
203              }              }
204              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
205    
206              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
207              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
208              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
209              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
210                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
211              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
212                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
213                            pDimRgn->EG1Hold,  
214                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
215                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
216                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
217                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
218                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
219                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
220                            Delay);                          pDimRgn->EG1Sustain,
221                            pDimRgn->EG1Release * eg1release * velrelease,
222                            velocityAttenuation,
223                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
224          }          }
225    
226    
     #if ENABLE_FILTER  
227          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
228          {          {
229              // get current value of EG2 controller              // get current value of EG2 controller
# Line 238  namespace LinuxSampler { namespace gig { Line 236  namespace LinuxSampler { namespace gig {
236                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
237                      break;                      break;
238                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
239                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
240                      break;                      break;
241                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
242                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
243                      break;                      break;
244              }              }
245              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
246    
247              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
248              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
249              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
250              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
251    
252              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
253                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
254                            false,                          false,
255                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
256                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
257                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
258                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
259                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
260                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
261                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
262          }          }
     #endif // ENABLE_FILTER  
263    
264    
265          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
266          {          {
267            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
268            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
269                float eg3depth = (bPortamento)
270                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
271                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
272                float eg3time = (bPortamento)
273                                    ? pEngineChannel->PortamentoTime
274                                    : pDimRgn->EG3Attack;
275                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
276                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
277          }          }
278    
279    
# Line 279  namespace LinuxSampler { namespace gig { Line 284  namespace LinuxSampler { namespace gig {
284                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
285                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
286                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
287                        bLFO1Enabled         = (lfo1_internal_depth > 0);
288                      break;                      break;
289                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
290                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
291                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
292                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
293                      break;                      break;
294                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
295                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
296                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
297                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
298                      break;                      break;
299                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
300                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
301                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
302                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
303                      break;                      break;
304                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
305                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
306                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
307                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
308                      break;                      break;
309                  default:                  default:
310                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
311                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
312                        bLFO1Enabled         = false;
313              }              }
314              pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
315                            lfo1_internal_depth,                                               start_level_max,
316                            pDimRgn->LFO1ControlDepth,                                               lfo1_internal_depth,
317                            pEngine->ControllerTable[pLFO1->ExtController],                                               pDimRgn->LFO1ControlDepth,
318                            pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
319                            this->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
320          }          }
321    
322      #if ENABLE_FILTER  
323          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
324          {          {
325              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 317  namespace LinuxSampler { namespace gig { Line 327  namespace LinuxSampler { namespace gig {
327                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
328                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
329                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
330                        bLFO2Enabled         = (lfo2_internal_depth > 0);
331                      break;                      break;
332                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
333                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
334                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
335                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
336                      break;                      break;
337                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
338                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
339                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
340                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
341                      break;                      break;
342                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
343                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
344                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
345                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
346                      break;                      break;
347                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
348                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
349                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
350                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
351                      break;                      break;
352                  default:                  default:
353                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
354                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
355                        bLFO2Enabled         = false;
356              }              }
357              pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
358                            lfo2_internal_depth,                                               start_level_max,
359                            pDimRgn->LFO2ControlDepth,                                               lfo2_internal_depth,
360                            pEngine->ControllerTable[pLFO2->ExtController],                                               pDimRgn->LFO2ControlDepth,
361                            pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
362                            Delay);                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
363          }          }
364      #endif // ENABLE_FILTER  
365    
366          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
367          {          {
# Line 354  namespace LinuxSampler { namespace gig { Line 370  namespace LinuxSampler { namespace gig {
370                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
371                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
372                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
373                        bLFO3Enabled         = (lfo3_internal_depth > 0);
374                      break;                      break;
375                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
376                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
377                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
378                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
379                      break;                      break;
380                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
381                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
382                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
383                        bLFO3Enabled         = false; // see TODO comment in line above
384                      break;                      break;
385                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
386                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
387                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
388                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
389                      break;                      break;
390                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
391                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
392                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
393                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
394                      break;                      break;
395                  default:                  default:
396                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
397                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
398                        bLFO3Enabled         = false;
399              }              }
400              pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
401                            lfo3_internal_depth,                                               start_level_mid,
402                            pDimRgn->LFO3ControlDepth,                                               lfo3_internal_depth,
403                            pEngine->ControllerTable[pLFO3->ExtController],                                               pDimRgn->LFO3ControlDepth,
404                            false,                                               false,
405                            this->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           Delay);  
406          }          }
407    
408      #if ENABLE_FILTER  
409          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
410          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
411          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
412          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
413          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
414          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
415              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
416              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
417                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
418              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
419              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
420                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 428  namespace LinuxSampler { namespace gig { Line 450  namespace LinuxSampler { namespace gig {
450                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
451                      break;                      break;
452              }              }
453              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
454    
455              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
456              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
457              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
458              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
459                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 450  namespace LinuxSampler { namespace gig { Line 472  namespace LinuxSampler { namespace gig {
472                  default:                  default:
473                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
474              }              }
475              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
476    
477              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
478              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
479              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
480              #else // override filter type              #else // override filter type
481              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
482              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
483              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
484    
485              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
486              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
487    
488              // calculate cutoff frequency              // calculate cutoff frequency
489              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
490              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
491                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
492              }              }
493              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
494    
495              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
496              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
497                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
498                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
499                    // VCFVelocityScale in this case means Minimum cutoff
500                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
501                }
502                else {
503                    cvalue = pDimRgn->VCFCutoff;
504                }
505                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
506                if (cutoff > 1.0) cutoff = 1.0;
507                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
508                if (cutoff < 1.0) cutoff = 1.0;
509    
510              FilterLeft.SetParameters(cutoff,  resonance, SampleRate);              // calculate resonance
511              FilterRight.SetParameters(cutoff, resonance, SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
512    
513              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
514                VCFResonanceCtrl.fvalue = resonance;
515          }          }
516          else {          else {
517              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
518              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
519          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
520    
521          return 0; // success          return 0; // success
522      }      }
# Line 509  namespace LinuxSampler { namespace gig { Line 534  namespace LinuxSampler { namespace gig {
534       */       */
535      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
536    
537          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
538          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
539    
540          switch (this->PlaybackState) {          switch (this->PlaybackState) {
541    
542                case playback_state_init:
543                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
544                    // no break - continue with playback_state_ram
545    
546              case playback_state_ram: {              case playback_state_ram: {
547                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
548                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
549                        // render current fragment
550                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
551    
552                      if (DiskVoice) {                      if (DiskVoice) {
553                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
554                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
555                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
556                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
557                          }                          }
558                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
559                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
560                      }                      }
561                  }                  }
# Line 559  namespace LinuxSampler { namespace gig { Line 567  namespace LinuxSampler { namespace gig {
567                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
568                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
569                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
570                              Kill();                              KillImmediately();
571                              return;                              return;
572                          }                          }
573                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
574                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
575                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
576                      }                      }
577    
578                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
579    
580                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
581                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
582                          DiskStreamRef.pStream->WriteSilence((MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
583                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
584                                // remember how many sample words there are before any silence has been added
585                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
586                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
587                            }
588                      }                      }
589    
590                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
591                      Interpolate(Samples, ptr, Delay);  
592                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
593                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
594    
595                        const int iPos = (int) finalSynthesisParameters.dPos;
596                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
597                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
598                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
599    
600                        // change state of voice to 'end' if we really reached the end of the sample data
601                        if (RealSampleWordsLeftToRead >= 0) {
602                            RealSampleWordsLeftToRead -= readSampleWords;
603                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
604                        }
605                  }                  }
606                  break;                  break;
607    
608              case playback_state_end:              case playback_state_end:
609                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
610                  break;                  break;
611          }          }
612    
   
     #if ENABLE_FILTER  
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
613          // Reset delay          // Reset delay
614          Delay = 0;          Delay = 0;
615    
616          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
617    
618          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
619          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
620      }      }
621    
622      /**      /**
# Line 605  namespace LinuxSampler { namespace gig { Line 624  namespace LinuxSampler { namespace gig {
624       *  suspended / not running.       *  suspended / not running.
625       */       */
626      void Voice::Reset() {      void Voice::Reset() {
627          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
628          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
629          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
630          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
631          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
632          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
633          Active = false;          PlaybackState = playback_state_end;
634            itTriggerEvent = Pool<Event>::Iterator();
635            itKillEvent    = Pool<Event>::Iterator();
636      }      }
637    
638      /**      /**
639       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
640       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
641       *       *
642       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
643         * @param End     - youngest time stamp where processing should be stopped
644       */       */
645      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
646            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
647          // dispatch control change events              if (itEvent->Type == Event::type_release) {
648          Event* pCCEvent = pEngine->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
649          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
650              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();              } else if (itEvent->Type == Event::type_cancel_release) {
651          }                  EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
652          while (pCCEvent) {                  EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
             if (pCCEvent->Controller) { // if valid MIDI controller  
                 #if ENABLE_FILTER  
                 if (pCCEvent->Controller == VCFCutoffCtrl.controller) {  
                     pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);  
                 }  
                 if (pCCEvent->Controller == VCFResonanceCtrl.controller) {  
                     pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(pCCEvent);  
                 }  
                 #if ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(pCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(pCCEvent);  
                 }  
             }  
   
             pCCEvent = pEngine->pCCEvents->next();  
         }  
   
   
         // process pitch events  
         {  
             RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];  
             Event* pVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (pVCOEvent) {  
                 Event* pNextVCOEvent = pVCOEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
   
                 pVCOEvent = pNextVCOEvent;  
653              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
654          }          }
   
   
     #if ENABLE_FILTER  
         // process filter cutoff events  
         {  
             RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             Event* pCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();  
             }  
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 pCutoffEvent = pNextCutoffEvent;  
             }  
             if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
   
         // process filter resonance events  
         {  
             RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];  
             Event* pResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();  
             }  
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = pResonanceEvent->Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
   
                 pResonanceEvent = pNextResonanceEvent;  
             }  
             if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     #endif // ENABLE_FILTER  
655      }      }
656    
657      /**      /**
658       *  Interpolates the input audio data (no loop).       * Process given list of MIDI control change and pitch bend events for
659         * the given time.
660       *       *
661       *  @param Samples - number of sample points to be rendered in this audio       * @param itEvent - iterator pointing to the next event to be processed
662       *                   fragment cycle       * @param End     - youngest time stamp where processing should be stopped
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
663       */       */
664      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
665          int i = Skip;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
666                if (itEvent->Type == Event::type_control_change &&
667          // FIXME: assuming either mono or stereo                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
668          if (this->pSample->Channels == 2) { // Stereo Sample                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
669              while (i < Samples) {                      processCutoffEvent(itEvent);
670                  InterpolateOneStep_Stereo(pSrc, i,                  }
671                                            pEngine->pSynthesisParameters[Event::destination_vca][i],                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
672                                            pEngine->pSynthesisParameters[Event::destination_vco][i],                      processResonanceEvent(itEvent);
673                                            pEngine->pSynthesisParameters[Event::destination_vcfc][i],                  }
674                                            pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
675              }                      pLFO1->update(itEvent->Param.CC.Value);
676          }                  }
677          else { // Mono Sample                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
678              while (i < Samples) {                      pLFO2->update(itEvent->Param.CC.Value);
679                  InterpolateOneStep_Mono(pSrc, i,                  }
680                                          pEngine->pSynthesisParameters[Event::destination_vca][i],                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
681                                          pEngine->pSynthesisParameters[Event::destination_vco][i],                      pLFO3->update(itEvent->Param.CC.Value);
682                                          pEngine->pSynthesisParameters[Event::destination_vcfc][i],                  }
683                                          pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
684              }                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
685          }                      processCrossFadeEvent(itEvent);
686                    }
687                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
688                    processPitchEvent(itEvent);
689                }
690            }
691        }
692    
693        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
694            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
695            finalSynthesisParameters.fFinalPitch *= pitch;
696            PitchBend = pitch;
697        }
698    
699        void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
700            CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
701            #if CONFIG_PROCESS_MUTED_CHANNELS
702            const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
703            #else
704            const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
705            #endif
706            fFinalVolume = effectiveVolume;
707        }
708    
709        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
710            int ccvalue = itEvent->Param.CC.Value;
711            if (VCFCutoffCtrl.value == ccvalue) return;
712            VCFCutoffCtrl.value == ccvalue;
713            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
714            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
715            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
716            if (cutoff > 1.0) cutoff = 1.0;
717            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
718            if (cutoff < 1.0) cutoff = 1.0;
719    
720            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
721            fFinalCutoff = cutoff;
722        }
723    
724        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
725            // convert absolute controller value to differential
726            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
727            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
728            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
729            fFinalResonance += resonancedelta;
730            // needed for initialization of parameter
731            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
732      }      }
733    
734      /**      /**
735       *  Interpolates the input audio data, this method honors looping.       *  Synthesizes the current audio fragment for this voice.
736       *       *
737       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
738       *                   fragment cycle       *                   fragment cycle
739       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
740       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
741       */       */
742      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
743          int i = Skip;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
744            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
745            finalSynthesisParameters.pSrc      = pSrc;
746    
747          // FIXME: assuming either mono or stereo          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
748          if (pSample->Channels == 2) { // Stereo Sample          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
749              if (pSample->LoopPlayCount) {  
750                  // render loop (loop count limited)          if (Skip) { // skip events that happened before this voice was triggered
751                  while (i < Samples && LoopCyclesLeft) {              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
752                      InterpolateOneStep_Stereo(pSrc, i,              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
753                                                pEngine->pSynthesisParameters[Event::destination_vca][i],          }
754                                                pEngine->pSynthesisParameters[Event::destination_vco][i],  
755                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i],          uint killPos;
756                                                pEngine->pSynthesisParameters[Event::destination_vcfr][i]);          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
757                      if (Pos > pSample->LoopEnd) {  
758                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;          uint i = Skip;
759                          LoopCyclesLeft--;          while (i < Samples) {
760                      }              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
761                  }  
762                  // render on without loop              // initialize all final synthesis parameters
763                  while (i < Samples) {              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
764                      InterpolateOneStep_Stereo(pSrc, i,              #if CONFIG_PROCESS_MUTED_CHANNELS
765                                                pEngine->pSynthesisParameters[Event::destination_vca][i],              fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
766                                                pEngine->pSynthesisParameters[Event::destination_vco][i],              #else
767                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i],              fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
768                                                pEngine->pSynthesisParameters[Event::destination_vcfr][i]);              #endif
769                  }              fFinalCutoff    = VCFCutoffCtrl.fvalue;
770                fFinalResonance = VCFResonanceCtrl.fvalue;
771    
772                // process MIDI control change and pitchbend events for this subfragment
773                processCCEvents(itCCEvent, iSubFragmentEnd);
774    
775                // process transition events (note on, note off & sustain pedal)
776                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
777    
778                // if the voice was killed in this subfragment switch EG1 to fade out stage
779                if (itKillEvent && killPos <= iSubFragmentEnd) {
780                    EG1.enterFadeOutStage();
781                    itKillEvent = Pool<Event>::Iterator();
782              }              }
783              else { // render loop (endless loop)  
784                  while (i < Samples) {              // process envelope generators
785                      InterpolateOneStep_Stereo(pSrc, i,              switch (EG1.getSegmentType()) {
786                                                pEngine->pSynthesisParameters[Event::destination_vca][i],                  case EGADSR::segment_lin:
787                                                pEngine->pSynthesisParameters[Event::destination_vco][i],                      fFinalVolume *= EG1.processLin();
788                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i],                      break;
789                                                pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                  case EGADSR::segment_exp:
790                      if (Pos > pSample->LoopEnd) {                      fFinalVolume *= EG1.processExp();
791                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                      break;
792                      }                  case EGADSR::segment_end:
793                  }                      fFinalVolume *= EG1.getLevel();
794                        break; // noop
795              }              }
796          }              switch (EG2.getSegmentType()) {
797          else { // Mono Sample                  case EGADSR::segment_lin:
798              if (pSample->LoopPlayCount) {                      fFinalCutoff *= EG2.processLin();
799                  // render loop (loop count limited)                      break;
800                  while (i < Samples && LoopCyclesLeft) {                  case EGADSR::segment_exp:
801                      InterpolateOneStep_Mono(pSrc, i,                      fFinalCutoff *= EG2.processExp();
802                                              pEngine->pSynthesisParameters[Event::destination_vca][i],                      break;
803                                              pEngine->pSynthesisParameters[Event::destination_vco][i],                  case EGADSR::segment_end:
804                                              pEngine->pSynthesisParameters[Event::destination_vcfc][i],                      fFinalCutoff *= EG2.getLevel();
805                                              pEngine->pSynthesisParameters[Event::destination_vcfr][i]);                      break; // noop
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfc][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
                 }  
806              }              }
807              else { // render loop (endless loop)              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
808                  while (i < Samples) {  
809                      InterpolateOneStep_Mono(pSrc, i,              // process low frequency oscillators
810                                              pEngine->pSynthesisParameters[Event::destination_vca][i],              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
811                                              pEngine->pSynthesisParameters[Event::destination_vco][i],              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
812                                              pEngine->pSynthesisParameters[Event::destination_vcfc][i],              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
813                                              pEngine->pSynthesisParameters[Event::destination_vcfr][i]);  
814                      if (Pos > pSample->LoopEnd) {              // if filter enabled then update filter coefficients
815                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
816                      }                  finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
817                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
818                }
819    
820                // do we need resampling?
821                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
822                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
823                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
824                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
825                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
826    
827                // prepare final synthesis parameters structure
828                finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
829                finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
830                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
831    
832                // render audio for one subfragment
833                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
834    
835                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
836    
837                // increment envelopes' positions
838                if (EG1.active()) {
839    
840                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
841                    if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
842                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
843                  }                  }
844    
845                    EG1.increment(1);
846                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
847                }
848                if (EG2.active()) {
849                    EG2.increment(1);
850                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
851              }              }
852                EG3.increment(1);
853                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
854    
855                Pos = newPos;
856                i = iSubFragmentEnd;
857          }          }
858      }      }
859    
860        /** @brief Update current portamento position.
861         *
862         * Will be called when portamento mode is enabled to get the final
863         * portamento position of this active voice from where the next voice(s)
864         * might continue to slide on.
865         *
866         * @param itNoteOffEvent - event which causes this voice to die soon
867         */
868        void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
869            const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
870            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
871        }
872    
873      /**      /**
874       *  Immediately kill the voice.       *  Immediately kill the voice. This method should not be used to kill
875         *  a normal, active voice, because it doesn't take care of things like
876         *  fading down the volume level to avoid clicks and regular processing
877         *  until the kill event actually occured!
878         *
879         *  @see Kill()
880       */       */
881      void Voice::Kill() {      void Voice::KillImmediately() {
882          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
883              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
884          }          }
885          Reset();          Reset();
886      }      }
887    
888        /**
889         *  Kill the voice in regular sense. Let the voice render audio until
890         *  the kill event actually occured and then fade down the volume level
891         *  very quickly and let the voice die finally. Unlike a normal release
892         *  of a voice, a kill process cannot be cancalled and is therefore
893         *  usually used for voice stealing and key group conflicts.
894         *
895         *  @param itKillEvent - event which caused the voice to be killed
896         */
897        void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
898            #if CONFIG_DEVMODE
899            if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
900            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
901            #endif // CONFIG_DEVMODE
902    
903            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
904            this->itKillEvent = itKillEvent;
905        }
906    
907  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.56  
changed lines
  Added in v.829

  ViewVC Help
Powered by ViewVC