/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 696 by persson, Sat Jul 16 19:37:52 2005 UTC revision 841 by persson, Sat Mar 4 16:23:53 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 32  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
47          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
# Line 66  namespace LinuxSampler { namespace gig { Line 50  namespace LinuxSampler { namespace gig {
50          #else          #else
51          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52          #endif          #endif
53          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
56          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 149  namespace LinuxSampler { namespace gig { Line 104  namespace LinuxSampler { namespace gig {
104          // calculate volume          // calculate volume
105          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
106    
107          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          float volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
108    
109          Volume *= pDimRgn->SampleAttenuation;          volume *= pDimRgn->SampleAttenuation;
110    
111          // the volume of release triggered samples depends on note length          // the volume of release triggered samples depends on note length
112          if (Type == type_release_trigger) {          if (Type == type_release_trigger) {
# Line 159  namespace LinuxSampler { namespace gig { Line 114  namespace LinuxSampler { namespace gig {
114                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
115              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
116              if (attenuation <= 0) return -1;              if (attenuation <= 0) return -1;
117              Volume *= attenuation;              volume *= attenuation;
118          }          }
119    
120          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
121          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124            float crossfadeVolume;
125          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
126              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
130                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                  break;                  break;
132              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                  break;                  break;
135              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136              default:              default:
137                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
138          }          }
139    
140          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->GlobalVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149            finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
# Line 194  namespace LinuxSampler { namespace gig { Line 157  namespace LinuxSampler { namespace gig {
157              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
158    
159              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
160              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
161    
162              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
163                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
# Line 209  namespace LinuxSampler { namespace gig { Line 168  namespace LinuxSampler { namespace gig {
168          }          }
169          else { // RAM only voice          else { // RAM only voice
170              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
171              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
172              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
173          }          }
174            if (RAMLoop) {
175                loop.uiTotalCycles = pSample->LoopPlayCount;
176                loop.uiCyclesLeft  = pSample->LoopPlayCount;
177                loop.uiStart       = pSample->LoopStart;
178                loop.uiEnd         = pSample->LoopEnd;
179                loop.uiSize        = pSample->LoopSize;
180            }
181    
182          // calculate initial pitch value          // calculate initial pitch value
183          {          {
184              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
185              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
186              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
187              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
188          }          }
189    
# Line 257  namespace LinuxSampler { namespace gig { Line 218  namespace LinuxSampler { namespace gig {
218              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
219              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
220    
221              pEG1->Trigger(pDimRgn->EG1PreAttack,              EG1.trigger(pDimRgn->EG1PreAttack,
222                            pDimRgn->EG1Attack * eg1attack,                          pDimRgn->EG1Attack * eg1attack,
223                            pDimRgn->EG1Hold,                          pDimRgn->EG1Hold,
224                            pSample->LoopStart,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
225                            pDimRgn->EG1Decay1 * eg1decay * velrelease,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
226                            pDimRgn->EG1Decay2 * eg1decay * velrelease,                          pDimRgn->EG1InfiniteSustain,
227                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Sustain,
228                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Release * eg1release * velrelease,
229                            pDimRgn->EG1Release * eg1release * velrelease,                          velocityAttenuation,
230                            // the SSE synthesis implementation requires                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
231                            // the vca start to be 16 byte aligned          }
232                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?  
233                            Delay & 0xfffffffc : Delay,  #ifdef CONFIG_INTERPOLATE_VOLUME
234                            velocityAttenuation);          // setup initial volume in synthesis parameters
235          }  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
236            if (pEngineChannel->GetMute()) {
237                finalSynthesisParameters.fFinalVolumeLeft  = 0;
238                finalSynthesisParameters.fFinalVolumeRight = 0;
239            }
240            else
241    #else
242            {
243                float finalVolume = pEngineChannel->GlobalVolume * crossfadeVolume * EG1.getLevel();
244    
245                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
246                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
247            }
248    #endif
249    #endif
250    
251          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
252          {          {
# Line 299  namespace LinuxSampler { namespace gig { Line 273  namespace LinuxSampler { namespace gig {
273              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
274              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
275    
276              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
277                            pDimRgn->EG2Attack * eg2attack,                          pDimRgn->EG2Attack * eg2attack,
278                            false,                          false,
279                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
280                            pDimRgn->EG2Decay1 * eg2decay * velrelease,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
281                            pDimRgn->EG2Decay2 * eg2decay * velrelease,                          pDimRgn->EG2InfiniteSustain,
282                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
283                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
284                            pDimRgn->EG2Release * eg2release * velrelease,                          velocityAttenuation,
285                            Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           velocityAttenuation);  
286          }          }
287    
288    
289          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
290          {          {
291            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
292            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
293                float eg3depth = (bPortamento)
294                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
295                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
296                float eg3time = (bPortamento)
297                                    ? pEngineChannel->PortamentoTime
298                                    : pDimRgn->EG3Attack;
299                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
300                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
301          }          }
302    
303    
# Line 354  namespace LinuxSampler { namespace gig { Line 335  namespace LinuxSampler { namespace gig {
335                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
336                      bLFO1Enabled         = false;                      bLFO1Enabled         = false;
337              }              }
338              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) {
339                                               lfo1_internal_depth,                  pLFO1->trigger(pDimRgn->LFO1Frequency,
340                                               pDimRgn->LFO1ControlDepth,                                 start_level_max,
341                                               pEngineChannel->ControllerTable[pLFO1->ExtController],                                 lfo1_internal_depth,
342                                               pDimRgn->LFO1FlipPhase,                                 pDimRgn->LFO1ControlDepth,
343                                               pEngine->SampleRate,                                 pDimRgn->LFO1FlipPhase,
344                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
345                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
346                }
347          }          }
348    
349    
# Line 398  namespace LinuxSampler { namespace gig { Line 381  namespace LinuxSampler { namespace gig {
381                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
382                      bLFO2Enabled         = false;                      bLFO2Enabled         = false;
383              }              }
384              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) {
385                                               lfo2_internal_depth,                  pLFO2->trigger(pDimRgn->LFO2Frequency,
386                                               pDimRgn->LFO2ControlDepth,                                 start_level_max,
387                                               pEngineChannel->ControllerTable[pLFO2->ExtController],                                 lfo2_internal_depth,
388                                               pDimRgn->LFO2FlipPhase,                                 pDimRgn->LFO2ControlDepth,
389                                               pEngine->SampleRate,                                 pDimRgn->LFO2FlipPhase,
390                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
391                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
392                }
393          }          }
394    
395    
# Line 442  namespace LinuxSampler { namespace gig { Line 427  namespace LinuxSampler { namespace gig {
427                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
428                      bLFO3Enabled         = false;                      bLFO3Enabled         = false;
429              }              }
430              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) {
431                                               lfo3_internal_depth,                  pLFO3->trigger(pDimRgn->LFO3Frequency,
432                                               pDimRgn->LFO3ControlDepth,                                 start_level_mid,
433                                               pEngineChannel->ControllerTable[pLFO3->ExtController],                                 lfo3_internal_depth,
434                                               false,                                 pDimRgn->LFO3ControlDepth,
435                                               pEngine->SampleRate,                                 false,
436                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
437                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
438                }
439          }          }
440    
441    
# Line 521  namespace LinuxSampler { namespace gig { Line 508  namespace LinuxSampler { namespace gig {
508              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
509    
510              #ifndef CONFIG_OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
511              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
512              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
513              #else // override filter type              #else // override filter type
514              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
515              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
# Line 532  namespace LinuxSampler { namespace gig { Line 519  namespace LinuxSampler { namespace gig {
519              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
520    
521              // calculate cutoff frequency              // calculate cutoff frequency
522              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
523              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
524                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
525              }              }
526              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
527    
528              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;              int cvalue;
529              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
530                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
531                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
532                    // VCFVelocityScale in this case means Minimum cutoff
533                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
534                }
535                else {
536                    cvalue = pDimRgn->VCFCutoff;
537                }
538                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
539                if (cutoff > 1.0) cutoff = 1.0;
540                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
541                if (cutoff < 1.0) cutoff = 1.0;
542    
543                // calculate resonance
544                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
545    
546              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
547                VCFResonanceCtrl.fvalue = resonance;
548          }          }
549          else {          else {
550              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 570  namespace LinuxSampler { namespace gig { Line 568  namespace LinuxSampler { namespace gig {
568      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
569    
570          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
571          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
572    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         if (bLFO1Enabled) pLFO1->Process(Samples);  
         if (bLFO2Enabled) pLFO2->Process(Samples);  
         if (bLFO3Enabled) {  
             if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
573          switch (this->PlaybackState) {          switch (this->PlaybackState) {
574    
575              case playback_state_init:              case playback_state_init:
# Line 617  namespace LinuxSampler { namespace gig { Line 584  namespace LinuxSampler { namespace gig {
584    
585                      if (DiskVoice) {                      if (DiskVoice) {
586                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
587                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
588                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
589                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
590                          }                          }
591                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
592                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
593                      }                      }
594                  }                  }
# Line 637  namespace LinuxSampler { namespace gig { Line 603  namespace LinuxSampler { namespace gig {
603                              KillImmediately();                              KillImmediately();
604                              return;                              return;
605                          }                          }
606                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
607                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
608                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
609                      }                      }
610    
# Line 659  namespace LinuxSampler { namespace gig { Line 625  namespace LinuxSampler { namespace gig {
625                      // render current audio fragment                      // render current audio fragment
626                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
627    
628                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
629                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
630                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
631                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
632    
633                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
634                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 677  namespace LinuxSampler { namespace gig { Line 643  namespace LinuxSampler { namespace gig {
643                  break;                  break;
644          }          }
645    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
646          // Reset delay          // Reset delay
647          Delay = 0;          Delay = 0;
648    
649          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
650    
651          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
652          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
653      }      }
654    
655      /**      /**
# Line 696  namespace LinuxSampler { namespace gig { Line 657  namespace LinuxSampler { namespace gig {
657       *  suspended / not running.       *  suspended / not running.
658       */       */
659      void Voice::Reset() {      void Voice::Reset() {
660          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
661          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
662          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
663          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
664          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 711  namespace LinuxSampler { namespace gig { Line 669  namespace LinuxSampler { namespace gig {
669      }      }
670    
671      /**      /**
672       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
673       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
674       *       *
675       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
676         * @param End     - youngest time stamp where processing should be stopped
677       */       */
678      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
679            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
680                if (itEvent->Type == Event::type_release) {
681                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
682                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
683                } else if (itEvent->Type == Event::type_cancel_release) {
684                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
685                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
686                }
687            }
688        }
689    
690          // dispatch control change events      /**
691          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
692          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
693              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
694          }       * @param itEvent - iterator pointing to the next event to be processed
695          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
696              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
697                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
698                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
699                  }              if (itEvent->Type == Event::type_control_change &&
700                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
701                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
702                        processCutoffEvent(itEvent);
703                    }
704                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
705                        processResonanceEvent(itEvent);
706                  }                  }
707                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
708                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
709                  }                  }
710                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
711                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
712                  }                  }
713                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
714                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
715                  }                  }
716                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
717                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
718                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
719                  }                  }
720                    if (itEvent->Param.CC.Controller == 7) { // volume
721                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value] * CONFIG_GLOBAL_ATTENUATION);
722                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
723                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
724                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
725                    }
726                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
727                    processPitchEvent(itEvent);
728              }              }
729            }
730        }
731    
732        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
733            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
734            finalSynthesisParameters.fFinalPitch *= pitch;
735            PitchBend = pitch;
736        }
737    
738        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
739            int ccvalue = itEvent->Param.CC.Value;
740            if (VCFCutoffCtrl.value == ccvalue) return;
741            VCFCutoffCtrl.value == ccvalue;
742            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
743            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
744            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
745            if (cutoff > 1.0) cutoff = 1.0;
746            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
747            if (cutoff < 1.0) cutoff = 1.0;
748    
749            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
750            fFinalCutoff = cutoff;
751        }
752    
753        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
754            // convert absolute controller value to differential
755            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
756            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
757            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
758            fFinalResonance += resonancedelta;
759            // needed for initialization of parameter
760            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
761        }
762    
763              ++itCCEvent;      /**
764         *  Synthesizes the current audio fragment for this voice.
765         *
766         *  @param Samples - number of sample points to be rendered in this audio
767         *                   fragment cycle
768         *  @param pSrc    - pointer to input sample data
769         *  @param Skip    - number of sample points to skip in output buffer
770         */
771        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
772            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
773            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
774            finalSynthesisParameters.pSrc      = pSrc;
775    
776            RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
777            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
778    
779            if (Skip) { // skip events that happened before this voice was triggered
780                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
781                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
782          }          }
783    
784            uint killPos;
785            if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
786    
787          // process pitch events          uint i = Skip;
788          {          while (i < Samples) {
789              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
790              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();  
791              if (Delay) { // skip events that happened before this voice was triggered              // initialize all final synthesis parameters
792                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
793              }              fFinalCutoff    = VCFCutoffCtrl.fvalue;
794              // apply old pitchbend value until first pitch event occurs              fFinalResonance = VCFResonanceCtrl.fvalue;
795              if (this->PitchBend != 1.0) {  
796                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;              // process MIDI control change and pitchbend events for this subfragment
797                  for (uint i = Delay; i < end; i++) {              processCCEvents(itCCEvent, iSubFragmentEnd);
798                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
799                  }              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
800    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
801                if (pEngineChannel->GetMute()) fFinalVolume = 0;
802    #endif
803    
804                // process transition events (note on, note off & sustain pedal)
805                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
806    
807                // if the voice was killed in this subfragment switch EG1 to fade out stage
808                if (itKillEvent && killPos <= iSubFragmentEnd) {
809                    EG1.enterFadeOutStage();
810                    itKillEvent = Pool<Event>::Iterator();
811              }              }
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
812    
813                  itVCOEvent = itNextVCOEvent;              // process envelope generators
814                switch (EG1.getSegmentType()) {
815                    case EGADSR::segment_lin:
816                        fFinalVolume *= EG1.processLin();
817                        break;
818                    case EGADSR::segment_exp:
819                        fFinalVolume *= EG1.processExp();
820                        break;
821                    case EGADSR::segment_end:
822                        fFinalVolume *= EG1.getLevel();
823                        break; // noop
824              }              }
825              if (!pVCOEventList->isEmpty()) {              switch (EG2.getSegmentType()) {
826                  this->PitchBend = pitch;                  case EGADSR::segment_lin:
827                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);                      fFinalCutoff *= EG2.processLin();
828                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);                      break;
829                    case EGADSR::segment_exp:
830                        fFinalCutoff *= EG2.processExp();
831                        break;
832                    case EGADSR::segment_end:
833                        fFinalCutoff *= EG2.getLevel();
834                        break; // noop
835              }              }
836          }              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
837    
838          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)              // process low frequency oscillators
839          {              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
840              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
841              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
842    
843                  itVCAEvent = itNextVCAEvent;              // if filter enabled then update filter coefficients
844                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
845                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
846                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
847              }              }
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
848    
849          // process filter cutoff events              // do we need resampling?
850          {              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
851              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
852              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
853              if (Delay) { // skip events that happened before this voice was triggered                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
854                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
855    
856                  itCutoffEvent = itNextCutoffEvent;              // prepare final synthesis parameters structure
857              }              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
858              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  #ifdef CONFIG_INTERPOLATE_VOLUME
859          }              finalSynthesisParameters.fFinalVolumeDeltaLeft  =
860                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
861                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
862                finalSynthesisParameters.fFinalVolumeDeltaRight =
863                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
864                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
865    #else
866                finalSynthesisParameters.fFinalVolumeLeft  =
867                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
868                finalSynthesisParameters.fFinalVolumeRight =
869                    fFinalVolume * VolumeRight * PanRightSmoother.render();
870    #endif
871                // render audio for one subfragment
872                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
873    
874          // process filter resonance events              // stop the rendering if volume EG is finished
875          {              if (EG1.getSegmentType() == EGADSR::segment_end) break;
             RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
876    
877                  itResonanceEvent = itNextResonanceEvent;              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
             }  
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     }  
878    
879      /**              // increment envelopes' positions
880       * Calculate all necessary, final biquad filter parameters.              if (EG1.active()) {
881       *  
882       * @param Samples - number of samples to be rendered in this audio fragment cycle                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
883       */                  if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
884      void Voice::CalculateBiquadParameters(uint Samples) {                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
885                  }                  }
886    
887                    EG1.increment(1);
888                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
889                }
890                if (EG2.active()) {
891                    EG2.increment(1);
892                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
893              }              }
894                EG3.increment(1);
895                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
896    
897              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
898              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
899          }          }
900      }      }
901    
902      /**      /** @brief Update current portamento position.
      *  Synthesizes the current audio fragment for this voice.  
903       *       *
904       *  @param Samples - number of sample points to be rendered in this audio       * Will be called when portamento mode is enabled to get the final
905       *                   fragment cycle       * portamento position of this active voice from where the next voice(s)
906       *  @param pSrc    - pointer to input sample data       * might continue to slide on.
907       *  @param Skip    - number of sample points to skip in output buffer       *
908         * @param itNoteOffEvent - event which causes this voice to die soon
909       */       */
910      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
911          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
912            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
913      }      }
914    
915      /**      /**

Legend:
Removed from v.696  
changed lines
  Added in v.841

  ViewVC Help
Powered by ViewVC