/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 287 by schoenebeck, Sat Oct 16 17:38:03 2004 UTC revision 841 by persson, Sat Mar 4 16:23:53 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 29  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46            SynthesisMode = 0; // set all mode bits to 0 first
47            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
48            #if CONFIG_ASM && ARCH_X86
49            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
50            #else
51            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52            #endif
53            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55            finalSynthesisParameters.filterLeft.Reset();
56            finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 103  namespace LinuxSampler { namespace gig { Line 72  namespace LinuxSampler { namespace gig {
72       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
73       *  needed.       *  needed.
74       *       *
75       *  @param itNoteOnEvent       - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
76       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
77       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
78       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
79       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
80       *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
81       *  @returns 0 on success, a value < 0 if something failed       *  @returns 0 on success, a value < 0 if the voice wasn't triggered
82         *           (either due to an error or e.g. because no region is
83         *           defined for the given key)
84       */       */
85      int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
86          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
87             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
88             exit(EXIT_FAILURE);  
89            #if CONFIG_DEVMODE
90            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
91                dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
92          }          }
93            #endif // CONFIG_DEVMODE
94    
95          Type            = type_normal;          Type            = VoiceType;
96          MIDIKey         = itNoteOnEvent->Param.Note.Key;          MIDIKey         = itNoteOnEvent->Param.Note.Key;
97          pRegion         = pInstrument->GetRegion(MIDIKey);          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
98          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
99          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
100          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
101          itChildVoice    = Pool<Voice>::Iterator();          KeyGroup        = iKeyGroup;
102            pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
103    
104          if (!pRegion) {          // calculate volume
105              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
             KillImmediately();  
             return -1;  
         }  
106    
107          KeyGroup = pRegion->KeyGroup;          float volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109          // get current dimension values to select the right dimension region          volume *= pDimRgn->SampleAttenuation;
110          //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
111          uint DimValues[5] = {0,0,0,0,0};          // the volume of release triggered samples depends on note length
112          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          if (Type == type_release_trigger) {
113              switch (pRegion->pDimensionDefinitions[i].dimension) {              float noteLength = float(pEngine->FrameTime + Delay -
114                  case ::gig::dimension_samplechannel:                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115                      DimValues[i] = 0; //TODO: we currently ignore this dimension              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116                      break;              if (attenuation <= 0) return -1;
117                  case ::gig::dimension_layer:              volume *= attenuation;
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
118          }          }
119          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
120            // select channel mode (mono or stereo)
121            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124            float crossfadeVolume;
125          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
126              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
130                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                  break;                  break;
132              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                  break;                  break;
135              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136              default:              default:
137                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
138          }          }
139    
140          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->GlobalVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
157              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
158    
159              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
160              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
161    
162              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
163                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
# Line 286  namespace LinuxSampler { namespace gig { Line 168  namespace LinuxSampler { namespace gig {
168          }          }
169          else { // RAM only voice          else { // RAM only voice
170              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
171              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
172              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
173          }          }
174            if (RAMLoop) {
175                loop.uiTotalCycles = pSample->LoopPlayCount;
176                loop.uiCyclesLeft  = pSample->LoopPlayCount;
177                loop.uiStart       = pSample->LoopStart;
178                loop.uiEnd         = pSample->LoopEnd;
179                loop.uiSize        = pSample->LoopSize;
180            }
181    
182          // calculate initial pitch value          // calculate initial pitch value
183          {          {
184              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
185              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
186              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
187              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
188          }          }
189    
190            // the length of the decay and release curves are dependent on the velocity
191          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
192    
193          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
194          {          {
# Line 322  namespace LinuxSampler { namespace gig { Line 205  namespace LinuxSampler { namespace gig {
205                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
206                      break;                      break;
207                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
208                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
209                      break;                      break;
210              }              }
211              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
212    
213              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
214              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
215              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
216              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
217                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
218              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
219                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
220                            pDimRgn->EG1Hold,  
221                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
222                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
223                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
224                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
225                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
226                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
227                            Delay);                          pDimRgn->EG1Sustain,
228          }                          pDimRgn->EG1Release * eg1release * velrelease,
229                            velocityAttenuation,
230                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
231            }
232    
233    #ifdef CONFIG_INTERPOLATE_VOLUME
234            // setup initial volume in synthesis parameters
235    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
236            if (pEngineChannel->GetMute()) {
237                finalSynthesisParameters.fFinalVolumeLeft  = 0;
238                finalSynthesisParameters.fFinalVolumeRight = 0;
239            }
240            else
241    #else
242            {
243                float finalVolume = pEngineChannel->GlobalVolume * crossfadeVolume * EG1.getLevel();
244    
245                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
246                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
247            }
248    #endif
249    #endif
250    
     #if ENABLE_FILTER  
251          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
252          {          {
253              // get current value of EG2 controller              // get current value of EG2 controller
# Line 361  namespace LinuxSampler { namespace gig { Line 263  namespace LinuxSampler { namespace gig {
263                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
264                      break;                      break;
265                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
266                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
267                      break;                      break;
268              }              }
269              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
270    
271              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
272              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
273              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
274              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
275    
276              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
277                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
278                            false,                          false,
279                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
280                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
281                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
282                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
283                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
284                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
285                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
286          }          }
     #endif // ENABLE_FILTER  
287    
288    
289          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
290          {          {
291            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
292            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
293                float eg3depth = (bPortamento)
294                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
295                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
296                float eg3time = (bPortamento)
297                                    ? pEngineChannel->PortamentoTime
298                                    : pDimRgn->EG3Attack;
299                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
300                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
301          }          }
302    
303    
# Line 399  namespace LinuxSampler { namespace gig { Line 308  namespace LinuxSampler { namespace gig {
308                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
309                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
310                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
311                        bLFO1Enabled         = (lfo1_internal_depth > 0);
312                      break;                      break;
313                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
314                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
315                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
316                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
317                      break;                      break;
318                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
319                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
320                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
321                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
322                      break;                      break;
323                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
324                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
325                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
326                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
327                      break;                      break;
328                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
329                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
330                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
331                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
332                      break;                      break;
333                  default:                  default:
334                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
335                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
336                        bLFO1Enabled         = false;
337                }
338                if (bLFO1Enabled) {
339                    pLFO1->trigger(pDimRgn->LFO1Frequency,
340                                   start_level_max,
341                                   lfo1_internal_depth,
342                                   pDimRgn->LFO1ControlDepth,
343                                   pDimRgn->LFO1FlipPhase,
344                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
345                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
346              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngine->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
347          }          }
348    
349      #if ENABLE_FILTER  
350          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
351          {          {
352              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 437  namespace LinuxSampler { namespace gig { Line 354  namespace LinuxSampler { namespace gig {
354                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
355                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
356                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
357                        bLFO2Enabled         = (lfo2_internal_depth > 0);
358                      break;                      break;
359                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
360                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
361                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
362                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
363                      break;                      break;
364                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
365                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
366                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
367                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
368                      break;                      break;
369                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
370                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
371                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
372                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
373                      break;                      break;
374                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
375                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
376                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
377                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
378                      break;                      break;
379                  default:                  default:
380                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
381                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
382                        bLFO2Enabled         = false;
383                }
384                if (bLFO2Enabled) {
385                    pLFO2->trigger(pDimRgn->LFO2Frequency,
386                                   start_level_max,
387                                   lfo2_internal_depth,
388                                   pDimRgn->LFO2ControlDepth,
389                                   pDimRgn->LFO2FlipPhase,
390                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
391                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
392              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngine->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
393          }          }
394      #endif // ENABLE_FILTER  
395    
396          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
397          {          {
# Line 475  namespace LinuxSampler { namespace gig { Line 400  namespace LinuxSampler { namespace gig {
400                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
401                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
402                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
403                        bLFO3Enabled         = (lfo3_internal_depth > 0);
404                      break;                      break;
405                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
406                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
407                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
408                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
409                      break;                      break;
410                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
411                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
412                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
413                        bLFO3Enabled         = false; // see TODO comment in line above
414                      break;                      break;
415                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
416                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
417                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
418                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
419                      break;                      break;
420                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
421                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
422                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
423                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
424                      break;                      break;
425                  default:                  default:
426                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
427                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
428                        bLFO3Enabled         = false;
429                }
430                if (bLFO3Enabled) {
431                    pLFO3->trigger(pDimRgn->LFO3Frequency,
432                                   start_level_mid,
433                                   lfo3_internal_depth,
434                                   pDimRgn->LFO3ControlDepth,
435                                   false,
436                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
437                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
438              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngine->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
439          }          }
440    
441      #if ENABLE_FILTER  
442          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
443          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
444          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
445          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
446          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
447          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
448              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
449              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
450                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
451              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
452              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
453                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 549  namespace LinuxSampler { namespace gig { Line 483  namespace LinuxSampler { namespace gig {
483                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
484                      break;                      break;
485              }              }
486              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
487    
488              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
489              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
490              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
491              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
492                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 571  namespace LinuxSampler { namespace gig { Line 505  namespace LinuxSampler { namespace gig {
505                  default:                  default:
506                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
507              }              }
508              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
509    
510              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
511              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
512              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
513              #else // override filter type              #else // override filter type
514              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
515              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
516              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
517    
518              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
519              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
520    
521              // calculate cutoff frequency              // calculate cutoff frequency
522              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
523              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
524                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
525              }              }
526              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
527    
528              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
529              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
530                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
531                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
532                    // VCFVelocityScale in this case means Minimum cutoff
533                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
534                }
535                else {
536                    cvalue = pDimRgn->VCFCutoff;
537                }
538                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
539                if (cutoff > 1.0) cutoff = 1.0;
540                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
541                if (cutoff < 1.0) cutoff = 1.0;
542    
543              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
544              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
545    
546              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
547                VCFResonanceCtrl.fvalue = resonance;
548          }          }
549          else {          else {
550              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
551              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
552          }          }
     #endif // ENABLE_FILTER  
553    
554          return 0; // success          return 0; // success
555      }      }
# Line 626  namespace LinuxSampler { namespace gig { Line 567  namespace LinuxSampler { namespace gig {
567       */       */
568      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
569    
570          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
571          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
572    
573          switch (this->PlaybackState) {          switch (this->PlaybackState) {
574    
575                case playback_state_init:
576                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
577                    // no break - continue with playback_state_ram
578    
579              case playback_state_ram: {              case playback_state_ram: {
580                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
581                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
582                        // render current fragment
583                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
584    
585                      if (DiskVoice) {                      if (DiskVoice) {
586                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
587                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
588                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
589                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
590                          }                          }
591                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
592                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
593                      }                      }
594                  }                  }
# Line 684  namespace LinuxSampler { namespace gig { Line 603  namespace LinuxSampler { namespace gig {
603                              KillImmediately();                              KillImmediately();
604                              return;                              return;
605                          }                          }
606                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
607                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
608                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
609                      }                      }
610    
611                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
612    
613                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
614                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
615                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
616                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
617                                // remember how many sample words there are before any silence has been added
618                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
619                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
620                            }
621                      }                      }
622    
623                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
624                      InterpolateNoLoop(Samples, ptr, Delay);  
625                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
626                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
627    
628                        const int iPos = (int) finalSynthesisParameters.dPos;
629                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
630                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
631                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
632    
633                        // change state of voice to 'end' if we really reached the end of the sample data
634                        if (RealSampleWordsLeftToRead >= 0) {
635                            RealSampleWordsLeftToRead -= readSampleWords;
636                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
637                        }
638                  }                  }
639                  break;                  break;
640    
# Line 706  namespace LinuxSampler { namespace gig { Line 643  namespace LinuxSampler { namespace gig {
643                  break;                  break;
644          }          }
645    
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
     #if ENABLE_FILTER  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
646          // Reset delay          // Reset delay
647          Delay = 0;          Delay = 0;
648    
649          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
650    
651          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
652          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
653      }      }
654    
655      /**      /**
# Line 728  namespace LinuxSampler { namespace gig { Line 657  namespace LinuxSampler { namespace gig {
657       *  suspended / not running.       *  suspended / not running.
658       */       */
659      void Voice::Reset() {      void Voice::Reset() {
660          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
661          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
662          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
663          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
664          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 741  namespace LinuxSampler { namespace gig { Line 669  namespace LinuxSampler { namespace gig {
669      }      }
670    
671      /**      /**
672       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
673       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
674       *       *
675       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
676         * @param End     - youngest time stamp where processing should be stopped
677       */       */
678      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
679            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
680          // dispatch control change events              if (itEvent->Type == Event::type_release) {
681          RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
682          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
683              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;              } else if (itEvent->Type == Event::type_cancel_release) {
684          }                  EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
685          while (itCCEvent) {                  EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
             if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
                 #if ENABLE_FILTER  
                 if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {  
                     *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {  
                     *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;  
                 }  
                 #endif // ENABLE_FILTER  
                 if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(itCCEvent);  
                 }  
                 #if ENABLE_FILTER  
                 if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(itCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(itCCEvent);  
                 }  
                 if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&  
                     itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event  
                     *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;  
                 }  
686              }              }
   
             ++itCCEvent;  
687          }          }
688        }
689    
690        /**
691          // process pitch events       * Process given list of MIDI control change and pitch bend events for
692          {       * the given time.
693              RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];       *
694              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();       * @param itEvent - iterator pointing to the next event to be processed
695              if (Delay) { // skip events that happened before this voice was triggered       * @param End     - youngest time stamp where processing should be stopped
696                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;       */
697              }      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
698              // apply old pitchbend value until first pitch event occurs          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
699              if (this->PitchBend != 1.0) {              if (itEvent->Type == Event::type_control_change &&
700                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
701                  for (uint i = Delay; i < end; i++) {                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
702                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                      processCutoffEvent(itEvent);
703                    }
704                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
705                        processResonanceEvent(itEvent);
706                  }                  }
707              }                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
708              float pitch;                      pLFO1->update(itEvent->Param.CC.Value);
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
709                  }                  }
710                    if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
711                  itVCOEvent = itNextVCOEvent;                      pLFO2->update(itEvent->Param.CC.Value);
             }  
             if (!pVCOEventList->isEmpty()) this->PitchBend = pitch;  
         }  
   
         // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)  
         {  
             RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];  
             RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
712                  }                  }
713                    if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
714                  itVCAEvent = itNextVCAEvent;                      pLFO3->update(itEvent->Param.CC.Value);
             }  
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
   
     #if ENABLE_FILTER  
         // process filter cutoff events  
         {  
             RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
715                  }                  }
716                    if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
717                  itCutoffEvent = itNextCutoffEvent;                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
718              }                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
   
         // process filter resonance events  
         {  
             RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
719                  }                  }
720                    if (itEvent->Param.CC.Controller == 7) { // volume
721                  itResonanceEvent = itNextResonanceEvent;                      VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value] * CONFIG_GLOBAL_ATTENUATION);
722                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
723                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
724                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
725                    }
726                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
727                    processPitchEvent(itEvent);
728              }              }
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
729          }          }
     #endif // ENABLE_FILTER  
730      }      }
731    
732      #if ENABLE_FILTER      void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
733      /**          const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
734       * Calculate all necessary, final biquad filter parameters.          finalSynthesisParameters.fFinalPitch *= pitch;
735       *          PitchBend = pitch;
736       * @param Samples - number of samples to be rendered in this audio fragment cycle      }
737       */  
738      void Voice::CalculateBiquadParameters(uint Samples) {      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
739          if (!FilterLeft.Enabled) return;          int ccvalue = itEvent->Param.CC.Value;
740            if (VCFCutoffCtrl.value == ccvalue) return;
741          biquad_param_t bqbase;          VCFCutoffCtrl.value == ccvalue;
742          biquad_param_t bqmain;          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
743          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
744          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];          float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
745          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          if (cutoff > 1.0) cutoff = 1.0;
746          pEngine->pBasicFilterParameters[0] = bqbase;          cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
747          pEngine->pMainFilterParameters[0]  = bqmain;          if (cutoff < 1.0) cutoff = 1.0;
748    
749          float* bq;          VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
750          for (int i = 1; i < Samples; i++) {          fFinalCutoff = cutoff;
751              // recalculate biquad parameters if cutoff or resonance differ from previous sample point      }
752              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
753                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
754                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];          // convert absolute controller value to differential
755                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];          const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
756                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);          VCFResonanceCtrl.value = itEvent->Param.CC.Value;
757              }          const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
758            fFinalResonance += resonancedelta;
759              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'          // needed for initialization of parameter
760              bq    = (float*) &pEngine->pBasicFilterParameters[i];          VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
761      }      }
     #endif // ENABLE_FILTER  
762    
763      /**      /**
764       *  Interpolates the input audio data (without looping).       *  Synthesizes the current audio fragment for this voice.
765       *       *
766       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
767       *                   fragment cycle       *                   fragment cycle
768       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
769       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
770       */       */
771      void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
772          int i = Skip;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
773            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
774            finalSynthesisParameters.pSrc      = pSrc;
775    
776          // FIXME: assuming either mono or stereo          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
777          if (this->pSample->Channels == 2) { // Stereo Sample          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
778              while (i < Samples) InterpolateStereo(pSrc, i);  
779          }          if (Skip) { // skip events that happened before this voice was triggered
780          else { // Mono Sample              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
781              while (i < Samples) InterpolateMono(pSrc, i);              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
782          }          }
     }  
783    
784      /**          uint killPos;
785       *  Interpolates the input audio data, this method honors looping.          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
786    
787          // FIXME: assuming either mono or stereo          uint i = Skip;
788          if (pSample->Channels == 2) { // Stereo Sample          while (i < Samples) {
789              if (pSample->LoopPlayCount) {              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
790                  // render loop (loop count limited)  
791                  while (i < Samples && LoopCyclesLeft) {              // initialize all final synthesis parameters
792                      InterpolateStereo(pSrc, i);              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
793                      if (Pos > pSample->LoopEnd) {              fFinalCutoff    = VCFCutoffCtrl.fvalue;
794                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              fFinalResonance = VCFResonanceCtrl.fvalue;
795                          LoopCyclesLeft--;  
796                      }              // process MIDI control change and pitchbend events for this subfragment
797                  }              processCCEvents(itCCEvent, iSubFragmentEnd);
798                  // render on without loop  
799                  while (i < Samples) InterpolateStereo(pSrc, i);              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
800    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
801                if (pEngineChannel->GetMute()) fFinalVolume = 0;
802    #endif
803    
804                // process transition events (note on, note off & sustain pedal)
805                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
806    
807                // if the voice was killed in this subfragment switch EG1 to fade out stage
808                if (itKillEvent && killPos <= iSubFragmentEnd) {
809                    EG1.enterFadeOutStage();
810                    itKillEvent = Pool<Event>::Iterator();
811              }              }
812              else { // render loop (endless loop)  
813                  while (i < Samples) {              // process envelope generators
814                      InterpolateStereo(pSrc, i);              switch (EG1.getSegmentType()) {
815                      if (Pos > pSample->LoopEnd) {                  case EGADSR::segment_lin:
816                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                      fFinalVolume *= EG1.processLin();
817                      }                      break;
818                  }                  case EGADSR::segment_exp:
819                        fFinalVolume *= EG1.processExp();
820                        break;
821                    case EGADSR::segment_end:
822                        fFinalVolume *= EG1.getLevel();
823                        break; // noop
824              }              }
825          }              switch (EG2.getSegmentType()) {
826          else { // Mono Sample                  case EGADSR::segment_lin:
827              if (pSample->LoopPlayCount) {                      fFinalCutoff *= EG2.processLin();
828                  // render loop (loop count limited)                      break;
829                  while (i < Samples && LoopCyclesLeft) {                  case EGADSR::segment_exp:
830                      InterpolateMono(pSrc, i);                      fFinalCutoff *= EG2.processExp();
831                      if (Pos > pSample->LoopEnd) {                      break;
832                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                  case EGADSR::segment_end:
833                          LoopCyclesLeft--;                      fFinalCutoff *= EG2.getLevel();
834                      }                      break; // noop
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateMono(pSrc, i);  
835              }              }
836              else { // render loop (endless loop)              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
837                  while (i < Samples) {  
838                      InterpolateMono(pSrc, i);              // process low frequency oscillators
839                      if (Pos > pSample->LoopEnd) {              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
840                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
841                      }              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
842    
843                // if filter enabled then update filter coefficients
844                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
845                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
846                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
847                }
848    
849                // do we need resampling?
850                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
851                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
852                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
853                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
854                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
855    
856                // prepare final synthesis parameters structure
857                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
858    #ifdef CONFIG_INTERPOLATE_VOLUME
859                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
860                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
861                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
862                finalSynthesisParameters.fFinalVolumeDeltaRight =
863                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
864                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
865    #else
866                finalSynthesisParameters.fFinalVolumeLeft  =
867                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
868                finalSynthesisParameters.fFinalVolumeRight =
869                    fFinalVolume * VolumeRight * PanRightSmoother.render();
870    #endif
871                // render audio for one subfragment
872                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
873    
874                // stop the rendering if volume EG is finished
875                if (EG1.getSegmentType() == EGADSR::segment_end) break;
876    
877                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
878    
879                // increment envelopes' positions
880                if (EG1.active()) {
881    
882                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
883                    if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
884                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
885                  }                  }
886    
887                    EG1.increment(1);
888                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
889              }              }
890                if (EG2.active()) {
891                    EG2.increment(1);
892                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
893                }
894                EG3.increment(1);
895                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
896    
897                Pos = newPos;
898                i = iSubFragmentEnd;
899          }          }
900      }      }
901    
902        /** @brief Update current portamento position.
903         *
904         * Will be called when portamento mode is enabled to get the final
905         * portamento position of this active voice from where the next voice(s)
906         * might continue to slide on.
907         *
908         * @param itNoteOffEvent - event which causes this voice to die soon
909         */
910        void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
911            const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
912            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
913        }
914    
915      /**      /**
916       *  Immediately kill the voice. This method should not be used to kill       *  Immediately kill the voice. This method should not be used to kill
917       *  a normal, active voice, because it doesn't take care of things like       *  a normal, active voice, because it doesn't take care of things like
# Line 1057  namespace LinuxSampler { namespace gig { Line 937  namespace LinuxSampler { namespace gig {
937       *  @param itKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
938       */       */
939      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
940          //FIXME: just two sanity checks for debugging, can be removed          #if CONFIG_DEVMODE
941          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
942          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));          if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
943            #endif // CONFIG_DEVMODE
944    
945          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
946          this->itKillEvent = itKillEvent;          this->itKillEvent = itKillEvent;

Legend:
Removed from v.287  
changed lines
  Added in v.841

  ViewVC Help
Powered by ViewVC