/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 245 by schoenebeck, Sat Sep 18 14:12:36 2004 UTC revision 877 by persson, Sun Jun 25 13:54:17 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          Active = false;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
39          KeyGroup = 0;          KeyGroup = 0;
40            SynthesisMode = 0; // set all mode bits to 0 first
41            // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
42            #if CONFIG_ASM && ARCH_X86
43            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44            #else
45            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46            #endif
47            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49            finalSynthesisParameters.filterLeft.Reset();
50            finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 103  namespace LinuxSampler { namespace gig { Line 66  namespace LinuxSampler { namespace gig {
66       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
67       *  needed.       *  needed.
68       *       *
69       *  @param pNoteOnEvent        - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
70       *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
71       *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
72       *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
73       *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)       *  @param VoiceType      - type of this voice
74       *  @returns 0 on success, a value < 0 if something failed       *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
75         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
76         *           (either due to an error or e.g. because no region is
77         *           defined for the given key)
78       */       */
79      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
81             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
82             exit(EXIT_FAILURE);  
83          }          #if CONFIG_DEVMODE
84            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
85          Type            = type_normal;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
86          Active          = true;          }
87          MIDIKey         = pNoteOnEvent->Key;          #endif // CONFIG_DEVMODE
88          pRegion         = pInstrument->GetRegion(MIDIKey);  
89          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          Type            = VoiceType;
90          Delay           = pNoteOnEvent->FragmentPos();          MIDIKey         = itNoteOnEvent->Param.Note.Key;
91          pTriggerEvent   = pNoteOnEvent;          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
92          pKillEvent      = NULL;          Delay           = itNoteOnEvent->FragmentPos();
93            itTriggerEvent  = itNoteOnEvent;
94          if (!pRegion) {          itKillEvent     = Pool<Event>::Iterator();
95              std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          KeyGroup        = iKeyGroup;
96              KillImmediately();          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
97              return -1;  
98            // calculate volume
99            const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
100    
101            float volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
102    
103            volume *= pDimRgn->SampleAttenuation;
104    
105            // the volume of release triggered samples depends on note length
106            if (Type == type_release_trigger) {
107                float noteLength = float(pEngine->FrameTime + Delay -
108                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
109                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
110                if (attenuation <= 0) return -1;
111                volume *= attenuation;
112          }          }
113    
114          KeyGroup = pRegion->KeyGroup;          // select channel mode (mono or stereo)
115            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
         // get current dimension values to select the right dimension region  
         //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
         uint DimValues[5] = {0,0,0,0,0};  
         for (int i = pRegion->Dimensions - 1; i >= 0; i--) {  
             switch (pRegion->pDimensionDefinitions[i].dimension) {  
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             pEngine->LaunchVoice(pNoteOnEvent, iNewLayer, ReleaseTriggerVoice);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = pNoteOnEvent->Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pNoteOnEvent->Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
116    
117          // get starting crossfade volume level          // get starting crossfade volume level
118            float crossfadeVolume;
119          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
120              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
121                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
122                  break;                  break;
123              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
124                  CrossfadeVolume = CrossfadeAttenuation(pNoteOnEvent->Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
125                  break;                  break;
126              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
127                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
130              default:              default:
131                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
132          }          }
133    
134          PanLeft  = float(RTMath::Max(pDimRgn->Pan, 0)) / -64.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
135          PanRight = float(RTMath::Min(pDimRgn->Pan, 0)) /  63.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
136    
137          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
138            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
139            VolumeSmoother.trigger(pEngineChannel->GlobalVolume, subfragmentRate);
140            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
141            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
142    
143          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
144            Pos = pDimRgn->SampleStartOffset;
145    
146          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
147          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
148          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
149    
150            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
151    
152          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
153              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
154    
155              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
156              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
157    
158              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
159                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
160                  KillImmediately();                  KillImmediately();
161                  return -1;                  return -1;
# Line 285  namespace LinuxSampler { namespace gig { Line 164  namespace LinuxSampler { namespace gig {
164          }          }
165          else { // RAM only voice          else { // RAM only voice
166              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
167              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
168              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
169          }          }
170            if (RAMLoop) {
171                loop.uiTotalCycles = pSample->LoopPlayCount;
172                loop.uiCyclesLeft  = pSample->LoopPlayCount;
173                loop.uiStart       = loopinfo.LoopStart;
174                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
175                loop.uiSize        = loopinfo.LoopLength;
176            }
177    
178          // calculate initial pitch value          // calculate initial pitch value
179          {          {
180              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
181              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
182              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
183              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
184          }          }
185    
186            // the length of the decay and release curves are dependent on the velocity
187          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
188    
189          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
190          {          {
# Line 318  namespace LinuxSampler { namespace gig { Line 198  namespace LinuxSampler { namespace gig {
198                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = 0; // TODO: aftertouch not yet supported
199                      break;                      break;
200                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
201                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
202                      break;                      break;
203                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
204                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
205                      break;                      break;
206              }              }
207              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
208    
209              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
210              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
211              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
212              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
213                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
214              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
215                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
216                            pDimRgn->EG1Hold,  
217                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
218                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
219                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
220                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
221                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
222                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
223                            Delay);                          pDimRgn->EG1Sustain,
224          }                          pDimRgn->EG1Release * eg1release * velrelease,
225                            velocityAttenuation,
226                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
227            }
228    
229    #ifdef CONFIG_INTERPOLATE_VOLUME
230            // setup initial volume in synthesis parameters
231    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
232            if (pEngineChannel->GetMute()) {
233                finalSynthesisParameters.fFinalVolumeLeft  = 0;
234                finalSynthesisParameters.fFinalVolumeRight = 0;
235            }
236            else
237    #else
238            {
239                float finalVolume = pEngineChannel->GlobalVolume * crossfadeVolume * EG1.getLevel();
240    
241                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
242                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
243            }
244    #endif
245    #endif
246    
     #if ENABLE_FILTER  
247          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
248          {          {
249              // get current value of EG2 controller              // get current value of EG2 controller
# Line 357  namespace LinuxSampler { namespace gig { Line 256  namespace LinuxSampler { namespace gig {
256                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = 0; // TODO: aftertouch not yet supported
257                      break;                      break;
258                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
259                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
260                      break;                      break;
261                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
262                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
263                      break;                      break;
264              }              }
265              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
266    
267              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
268              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
269              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
270              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
271    
272              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
273                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
274                            false,                          false,
275                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
276                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
277                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
278                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
279                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
280                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
281                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
282          }          }
     #endif // ENABLE_FILTER  
283    
284    
285          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
286          {          {
287            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
288            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
289                float eg3depth = (bPortamento)
290                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
291                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
292                float eg3time = (bPortamento)
293                                    ? pEngineChannel->PortamentoTime
294                                    : pDimRgn->EG3Attack;
295                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
296                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
297          }          }
298    
299    
# Line 398  namespace LinuxSampler { namespace gig { Line 304  namespace LinuxSampler { namespace gig {
304                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
305                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
306                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
307                        bLFO1Enabled         = (lfo1_internal_depth > 0);
308                      break;                      break;
309                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
310                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
311                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
312                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
313                      break;                      break;
314                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
315                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
316                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
317                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
318                      break;                      break;
319                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
320                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
321                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
322                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
323                      break;                      break;
324                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
325                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
326                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
327                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
328                      break;                      break;
329                  default:                  default:
330                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
331                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
332                        bLFO1Enabled         = false;
333                }
334                if (bLFO1Enabled) {
335                    pLFO1->trigger(pDimRgn->LFO1Frequency,
336                                   start_level_max,
337                                   lfo1_internal_depth,
338                                   pDimRgn->LFO1ControlDepth,
339                                   pDimRgn->LFO1FlipPhase,
340                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
341                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
342              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngine->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
343          }          }
344    
345      #if ENABLE_FILTER  
346          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
347          {          {
348              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 436  namespace LinuxSampler { namespace gig { Line 350  namespace LinuxSampler { namespace gig {
350                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
351                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
352                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
353                        bLFO2Enabled         = (lfo2_internal_depth > 0);
354                      break;                      break;
355                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
356                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
357                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
358                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
359                      break;                      break;
360                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
361                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
362                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
363                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
364                      break;                      break;
365                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
366                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
367                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
368                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
369                      break;                      break;
370                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
371                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
372                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
373                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
374                      break;                      break;
375                  default:                  default:
376                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
377                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
378                        bLFO2Enabled         = false;
379                }
380                if (bLFO2Enabled) {
381                    pLFO2->trigger(pDimRgn->LFO2Frequency,
382                                   start_level_max,
383                                   lfo2_internal_depth,
384                                   pDimRgn->LFO2ControlDepth,
385                                   pDimRgn->LFO2FlipPhase,
386                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
387                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
388              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngine->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
389          }          }
390      #endif // ENABLE_FILTER  
391    
392          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
393          {          {
# Line 474  namespace LinuxSampler { namespace gig { Line 396  namespace LinuxSampler { namespace gig {
396                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
397                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
398                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
399                        bLFO3Enabled         = (lfo3_internal_depth > 0);
400                      break;                      break;
401                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
402                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
403                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
404                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
405                      break;                      break;
406                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
407                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
408                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
409                        bLFO3Enabled         = false; // see TODO comment in line above
410                      break;                      break;
411                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
412                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
413                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
414                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
415                      break;                      break;
416                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
417                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
418                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
419                        bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
420                      break;                      break;
421                  default:                  default:
422                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
423                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
424                        bLFO3Enabled         = false;
425                }
426                if (bLFO3Enabled) {
427                    pLFO3->trigger(pDimRgn->LFO3Frequency,
428                                   start_level_mid,
429                                   lfo3_internal_depth,
430                                   pDimRgn->LFO3ControlDepth,
431                                   false,
432                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
433                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
434              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngine->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
435          }          }
436    
437      #if ENABLE_FILTER  
438          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
439          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
440          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
441          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
442          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
443          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
444              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
445              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
446                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
447              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
448              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
449                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 548  namespace LinuxSampler { namespace gig { Line 479  namespace LinuxSampler { namespace gig {
479                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
480                      break;                      break;
481              }              }
482              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
483    
484              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
485              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
486              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
487              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
488                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 570  namespace LinuxSampler { namespace gig { Line 501  namespace LinuxSampler { namespace gig {
501                  default:                  default:
502                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
503              }              }
504              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
505    
506              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
507              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
508              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
509              #else // override filter type              #else // override filter type
510              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
511              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
512              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
513    
514              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
515              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
516    
517              // calculate cutoff frequency              // calculate cutoff frequency
518              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
519              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
520                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
521              }              }
522              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
523    
524              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
525              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
526                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
527                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
528                    // VCFVelocityScale in this case means Minimum cutoff
529                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
530                }
531                else {
532                    cvalue = pDimRgn->VCFCutoff;
533                }
534                cutoff *= float(cvalue);
535                if (cutoff > 127.0f) cutoff = 127.0f;
536    
537              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);              // calculate resonance
538              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
539    
540              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
541                VCFResonanceCtrl.fvalue = resonance;
542          }          }
543          else {          else {
544              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
545              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
546          }          }
     #endif // ENABLE_FILTER  
547    
548          return 0; // success          return 0; // success
549      }      }
# Line 625  namespace LinuxSampler { namespace gig { Line 561  namespace LinuxSampler { namespace gig {
561       */       */
562      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
563    
564          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
565          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, pKillEvent);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
566    
567          switch (this->PlaybackState) {          switch (this->PlaybackState) {
568    
569                case playback_state_init:
570                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
571                    // no break - continue with playback_state_ram
572    
573              case playback_state_ram: {              case playback_state_ram: {
574                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
575                      else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
576                        // render current fragment
577                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
578    
579                      if (DiskVoice) {                      if (DiskVoice) {
580                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
581                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
582                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
583                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
584                          }                          }
585                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
586                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
587                      }                      }
588                  }                  }
# Line 683  namespace LinuxSampler { namespace gig { Line 597  namespace LinuxSampler { namespace gig {
597                              KillImmediately();                              KillImmediately();
598                              return;                              return;
599                          }                          }
600                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
601                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
602                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
603                      }                      }
604    
605                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
606    
607                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
608                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
609                          DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
610                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
611                                // remember how many sample words there are before any silence has been added
612                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
613                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
614                            }
615                      }                      }
616    
617                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
618                      InterpolateNoLoop(Samples, ptr, Delay);  
619                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
620                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
621    
622                        const int iPos = (int) finalSynthesisParameters.dPos;
623                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
624                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
625                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
626    
627                        // change state of voice to 'end' if we really reached the end of the sample data
628                        if (RealSampleWordsLeftToRead >= 0) {
629                            RealSampleWordsLeftToRead -= readSampleWords;
630                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
631                        }
632                  }                  }
633                  break;                  break;
634    
635              case playback_state_end:              case playback_state_end:
636                  KillImmediately(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
637                  break;                  break;
638          }          }
639    
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
     #if ENABLE_FILTER  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
640          // Reset delay          // Reset delay
641          Delay = 0;          Delay = 0;
642    
643          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
644    
645          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
646          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
647      }      }
648    
649      /**      /**
# Line 727  namespace LinuxSampler { namespace gig { Line 651  namespace LinuxSampler { namespace gig {
651       *  suspended / not running.       *  suspended / not running.
652       */       */
653      void Voice::Reset() {      void Voice::Reset() {
654          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
655          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
656          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
657          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
658          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
659          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
660          Active = false;          PlaybackState = playback_state_end;
661            itTriggerEvent = Pool<Event>::Iterator();
662            itKillEvent    = Pool<Event>::Iterator();
663      }      }
664    
665      /**      /**
666       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
667       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
668       *       *
669       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
670         * @param End     - youngest time stamp where processing should be stopped
671       */       */
672      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
673            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
674                if (itEvent->Type == Event::type_release) {
675                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
676                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
677                } else if (itEvent->Type == Event::type_cancel_release) {
678                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
679                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
680                }
681            }
682        }
683    
684          // dispatch control change events      /**
685          Event* pCCEvent = pEngine->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
686          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
687              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();       *
688          }       * @param itEvent - iterator pointing to the next event to be processed
689          while (pCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
690              if (pCCEvent->Controller) { // if valid MIDI controller       */
691                  #if ENABLE_FILTER      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
692                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
693                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);              if (itEvent->Type == Event::type_control_change &&
694                  }                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
695                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
696                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      processCutoffEvent(itEvent);
697                    }
698                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
699                        processResonanceEvent(itEvent);
700                  }                  }
701                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
702                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(pCCEvent);  
703                  }                  }
704                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
705                  if (pCCEvent->Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(pCCEvent);  
706                  }                  }
707                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
708                  if (pCCEvent->Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(pCCEvent);  
709                  }                  }
710                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
711                      pCCEvent->Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
712                      pEngine->pSynthesisEvents[Event::destination_vca]->alloc_assign(*pCCEvent);                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
713                    }
714                    if (itEvent->Param.CC.Controller == 7) { // volume
715                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value] * CONFIG_GLOBAL_ATTENUATION);
716                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
717                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
718                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
719                  }                  }
720                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
721                    processPitchEvent(itEvent);
722              }              }
   
             pCCEvent = pEngine->pCCEvents->next();  
723          }          }
724        }
725    
726        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
727            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
728            finalSynthesisParameters.fFinalPitch *= pitch;
729            PitchBend = pitch;
730        }
731    
732        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
733            int ccvalue = itEvent->Param.CC.Value;
734            if (VCFCutoffCtrl.value == ccvalue) return;
735            VCFCutoffCtrl.value == ccvalue;
736            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
737            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
738            float cutoff = CutoffBase * float(ccvalue);
739            if (cutoff > 127.0f) cutoff = 127.0f;
740    
741          // process pitch events          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
742          {          fFinalCutoff = cutoff;
743              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];      }
             Event* pVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (pVCOEvent) {  
                 Event* pNextVCOEvent = pVCOEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
744    
745                  pVCOEvent = pNextVCOEvent;      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
746              }          // convert absolute controller value to differential
747              if (pVCOEventList->last()) this->PitchBend = pitch;          const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
748            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
749            const float resonancedelta = (float) ctrldelta;
750            fFinalResonance += resonancedelta;
751            // needed for initialization of parameter
752            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
753        }
754    
755        /**
756         *  Synthesizes the current audio fragment for this voice.
757         *
758         *  @param Samples - number of sample points to be rendered in this audio
759         *                   fragment cycle
760         *  @param pSrc    - pointer to input sample data
761         *  @param Skip    - number of sample points to skip in output buffer
762         */
763        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
764            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
765            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
766            finalSynthesisParameters.pSrc      = pSrc;
767    
768            RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
769            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
770    
771            if (Skip) { // skip events that happened before this voice was triggered
772                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
773                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
774          }          }
775    
776          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          uint killPos;
777          {          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
             RTEList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];  
             Event* pVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCAEvent && pVCAEvent->FragmentPos() <= Delay) pVCAEvent = pVCAEventList->next();  
             }  
             float crossfadevolume;  
             while (pVCAEvent) {  
                 Event* pNextVCAEvent = pVCAEventList->next();  
778    
779                  // calculate the influence length of this event (in sample points)          uint i = Skip;
780                  uint end = (pNextVCAEvent) ? pNextVCAEvent->FragmentPos() : Samples;          while (i < Samples) {
781                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
782    
783                  crossfadevolume = CrossfadeAttenuation(pVCAEvent->Value);              // initialize all final synthesis parameters
784                finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
785                fFinalCutoff    = VCFCutoffCtrl.fvalue;
786                fFinalResonance = VCFResonanceCtrl.fvalue;
787    
788                  float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;              // process MIDI control change and pitchbend events for this subfragment
789                processCCEvents(itCCEvent, iSubFragmentEnd);
790    
791                  // apply volume value to the volume parameter sequence              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
792                  for (uint i = pVCAEvent->FragmentPos(); i < end; i++) {  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
793                      pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;              if (pEngineChannel->GetMute()) fFinalVolume = 0;
794                  }  #endif
795    
796                  pVCAEvent = pNextVCAEvent;              // process transition events (note on, note off & sustain pedal)
797              }              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
             if (pVCAEventList->last()) this->CrossfadeVolume = crossfadevolume;  
         }  
798    
799      #if ENABLE_FILTER              // if the voice was killed in this subfragment switch EG1 to fade out stage
800          // process filter cutoff events              if (itKillEvent && killPos <= iSubFragmentEnd) {
801          {                  EG1.enterFadeOutStage();
802              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];                  itKillEvent = Pool<Event>::Iterator();
803              Event* pCutoffEvent = pCutoffEventList->first();              }
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();  
             }  
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
804    
805                  pCutoffEvent = pNextCutoffEvent;              // process envelope generators
806                switch (EG1.getSegmentType()) {
807                    case EGADSR::segment_lin:
808                        fFinalVolume *= EG1.processLin();
809                        break;
810                    case EGADSR::segment_exp:
811                        fFinalVolume *= EG1.processExp();
812                        break;
813                    case EGADSR::segment_end:
814                        fFinalVolume *= EG1.getLevel();
815                        break; // noop
816              }              }
817              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              switch (EG2.getSegmentType()) {
818          }                  case EGADSR::segment_lin:
819                        fFinalCutoff *= EG2.processLin();
820                        break;
821                    case EGADSR::segment_exp:
822                        fFinalCutoff *= EG2.processExp();
823                        break;
824                    case EGADSR::segment_end:
825                        fFinalCutoff *= EG2.getLevel();
826                        break; // noop
827                }
828                if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
829    
830          // process filter resonance events              // process low frequency oscillators
831          {              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
832              RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
833              Event* pResonanceEvent = pResonanceEventList->first();              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();  
             }  
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = pResonanceEvent->Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
834    
835                  pResonanceEvent = pNextResonanceEvent;              // if filter enabled then update filter coefficients
836                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
837                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
838                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
839              }              }
             if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     #endif // ENABLE_FILTER  
     }  
840    
841      #if ENABLE_FILTER              // do we need resampling?
842      /**              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
843       * Calculate all necessary, final biquad filter parameters.              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
844       *              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
845       * @param Samples - number of samples to be rendered in this audio fragment cycle                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
846       */              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
     void Voice::CalculateBiquadParameters(uint Samples) {  
         if (!FilterLeft.Enabled) return;  
847    
848          biquad_param_t bqbase;              // prepare final synthesis parameters structure
849          biquad_param_t bqmain;              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
850          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  #ifdef CONFIG_INTERPOLATE_VOLUME
851          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];              finalSynthesisParameters.fFinalVolumeDeltaLeft  =
852          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                  (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
853          pEngine->pBasicFilterParameters[0] = bqbase;                   finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
854          pEngine->pMainFilterParameters[0]  = bqmain;              finalSynthesisParameters.fFinalVolumeDeltaRight =
855                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
856          float* bq;                   finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
857          for (int i = 1; i < Samples; i++) {  #else
858              // recalculate biquad parameters if cutoff or resonance differ from previous sample point              finalSynthesisParameters.fFinalVolumeLeft  =
859              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||                  fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
860                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {              finalSynthesisParameters.fFinalVolumeRight =
861                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                  fFinalVolume * VolumeRight * PanRightSmoother.render();
862                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  #endif
863                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);              // render audio for one subfragment
864              }              RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
   
             //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'  
             bq    = (float*) &pEngine->pBasicFilterParameters[i];  
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
     }  
     #endif // ENABLE_FILTER  
865    
866      /**              // stop the rendering if volume EG is finished
867       *  Interpolates the input audio data (without looping).              if (EG1.getSegmentType() == EGADSR::segment_end) break;
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
868    
869          // FIXME: assuming either mono or stereo              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) InterpolateStereo(pSrc, i);  
         }  
         else { // Mono Sample  
             while (i < Samples) InterpolateMono(pSrc, i);  
         }  
     }  
870    
871      /**              // increment envelopes' positions
872       *  Interpolates the input audio data, this method honors looping.              if (EG1.active()) {
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
873    
874          // FIXME: assuming either mono or stereo                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
875          if (pSample->Channels == 2) { // Stereo Sample                  if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
876              if (pSample->LoopPlayCount) {                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) InterpolateStereo(pSrc, i);  
             }  
             else { // render loop (endless loop)  
                 while (i < Samples) {  
                     InterpolateStereo(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);  
                     }  
                 }  
             }  
         }  
         else { // Mono Sample  
             if (pSample->LoopPlayCount) {  
                 // render loop (loop count limited)  
                 while (i < Samples && LoopCyclesLeft) {  
                     InterpolateMono(pSrc, i);  
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
877                  }                  }
878                  // render on without loop  
879                  while (i < Samples) InterpolateMono(pSrc, i);                  EG1.increment(1);
880                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
881              }              }
882              else { // render loop (endless loop)              if (EG2.active()) {
883                  while (i < Samples) {                  EG2.increment(1);
884                      InterpolateMono(pSrc, i);                  if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                     }  
                 }  
885              }              }
886                EG3.increment(1);
887                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
888    
889                Pos = newPos;
890                i = iSubFragmentEnd;
891          }          }
892      }      }
893    
894        /** @brief Update current portamento position.
895         *
896         * Will be called when portamento mode is enabled to get the final
897         * portamento position of this active voice from where the next voice(s)
898         * might continue to slide on.
899         *
900         * @param itNoteOffEvent - event which causes this voice to die soon
901         */
902        void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
903            const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
904            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
905        }
906    
907      /**      /**
908       *  Immediately kill the voice. This method should not be used to kill       *  Immediately kill the voice. This method should not be used to kill
909       *  a normal, active voice, because it doesn't take care of things like       *  a normal, active voice, because it doesn't take care of things like
# Line 1047  namespace LinuxSampler { namespace gig { Line 926  namespace LinuxSampler { namespace gig {
926       *  of a voice, a kill process cannot be cancalled and is therefore       *  of a voice, a kill process cannot be cancalled and is therefore
927       *  usually used for voice stealing and key group conflicts.       *  usually used for voice stealing and key group conflicts.
928       *       *
929       *  @param pKillEvent - event which caused the voice to be killed       *  @param itKillEvent - event which caused the voice to be killed
930       */       */
931      void Voice::Kill(Event* pKillEvent) {      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
932          if (pTriggerEvent && pKillEvent->FragmentPos() <= pTriggerEvent->FragmentPos()) return;          #if CONFIG_DEVMODE
933          this->pKillEvent = pKillEvent;          if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
934            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
935            #endif // CONFIG_DEVMODE
936    
937            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
938            this->itKillEvent = itKillEvent;
939      }      }
940    
941  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.245  
changed lines
  Added in v.877

  ViewVC Help
Powered by ViewVC