/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 687 by schoenebeck, Tue Jul 12 22:37:21 2005 UTC revision 832 by persson, Sun Feb 5 10:24:05 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 32  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
47          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
# Line 66  namespace LinuxSampler { namespace gig { Line 50  namespace LinuxSampler { namespace gig {
50          #else          #else
51          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52          #endif          #endif
53          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
56          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 149  namespace LinuxSampler { namespace gig { Line 104  namespace LinuxSampler { namespace gig {
104          // calculate volume          // calculate volume
105          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
106    
107          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          float volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109          Volume *= pDimRgn->SampleAttenuation;          volume *= pDimRgn->SampleAttenuation;
110    
111          // the volume of release triggered samples depends on note length          // the volume of release triggered samples depends on note length
112          if (Type == type_release_trigger) {          if (Type == type_release_trigger) {
# Line 159  namespace LinuxSampler { namespace gig { Line 114  namespace LinuxSampler { namespace gig {
114                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116              if (attenuation <= 0) return -1;              if (attenuation <= 0) return -1;
117              Volume *= attenuation;              volume *= attenuation;
118          }          }
119    
120          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
121          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124            float crossfadeVolume;
125          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
126              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
130                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                  break;                  break;
132              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                  break;                  break;
135              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136              default:              default:
137                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
138          }          }
139    
140          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->GlobalVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149            finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
# Line 194  namespace LinuxSampler { namespace gig { Line 157  namespace LinuxSampler { namespace gig {
157              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
158    
159              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
160              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
161    
162              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
163                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
# Line 209  namespace LinuxSampler { namespace gig { Line 168  namespace LinuxSampler { namespace gig {
168          }          }
169          else { // RAM only voice          else { // RAM only voice
170              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
171              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
172              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
173          }          }
174            if (RAMLoop) {
175                loop.uiTotalCycles = pSample->LoopPlayCount;
176                loop.uiCyclesLeft  = pSample->LoopPlayCount;
177                loop.uiStart       = pSample->LoopStart;
178                loop.uiEnd         = pSample->LoopEnd;
179                loop.uiSize        = pSample->LoopSize;
180            }
181    
182          // calculate initial pitch value          // calculate initial pitch value
183          {          {
184              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
185              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
186              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
187              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
188          }          }
189    
# Line 249  namespace LinuxSampler { namespace gig { Line 210  namespace LinuxSampler { namespace gig {
210              }              }
211              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
212    
213              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
214              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
215              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
216              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
217                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
218              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
219                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
220                            pDimRgn->EG1Hold,  
221                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
222                            (pDimRgn->EG1Decay1 + eg1decay) * velrelease,                          pDimRgn->EG1Attack * eg1attack,
223                            (pDimRgn->EG1Decay2 + eg1decay) * velrelease,                          pDimRgn->EG1Hold,
224                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
225                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
226                            (pDimRgn->EG1Release + eg1release) * velrelease,                          pDimRgn->EG1InfiniteSustain,
227                            // the SSE synthesis implementation requires                          pDimRgn->EG1Sustain,
228                            // the vca start to be 16 byte aligned                          pDimRgn->EG1Release * eg1release * velrelease,
229                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?                          velocityAttenuation,
230                            Delay & 0xfffffffc : Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
231                            velocityAttenuation);          }
232          }  
233    #ifdef CONFIG_INTERPOLATE_VOLUME
234            // setup initial volume in synthesis parameters
235    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
236            if (pEngineChannel->GetMute()) {
237                finalSynthesisParameters.fFinalVolumeLeft  = 0;
238                finalSynthesisParameters.fFinalVolumeRight = 0;
239            }
240            else
241    #else
242            {
243                float finalVolume = pEngineChannel->GlobalVolume * crossfadeVolume * EG1.getLevel();
244    
245                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
246                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
247            }
248    #endif
249    #endif
250    
251          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
252          {          {
# Line 291  namespace LinuxSampler { namespace gig { Line 268  namespace LinuxSampler { namespace gig {
268              }              }
269              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
270    
271              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
272              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
273              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
274              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
275    
276              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
277                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
278                            false,                          false,
279                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
280                            (pDimRgn->EG2Decay1 + eg2decay) * velrelease,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
281                            (pDimRgn->EG2Decay2 + eg2decay) * velrelease,                          pDimRgn->EG2InfiniteSustain,
282                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
283                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
284                            (pDimRgn->EG2Release + eg2release) * velrelease,                          velocityAttenuation,
285                            Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           velocityAttenuation);  
286          }          }
287    
288    
289          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
290          {          {
291            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
292            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
293                float eg3depth = (bPortamento)
294                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
295                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
296                float eg3time = (bPortamento)
297                                    ? pEngineChannel->PortamentoTime
298                                    : pDimRgn->EG3Attack;
299                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
300                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
301          }          }
302    
303    
# Line 351  namespace LinuxSampler { namespace gig { Line 335  namespace LinuxSampler { namespace gig {
335                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
336                      bLFO1Enabled         = false;                      bLFO1Enabled         = false;
337              }              }
338              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
339                                                 start_level_max,
340                                               lfo1_internal_depth,                                               lfo1_internal_depth,
341                                               pDimRgn->LFO1ControlDepth,                                               pDimRgn->LFO1ControlDepth,
                                              pEngineChannel->ControllerTable[pLFO1->ExtController],  
342                                               pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
343                                               pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                                              Delay);  
344          }          }
345    
346    
# Line 395  namespace LinuxSampler { namespace gig { Line 378  namespace LinuxSampler { namespace gig {
378                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
379                      bLFO2Enabled         = false;                      bLFO2Enabled         = false;
380              }              }
381              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
382                                                 start_level_max,
383                                               lfo2_internal_depth,                                               lfo2_internal_depth,
384                                               pDimRgn->LFO2ControlDepth,                                               pDimRgn->LFO2ControlDepth,
                                              pEngineChannel->ControllerTable[pLFO2->ExtController],  
385                                               pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
386                                               pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                                              Delay);  
387          }          }
388    
389    
# Line 439  namespace LinuxSampler { namespace gig { Line 421  namespace LinuxSampler { namespace gig {
421                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
422                      bLFO3Enabled         = false;                      bLFO3Enabled         = false;
423              }              }
424              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
425                                                 start_level_mid,
426                                               lfo3_internal_depth,                                               lfo3_internal_depth,
427                                               pDimRgn->LFO3ControlDepth,                                               pDimRgn->LFO3ControlDepth,
                                              pEngineChannel->ControllerTable[pLFO3->ExtController],  
428                                               false,                                               false,
429                                               pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                                              Delay);  
430          }          }
431    
432    
# Line 518  namespace LinuxSampler { namespace gig { Line 499  namespace LinuxSampler { namespace gig {
499              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
500    
501              #ifndef CONFIG_OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
502              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
503              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
504              #else // override filter type              #else // override filter type
505              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
506              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
# Line 529  namespace LinuxSampler { namespace gig { Line 510  namespace LinuxSampler { namespace gig {
510              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
511    
512              // calculate cutoff frequency              // calculate cutoff frequency
513              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
514              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
515                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
516              }              }
517              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
518    
519              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;              int cvalue;
520              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
521                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
522                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
523                    // VCFVelocityScale in this case means Minimum cutoff
524                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
525                }
526                else {
527                    cvalue = pDimRgn->VCFCutoff;
528                }
529                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
530                if (cutoff > 1.0) cutoff = 1.0;
531                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
532                if (cutoff < 1.0) cutoff = 1.0;
533    
534              FilterUpdateCounter = -1;              // calculate resonance
535                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
536    
537                VCFCutoffCtrl.fvalue    = cutoff - 1.0;
538                VCFResonanceCtrl.fvalue = resonance;
539          }          }
540          else {          else {
541              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 567  namespace LinuxSampler { namespace gig { Line 559  namespace LinuxSampler { namespace gig {
559      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
560    
561          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
562          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
563    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         if (bLFO1Enabled) pLFO1->Process(Samples);  
         if (bLFO2Enabled) pLFO2->Process(Samples);  
         if (bLFO3Enabled) {  
             if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
564          switch (this->PlaybackState) {          switch (this->PlaybackState) {
565    
566              case playback_state_init:              case playback_state_init:
# Line 614  namespace LinuxSampler { namespace gig { Line 575  namespace LinuxSampler { namespace gig {
575    
576                      if (DiskVoice) {                      if (DiskVoice) {
577                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
578                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
579                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
580                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
581                          }                          }
582                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
583                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
584                      }                      }
585                  }                  }
# Line 634  namespace LinuxSampler { namespace gig { Line 594  namespace LinuxSampler { namespace gig {
594                              KillImmediately();                              KillImmediately();
595                              return;                              return;
596                          }                          }
597                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
598                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
599                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
600                      }                      }
601    
# Line 656  namespace LinuxSampler { namespace gig { Line 616  namespace LinuxSampler { namespace gig {
616                      // render current audio fragment                      // render current audio fragment
617                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
618    
619                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
620                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
621                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
622                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
623    
624                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
625                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 674  namespace LinuxSampler { namespace gig { Line 634  namespace LinuxSampler { namespace gig {
634                  break;                  break;
635          }          }
636    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
637          // Reset delay          // Reset delay
638          Delay = 0;          Delay = 0;
639    
640          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
641    
642          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
643          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
644      }      }
645    
646      /**      /**
# Line 693  namespace LinuxSampler { namespace gig { Line 648  namespace LinuxSampler { namespace gig {
648       *  suspended / not running.       *  suspended / not running.
649       */       */
650      void Voice::Reset() {      void Voice::Reset() {
651          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
652          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
653          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
654          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
655          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 708  namespace LinuxSampler { namespace gig { Line 660  namespace LinuxSampler { namespace gig {
660      }      }
661    
662      /**      /**
663       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
664       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
665       *       *
666       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
667         * @param End     - youngest time stamp where processing should be stopped
668       */       */
669      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
670            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
671                if (itEvent->Type == Event::type_release) {
672                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
673                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
674                } else if (itEvent->Type == Event::type_cancel_release) {
675                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
676                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
677                }
678            }
679        }
680    
681          // dispatch control change events      /**
682          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
683          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
684              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
685          }       * @param itEvent - iterator pointing to the next event to be processed
686          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
687              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
688                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
689                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
690                  }              if (itEvent->Type == Event::type_control_change &&
691                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
692                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
693                        processCutoffEvent(itEvent);
694                    }
695                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
696                        processResonanceEvent(itEvent);
697                  }                  }
698                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
699                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
700                  }                  }
701                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
702                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
703                  }                  }
704                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
705                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
706                  }                  }
707                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
708                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
709                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
710                  }                  }
711                    if (itEvent->Param.CC.Controller == 7) { // volume
712                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value] * CONFIG_GLOBAL_ATTENUATION);
713                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
714                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
715                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
716                    }
717                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
718                    processPitchEvent(itEvent);
719              }              }
720            }
721        }
722    
723        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
724            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
725            finalSynthesisParameters.fFinalPitch *= pitch;
726            PitchBend = pitch;
727        }
728    
729        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
730            int ccvalue = itEvent->Param.CC.Value;
731            if (VCFCutoffCtrl.value == ccvalue) return;
732            VCFCutoffCtrl.value == ccvalue;
733            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
734            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
735            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
736            if (cutoff > 1.0) cutoff = 1.0;
737            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
738            if (cutoff < 1.0) cutoff = 1.0;
739    
740            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
741            fFinalCutoff = cutoff;
742        }
743    
744        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
745            // convert absolute controller value to differential
746            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
747            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
748            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
749            fFinalResonance += resonancedelta;
750            // needed for initialization of parameter
751            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
752        }
753    
754        /**
755         *  Synthesizes the current audio fragment for this voice.
756         *
757         *  @param Samples - number of sample points to be rendered in this audio
758         *                   fragment cycle
759         *  @param pSrc    - pointer to input sample data
760         *  @param Skip    - number of sample points to skip in output buffer
761         */
762        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
763            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
764            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
765            finalSynthesisParameters.pSrc      = pSrc;
766    
767              ++itCCEvent;          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
768            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
769    
770            if (Skip) { // skip events that happened before this voice was triggered
771                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
772                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
773          }          }
774    
775            uint killPos;
776            if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
777    
778          // process pitch events          uint i = Skip;
779          {          while (i < Samples) {
780              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
781              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();  
782              if (Delay) { // skip events that happened before this voice was triggered              // initialize all final synthesis parameters
783                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
784              }              fFinalCutoff    = VCFCutoffCtrl.fvalue;
785              // apply old pitchbend value until first pitch event occurs              fFinalResonance = VCFResonanceCtrl.fvalue;
786              if (this->PitchBend != 1.0) {  
787                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;              // process MIDI control change and pitchbend events for this subfragment
788                  for (uint i = Delay; i < end; i++) {              processCCEvents(itCCEvent, iSubFragmentEnd);
789                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
790                  }              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
791    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
792                if (pEngineChannel->GetMute()) fFinalVolume = 0;
793    #endif
794    
795                // process transition events (note on, note off & sustain pedal)
796                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
797    
798                // if the voice was killed in this subfragment switch EG1 to fade out stage
799                if (itKillEvent && killPos <= iSubFragmentEnd) {
800                    EG1.enterFadeOutStage();
801                    itKillEvent = Pool<Event>::Iterator();
802              }              }
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
803    
804                  itVCOEvent = itNextVCOEvent;              // process envelope generators
805                switch (EG1.getSegmentType()) {
806                    case EGADSR::segment_lin:
807                        fFinalVolume *= EG1.processLin();
808                        break;
809                    case EGADSR::segment_exp:
810                        fFinalVolume *= EG1.processExp();
811                        break;
812                    case EGADSR::segment_end:
813                        fFinalVolume *= EG1.getLevel();
814                        break; // noop
815              }              }
816              if (!pVCOEventList->isEmpty()) {              switch (EG2.getSegmentType()) {
817                  this->PitchBend = pitch;                  case EGADSR::segment_lin:
818                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);                      fFinalCutoff *= EG2.processLin();
819                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);                      break;
820                    case EGADSR::segment_exp:
821                        fFinalCutoff *= EG2.processExp();
822                        break;
823                    case EGADSR::segment_end:
824                        fFinalCutoff *= EG2.getLevel();
825                        break; // noop
826              }              }
827          }              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
828    
829          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)              // process low frequency oscillators
830          {              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
831              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
832              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
833    
834                  itVCAEvent = itNextVCAEvent;              // if filter enabled then update filter coefficients
835                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
836                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
837                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
838              }              }
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
839    
840          // process filter cutoff events              // do we need resampling?
841          {              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
842              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
843              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
844              if (Delay) { // skip events that happened before this voice was triggered                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
845                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
846    
847                  itCutoffEvent = itNextCutoffEvent;              // prepare final synthesis parameters structure
848              }              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
849              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  #ifdef CONFIG_INTERPOLATE_VOLUME
850          }              finalSynthesisParameters.fFinalVolumeDeltaLeft  =
851                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
852                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
853                finalSynthesisParameters.fFinalVolumeDeltaRight =
854                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
855                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
856    #else
857                finalSynthesisParameters.fFinalVolumeLeft  =
858                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
859                finalSynthesisParameters.fFinalVolumeRight =
860                    fFinalVolume * VolumeRight * PanRightSmoother.render();
861    #endif
862                // render audio for one subfragment
863                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
864    
865          // process filter resonance events              // stop the rendering if volume EG is finished
866          {              if (EG1.getSegmentType() == EGADSR::segment_end) break;
             RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
867    
868                  itResonanceEvent = itNextResonanceEvent;              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
             }  
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     }  
869    
870      /**              // increment envelopes' positions
871       * Calculate all necessary, final biquad filter parameters.              if (EG1.active()) {
872       *  
873       * @param Samples - number of samples to be rendered in this audio fragment cycle                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
874       */                  if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
875      void Voice::CalculateBiquadParameters(uint Samples) {                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
876                  }                  }
877    
878                    EG1.increment(1);
879                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
880                }
881                if (EG2.active()) {
882                    EG2.increment(1);
883                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
884              }              }
885                EG3.increment(1);
886                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
887    
888              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
889              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
890          }          }
891      }      }
892    
893      /**      /** @brief Update current portamento position.
      *  Synthesizes the current audio fragment for this voice.  
894       *       *
895       *  @param Samples - number of sample points to be rendered in this audio       * Will be called when portamento mode is enabled to get the final
896       *                   fragment cycle       * portamento position of this active voice from where the next voice(s)
897       *  @param pSrc    - pointer to input sample data       * might continue to slide on.
898       *  @param Skip    - number of sample points to skip in output buffer       *
899         * @param itNoteOffEvent - event which causes this voice to die soon
900       */       */
901      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
902          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
903            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
904      }      }
905    
906      /**      /**

Legend:
Removed from v.687  
changed lines
  Added in v.832

  ViewVC Help
Powered by ViewVC