/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 716 by iliev, Sun Jul 24 06:57:30 2005 UTC revision 829 by schoenebeck, Sat Jan 14 14:07:47 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 32  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
47          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
# Line 66  namespace LinuxSampler { namespace gig { Line 50  namespace LinuxSampler { namespace gig {
50          #else          #else
51          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52          #endif          #endif
53          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
56          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 184  namespace LinuxSampler { namespace gig { Line 139  namespace LinuxSampler { namespace gig {
139          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
141    
142          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143            Pos = pDimRgn->SampleStartOffset;
144    
145          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
146          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
# Line 194  namespace LinuxSampler { namespace gig { Line 150  namespace LinuxSampler { namespace gig {
150              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
151    
152              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
153              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
154    
155              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
156                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
# Line 209  namespace LinuxSampler { namespace gig { Line 161  namespace LinuxSampler { namespace gig {
161          }          }
162          else { // RAM only voice          else { // RAM only voice
163              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
164              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
165              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
166          }          }
167            if (RAMLoop) {
168                loop.uiTotalCycles = pSample->LoopPlayCount;
169                loop.uiCyclesLeft  = pSample->LoopPlayCount;
170                loop.uiStart       = pSample->LoopStart;
171                loop.uiEnd         = pSample->LoopEnd;
172                loop.uiSize        = pSample->LoopSize;
173            }
174    
175          // calculate initial pitch value          // calculate initial pitch value
176          {          {
177              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
178              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
179              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
180              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
181          }          }
182    
# Line 257  namespace LinuxSampler { namespace gig { Line 211  namespace LinuxSampler { namespace gig {
211              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
212              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
213    
214              pEG1->Trigger(pDimRgn->EG1PreAttack,              EG1.trigger(pDimRgn->EG1PreAttack,
215                            pDimRgn->EG1Attack * eg1attack,                          pDimRgn->EG1Attack * eg1attack,
216                            pDimRgn->EG1Hold,                          pDimRgn->EG1Hold,
217                            pSample->LoopStart,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
218                            pDimRgn->EG1Decay1 * eg1decay * velrelease,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
219                            pDimRgn->EG1Decay2 * eg1decay * velrelease,                          pDimRgn->EG1InfiniteSustain,
220                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Sustain,
221                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Release * eg1release * velrelease,
222                            pDimRgn->EG1Release * eg1release * velrelease,                          velocityAttenuation,
223                            // the SSE synthesis implementation requires                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           // the vca start to be 16 byte aligned  
                           SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?  
                           Delay & 0xfffffffc : Delay,  
                           velocityAttenuation);  
224          }          }
225    
226    
# Line 299  namespace LinuxSampler { namespace gig { Line 249  namespace LinuxSampler { namespace gig {
249              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
250              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
251    
252              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
253                            pDimRgn->EG2Attack * eg2attack,                          pDimRgn->EG2Attack * eg2attack,
254                            false,                          false,
255                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
256                            pDimRgn->EG2Decay1 * eg2decay * velrelease,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
257                            pDimRgn->EG2Decay2 * eg2decay * velrelease,                          pDimRgn->EG2InfiniteSustain,
258                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
259                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
260                            pDimRgn->EG2Release * eg2release * velrelease,                          velocityAttenuation,
261                            Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           velocityAttenuation);  
262          }          }
263    
264    
265          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
266          {          {
267            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
268            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
269                float eg3depth = (bPortamento)
270                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
271                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
272                float eg3time = (bPortamento)
273                                    ? pEngineChannel->PortamentoTime
274                                    : pDimRgn->EG3Attack;
275                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
276                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
277          }          }
278    
279    
# Line 354  namespace LinuxSampler { namespace gig { Line 311  namespace LinuxSampler { namespace gig {
311                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
312                      bLFO1Enabled         = false;                      bLFO1Enabled         = false;
313              }              }
314              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
315                                                 start_level_max,
316                                               lfo1_internal_depth,                                               lfo1_internal_depth,
317                                               pDimRgn->LFO1ControlDepth,                                               pDimRgn->LFO1ControlDepth,
                                              pEngineChannel->ControllerTable[pLFO1->ExtController],  
318                                               pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
319                                               pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                                              Delay);  
320          }          }
321    
322    
# Line 398  namespace LinuxSampler { namespace gig { Line 354  namespace LinuxSampler { namespace gig {
354                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
355                      bLFO2Enabled         = false;                      bLFO2Enabled         = false;
356              }              }
357              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
358                                                 start_level_max,
359                                               lfo2_internal_depth,                                               lfo2_internal_depth,
360                                               pDimRgn->LFO2ControlDepth,                                               pDimRgn->LFO2ControlDepth,
                                              pEngineChannel->ControllerTable[pLFO2->ExtController],  
361                                               pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
362                                               pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                                              Delay);  
363          }          }
364    
365    
# Line 442  namespace LinuxSampler { namespace gig { Line 397  namespace LinuxSampler { namespace gig {
397                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
398                      bLFO3Enabled         = false;                      bLFO3Enabled         = false;
399              }              }
400              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
401                                                 start_level_mid,
402                                               lfo3_internal_depth,                                               lfo3_internal_depth,
403                                               pDimRgn->LFO3ControlDepth,                                               pDimRgn->LFO3ControlDepth,
                                              pEngineChannel->ControllerTable[pLFO3->ExtController],  
404                                               false,                                               false,
405                                               pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                                              Delay);  
406          }          }
407    
408    
# Line 521  namespace LinuxSampler { namespace gig { Line 475  namespace LinuxSampler { namespace gig {
475              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
476    
477              #ifndef CONFIG_OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
478              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
479              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
480              #else // override filter type              #else // override filter type
481              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
482              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
# Line 532  namespace LinuxSampler { namespace gig { Line 486  namespace LinuxSampler { namespace gig {
486              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
487    
488              // calculate cutoff frequency              // calculate cutoff frequency
489              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
490              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
491                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
492              }              }
493              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
494    
495              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;              int cvalue;
496              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
497                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
498                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
499                    // VCFVelocityScale in this case means Minimum cutoff
500                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
501                }
502                else {
503                    cvalue = pDimRgn->VCFCutoff;
504                }
505                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
506                if (cutoff > 1.0) cutoff = 1.0;
507                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
508                if (cutoff < 1.0) cutoff = 1.0;
509    
510              FilterUpdateCounter = -1;              // calculate resonance
511                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
512    
513                VCFCutoffCtrl.fvalue    = cutoff - 1.0;
514                VCFResonanceCtrl.fvalue = resonance;
515          }          }
516          else {          else {
517              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 570  namespace LinuxSampler { namespace gig { Line 535  namespace LinuxSampler { namespace gig {
535      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
536    
537          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
538          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
539    
         // Reset the synthesis parameter matrix  
   
         #if CONFIG_PROCESS_MUTED_CHANNELS  
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume));  
         #else  
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         #endif  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         if (bLFO1Enabled) pLFO1->Process(Samples);  
         if (bLFO2Enabled) pLFO2->Process(Samples);  
         if (bLFO3Enabled) {  
             if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
540          switch (this->PlaybackState) {          switch (this->PlaybackState) {
541    
542              case playback_state_init:              case playback_state_init:
# Line 621  namespace LinuxSampler { namespace gig { Line 551  namespace LinuxSampler { namespace gig {
551    
552                      if (DiskVoice) {                      if (DiskVoice) {
553                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
554                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
555                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
556                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
557                          }                          }
558                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
559                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
560                      }                      }
561                  }                  }
# Line 641  namespace LinuxSampler { namespace gig { Line 570  namespace LinuxSampler { namespace gig {
570                              KillImmediately();                              KillImmediately();
571                              return;                              return;
572                          }                          }
573                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
574                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
575                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
576                      }                      }
577    
# Line 663  namespace LinuxSampler { namespace gig { Line 592  namespace LinuxSampler { namespace gig {
592                      // render current audio fragment                      // render current audio fragment
593                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
594    
595                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
596                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
597                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
598                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
599    
600                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
601                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 681  namespace LinuxSampler { namespace gig { Line 610  namespace LinuxSampler { namespace gig {
610                  break;                  break;
611          }          }
612    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
613          // Reset delay          // Reset delay
614          Delay = 0;          Delay = 0;
615    
616          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
617    
618          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
619          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
620      }      }
621    
622      /**      /**
# Line 700  namespace LinuxSampler { namespace gig { Line 624  namespace LinuxSampler { namespace gig {
624       *  suspended / not running.       *  suspended / not running.
625       */       */
626      void Voice::Reset() {      void Voice::Reset() {
627          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
628          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
629          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
630          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
631          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 715  namespace LinuxSampler { namespace gig { Line 636  namespace LinuxSampler { namespace gig {
636      }      }
637    
638      /**      /**
639       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
640       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
641       *       *
642       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
643         * @param End     - youngest time stamp where processing should be stopped
644       */       */
645      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
646            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
647                if (itEvent->Type == Event::type_release) {
648                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
649                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
650                } else if (itEvent->Type == Event::type_cancel_release) {
651                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
652                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
653                }
654            }
655        }
656    
657          // dispatch control change events      /**
658          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
659          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
660              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
661          }       * @param itEvent - iterator pointing to the next event to be processed
662          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
663              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
664                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
665                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
666                  }              if (itEvent->Type == Event::type_control_change &&
667                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
668                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
669                        processCutoffEvent(itEvent);
670                    }
671                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
672                        processResonanceEvent(itEvent);
673                  }                  }
674                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
675                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
676                  }                  }
677                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
678                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
679                  }                  }
680                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
681                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
682                  }                  }
683                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
684                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
685                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      processCrossFadeEvent(itEvent);
686                  }                  }
687                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
688                    processPitchEvent(itEvent);
689              }              }
690            }
691        }
692    
693        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
694            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
695            finalSynthesisParameters.fFinalPitch *= pitch;
696            PitchBend = pitch;
697        }
698    
699        void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
700            CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
701            #if CONFIG_PROCESS_MUTED_CHANNELS
702            const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
703            #else
704            const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
705            #endif
706            fFinalVolume = effectiveVolume;
707        }
708    
709              ++itCCEvent;      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
710            int ccvalue = itEvent->Param.CC.Value;
711            if (VCFCutoffCtrl.value == ccvalue) return;
712            VCFCutoffCtrl.value == ccvalue;
713            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
714            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
715            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
716            if (cutoff > 1.0) cutoff = 1.0;
717            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
718            if (cutoff < 1.0) cutoff = 1.0;
719    
720            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
721            fFinalCutoff = cutoff;
722        }
723    
724        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
725            // convert absolute controller value to differential
726            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
727            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
728            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
729            fFinalResonance += resonancedelta;
730            // needed for initialization of parameter
731            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
732        }
733    
734        /**
735         *  Synthesizes the current audio fragment for this voice.
736         *
737         *  @param Samples - number of sample points to be rendered in this audio
738         *                   fragment cycle
739         *  @param pSrc    - pointer to input sample data
740         *  @param Skip    - number of sample points to skip in output buffer
741         */
742        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
743            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
744            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
745            finalSynthesisParameters.pSrc      = pSrc;
746    
747            RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
748            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
749    
750            if (Skip) { // skip events that happened before this voice was triggered
751                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
752                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
753          }          }
754    
755            uint killPos;
756            if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
757    
758          // process pitch events          uint i = Skip;
759          {          while (i < Samples) {
760              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
761              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();  
762              if (Delay) { // skip events that happened before this voice was triggered              // initialize all final synthesis parameters
763                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
764              }              #if CONFIG_PROCESS_MUTED_CHANNELS
765              // apply old pitchbend value until first pitch event occurs              fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
766              if (this->PitchBend != 1.0) {              #else
767                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;              fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
768                  for (uint i = Delay; i < end; i++) {              #endif
769                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;              fFinalCutoff    = VCFCutoffCtrl.fvalue;
770                  }              fFinalResonance = VCFResonanceCtrl.fvalue;
771    
772                // process MIDI control change and pitchbend events for this subfragment
773                processCCEvents(itCCEvent, iSubFragmentEnd);
774    
775                // process transition events (note on, note off & sustain pedal)
776                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
777    
778                // if the voice was killed in this subfragment switch EG1 to fade out stage
779                if (itKillEvent && killPos <= iSubFragmentEnd) {
780                    EG1.enterFadeOutStage();
781                    itKillEvent = Pool<Event>::Iterator();
782              }              }
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
783    
784                  itVCOEvent = itNextVCOEvent;              // process envelope generators
785                switch (EG1.getSegmentType()) {
786                    case EGADSR::segment_lin:
787                        fFinalVolume *= EG1.processLin();
788                        break;
789                    case EGADSR::segment_exp:
790                        fFinalVolume *= EG1.processExp();
791                        break;
792                    case EGADSR::segment_end:
793                        fFinalVolume *= EG1.getLevel();
794                        break; // noop
795              }              }
796              if (!pVCOEventList->isEmpty()) {              switch (EG2.getSegmentType()) {
797                  this->PitchBend = pitch;                  case EGADSR::segment_lin:
798                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);                      fFinalCutoff *= EG2.processLin();
799                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);                      break;
800                    case EGADSR::segment_exp:
801                        fFinalCutoff *= EG2.processExp();
802                        break;
803                    case EGADSR::segment_end:
804                        fFinalCutoff *= EG2.getLevel();
805                        break; // noop
806              }              }
807          }              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
808    
809          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)              // process low frequency oscillators
810          {              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
811              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
812              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 #if CONFIG_PROCESS_MUTED_CHANNELS  
                 float effective_volume = crossfadevolume * this->Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);  
                 #else  
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
                 #endif  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
813    
814                  itVCAEvent = itNextVCAEvent;              // if filter enabled then update filter coefficients
815                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
816                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
817                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
818              }              }
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
819    
820          // process filter cutoff events              // do we need resampling?
821          {              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
822              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
823              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
824              if (Delay) { // skip events that happened before this voice was triggered                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
825                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
826    
827                  itCutoffEvent = itNextCutoffEvent;              // prepare final synthesis parameters structure
828              }              finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
829              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
830          }              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
831    
832          // process filter resonance events              // render audio for one subfragment
833          {              RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
             RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
834    
835                  itResonanceEvent = itNextResonanceEvent;              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
             }  
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     }  
836    
837      /**              // increment envelopes' positions
838       * Calculate all necessary, final biquad filter parameters.              if (EG1.active()) {
839       *  
840       * @param Samples - number of samples to be rendered in this audio fragment cycle                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
841       */                  if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
842      void Voice::CalculateBiquadParameters(uint Samples) {                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
843                  }                  }
844    
845                    EG1.increment(1);
846                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
847              }              }
848                if (EG2.active()) {
849                    EG2.increment(1);
850                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
851                }
852                EG3.increment(1);
853                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
854    
855              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
856              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
857          }          }
858      }      }
859    
860      /**      /** @brief Update current portamento position.
      *  Synthesizes the current audio fragment for this voice.  
861       *       *
862       *  @param Samples - number of sample points to be rendered in this audio       * Will be called when portamento mode is enabled to get the final
863       *                   fragment cycle       * portamento position of this active voice from where the next voice(s)
864       *  @param pSrc    - pointer to input sample data       * might continue to slide on.
865       *  @param Skip    - number of sample points to skip in output buffer       *
866         * @param itNoteOffEvent - event which causes this voice to die soon
867       */       */
868      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
869          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
870            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
871      }      }
872    
873      /**      /**

Legend:
Removed from v.716  
changed lines
  Added in v.829

  ViewVC Help
Powered by ViewVC