/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Contents of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 716 - (show annotations) (download)
Sun Jul 24 06:57:30 2005 UTC (18 years, 8 months ago) by iliev
File size: 48993 byte(s)
* Added configure option --enable-process-muted-channels
which can be used to enable the processing of muted channels

1 /***************************************************************************
2 * *
3 * LinuxSampler - modular, streaming capable sampler *
4 * *
5 * Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck *
6 * Copyright (C) 2005 Christian Schoenebeck *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "EGADSR.h"
25 #include "Manipulator.h"
26 #include "../../common/Features.h"
27 #include "Synthesizer.h"
28
29 #include "Voice.h"
30
31 namespace LinuxSampler { namespace gig {
32
33 const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
34
35 const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());
36
37 float Voice::CalculateFilterCutoffCoeff() {
38 return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);
39 }
40
41 int Voice::CalculateFilterUpdateMask() {
42 if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;
43 int power_of_two;
44 for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);
45 return (1 << power_of_two) - 1;
46 }
47
48 Voice::Voice() {
49 pEngine = NULL;
50 pDiskThread = NULL;
51 PlaybackState = playback_state_end;
52 pEG1 = NULL;
53 pEG2 = NULL;
54 pEG3 = NULL;
55 pVCAManipulator = NULL;
56 pVCFCManipulator = NULL;
57 pVCOManipulator = NULL;
58 pLFO1 = NULL;
59 pLFO2 = NULL;
60 pLFO3 = NULL;
61 KeyGroup = 0;
62 SynthesisMode = 0; // set all mode bits to 0 first
63 // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
64 #if CONFIG_ASM && ARCH_X86
65 SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
66 #else
67 SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
68 #endif
69 SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);
70
71 FilterLeft.Reset();
72 FilterRight.Reset();
73 }
74
75 Voice::~Voice() {
76 if (pEG1) delete pEG1;
77 if (pEG2) delete pEG2;
78 if (pEG3) delete pEG3;
79 if (pLFO1) delete pLFO1;
80 if (pLFO2) delete pLFO2;
81 if (pLFO3) delete pLFO3;
82 if (pVCAManipulator) delete pVCAManipulator;
83 if (pVCFCManipulator) delete pVCFCManipulator;
84 if (pVCOManipulator) delete pVCOManipulator;
85 }
86
87 void Voice::SetEngine(Engine* pEngine) {
88 this->pEngine = pEngine;
89
90 // delete old objects
91 if (pEG1) delete pEG1;
92 if (pEG2) delete pEG2;
93 if (pEG3) delete pEG3;
94 if (pVCAManipulator) delete pVCAManipulator;
95 if (pVCFCManipulator) delete pVCFCManipulator;
96 if (pVCOManipulator) delete pVCOManipulator;
97 if (pLFO1) delete pLFO1;
98 if (pLFO2) delete pLFO2;
99 if (pLFO3) delete pLFO3;
100
101 // create new ones
102 pEG1 = new EGADSR(pEngine, Event::destination_vca);
103 pEG2 = new EGADSR(pEngine, Event::destination_vcfc);
104 pEG3 = new EGDecay(pEngine, Event::destination_vco);
105 pVCAManipulator = new VCAManipulator(pEngine);
106 pVCFCManipulator = new VCFCManipulator(pEngine);
107 pVCOManipulator = new VCOManipulator(pEngine);
108 pLFO1 = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);
109 pLFO2 = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);
110 pLFO3 = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.
111
112 this->pDiskThread = pEngine->pDiskThread;
113 dmsg(6,("Voice::SetEngine()\n"));
114 }
115
116 /**
117 * Initializes and triggers the voice, a disk stream will be launched if
118 * needed.
119 *
120 * @param pEngineChannel - engine channel on which this voice was ordered
121 * @param itNoteOnEvent - event that caused triggering of this voice
122 * @param PitchBend - MIDI detune factor (-8192 ... +8191)
123 * @param pDimRgn - points to the dimension region which provides sample wave(s) and articulation data
124 * @param VoiceType - type of this voice
125 * @param iKeyGroup - a value > 0 defines a key group in which this voice is member of
126 * @returns 0 on success, a value < 0 if the voice wasn't triggered
127 * (either due to an error or e.g. because no region is
128 * defined for the given key)
129 */
130 int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
131 this->pEngineChannel = pEngineChannel;
132 this->pDimRgn = pDimRgn;
133
134 #if CONFIG_DEVMODE
135 if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
136 dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
137 }
138 #endif // CONFIG_DEVMODE
139
140 Type = VoiceType;
141 MIDIKey = itNoteOnEvent->Param.Note.Key;
142 PlaybackState = playback_state_init; // mark voice as triggered, but no audio rendered yet
143 Delay = itNoteOnEvent->FragmentPos();
144 itTriggerEvent = itNoteOnEvent;
145 itKillEvent = Pool<Event>::Iterator();
146 KeyGroup = iKeyGroup;
147 pSample = pDimRgn->pSample; // sample won't change until the voice is finished
148
149 // calculate volume
150 const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
151
152 Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)
153
154 Volume *= pDimRgn->SampleAttenuation;
155
156 // the volume of release triggered samples depends on note length
157 if (Type == type_release_trigger) {
158 float noteLength = float(pEngine->FrameTime + Delay -
159 pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
160 float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
161 if (attenuation <= 0) return -1;
162 Volume *= attenuation;
163 }
164
165 // select channel mode (mono or stereo)
166 SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
167
168 // get starting crossfade volume level
169 switch (pDimRgn->AttenuationController.type) {
170 case ::gig::attenuation_ctrl_t::type_channelaftertouch:
171 CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet
172 break;
173 case ::gig::attenuation_ctrl_t::type_velocity:
174 CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);
175 break;
176 case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
177 CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);
178 break;
179 case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
180 default:
181 CrossfadeVolume = 1.0f;
182 }
183
184 PanLeft = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) / 63.0f;
185 PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
186
187 Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
188
189 // Check if the sample needs disk streaming or is too short for that
190 long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
191 DiskVoice = cachedsamples < pSample->SamplesTotal;
192
193 if (DiskVoice) { // voice to be streamed from disk
194 MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
195
196 // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
197 if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {
198 RAMLoop = true;
199 LoopCyclesLeft = pSample->LoopPlayCount;
200 }
201 else RAMLoop = false;
202
203 if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
204 dmsg(1,("Disk stream order failed!\n"));
205 KillImmediately();
206 return -1;
207 }
208 dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
209 }
210 else { // RAM only voice
211 MaxRAMPos = cachedsamples;
212 if (pSample->Loops) {
213 RAMLoop = true;
214 LoopCyclesLeft = pSample->LoopPlayCount;
215 }
216 else RAMLoop = false;
217 dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
218 }
219
220
221 // calculate initial pitch value
222 {
223 double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
224 if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
225 this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));
226 this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
227 }
228
229 // the length of the decay and release curves are dependent on the velocity
230 const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
231
232 // setup EG 1 (VCA EG)
233 {
234 // get current value of EG1 controller
235 double eg1controllervalue;
236 switch (pDimRgn->EG1Controller.type) {
237 case ::gig::eg1_ctrl_t::type_none: // no controller defined
238 eg1controllervalue = 0;
239 break;
240 case ::gig::eg1_ctrl_t::type_channelaftertouch:
241 eg1controllervalue = 0; // TODO: aftertouch not yet supported
242 break;
243 case ::gig::eg1_ctrl_t::type_velocity:
244 eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
245 break;
246 case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
247 eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
248 break;
249 }
250 if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
251
252 // calculate influence of EG1 controller on EG1's parameters
253 // (eg1attack is different from the others)
254 double eg1attack = (pDimRgn->EG1ControllerAttackInfluence) ?
255 1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
256 1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
257 double eg1decay = (pDimRgn->EG1ControllerDecayInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence) * eg1controllervalue : 1.0;
258 double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
259
260 pEG1->Trigger(pDimRgn->EG1PreAttack,
261 pDimRgn->EG1Attack * eg1attack,
262 pDimRgn->EG1Hold,
263 pSample->LoopStart,
264 pDimRgn->EG1Decay1 * eg1decay * velrelease,
265 pDimRgn->EG1Decay2 * eg1decay * velrelease,
266 pDimRgn->EG1InfiniteSustain,
267 pDimRgn->EG1Sustain,
268 pDimRgn->EG1Release * eg1release * velrelease,
269 // the SSE synthesis implementation requires
270 // the vca start to be 16 byte aligned
271 SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?
272 Delay & 0xfffffffc : Delay,
273 velocityAttenuation);
274 }
275
276
277 // setup EG 2 (VCF Cutoff EG)
278 {
279 // get current value of EG2 controller
280 double eg2controllervalue;
281 switch (pDimRgn->EG2Controller.type) {
282 case ::gig::eg2_ctrl_t::type_none: // no controller defined
283 eg2controllervalue = 0;
284 break;
285 case ::gig::eg2_ctrl_t::type_channelaftertouch:
286 eg2controllervalue = 0; // TODO: aftertouch not yet supported
287 break;
288 case ::gig::eg2_ctrl_t::type_velocity:
289 eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
290 break;
291 case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
292 eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
293 break;
294 }
295 if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
296
297 // calculate influence of EG2 controller on EG2's parameters
298 double eg2attack = (pDimRgn->EG2ControllerAttackInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence) * eg2controllervalue : 1.0;
299 double eg2decay = (pDimRgn->EG2ControllerDecayInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence) * eg2controllervalue : 1.0;
300 double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
301
302 pEG2->Trigger(pDimRgn->EG2PreAttack,
303 pDimRgn->EG2Attack * eg2attack,
304 false,
305 pSample->LoopStart,
306 pDimRgn->EG2Decay1 * eg2decay * velrelease,
307 pDimRgn->EG2Decay2 * eg2decay * velrelease,
308 pDimRgn->EG2InfiniteSustain,
309 pDimRgn->EG2Sustain,
310 pDimRgn->EG2Release * eg2release * velrelease,
311 Delay,
312 velocityAttenuation);
313 }
314
315
316 // setup EG 3 (VCO EG)
317 {
318 double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
319 pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);
320 }
321
322
323 // setup LFO 1 (VCA LFO)
324 {
325 uint16_t lfo1_internal_depth;
326 switch (pDimRgn->LFO1Controller) {
327 case ::gig::lfo1_ctrl_internal:
328 lfo1_internal_depth = pDimRgn->LFO1InternalDepth;
329 pLFO1->ExtController = 0; // no external controller
330 bLFO1Enabled = (lfo1_internal_depth > 0);
331 break;
332 case ::gig::lfo1_ctrl_modwheel:
333 lfo1_internal_depth = 0;
334 pLFO1->ExtController = 1; // MIDI controller 1
335 bLFO1Enabled = (pDimRgn->LFO1ControlDepth > 0);
336 break;
337 case ::gig::lfo1_ctrl_breath:
338 lfo1_internal_depth = 0;
339 pLFO1->ExtController = 2; // MIDI controller 2
340 bLFO1Enabled = (pDimRgn->LFO1ControlDepth > 0);
341 break;
342 case ::gig::lfo1_ctrl_internal_modwheel:
343 lfo1_internal_depth = pDimRgn->LFO1InternalDepth;
344 pLFO1->ExtController = 1; // MIDI controller 1
345 bLFO1Enabled = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
346 break;
347 case ::gig::lfo1_ctrl_internal_breath:
348 lfo1_internal_depth = pDimRgn->LFO1InternalDepth;
349 pLFO1->ExtController = 2; // MIDI controller 2
350 bLFO1Enabled = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
351 break;
352 default:
353 lfo1_internal_depth = 0;
354 pLFO1->ExtController = 0; // no external controller
355 bLFO1Enabled = false;
356 }
357 if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,
358 lfo1_internal_depth,
359 pDimRgn->LFO1ControlDepth,
360 pEngineChannel->ControllerTable[pLFO1->ExtController],
361 pDimRgn->LFO1FlipPhase,
362 pEngine->SampleRate,
363 Delay);
364 }
365
366
367 // setup LFO 2 (VCF Cutoff LFO)
368 {
369 uint16_t lfo2_internal_depth;
370 switch (pDimRgn->LFO2Controller) {
371 case ::gig::lfo2_ctrl_internal:
372 lfo2_internal_depth = pDimRgn->LFO2InternalDepth;
373 pLFO2->ExtController = 0; // no external controller
374 bLFO2Enabled = (lfo2_internal_depth > 0);
375 break;
376 case ::gig::lfo2_ctrl_modwheel:
377 lfo2_internal_depth = 0;
378 pLFO2->ExtController = 1; // MIDI controller 1
379 bLFO2Enabled = (pDimRgn->LFO2ControlDepth > 0);
380 break;
381 case ::gig::lfo2_ctrl_foot:
382 lfo2_internal_depth = 0;
383 pLFO2->ExtController = 4; // MIDI controller 4
384 bLFO2Enabled = (pDimRgn->LFO2ControlDepth > 0);
385 break;
386 case ::gig::lfo2_ctrl_internal_modwheel:
387 lfo2_internal_depth = pDimRgn->LFO2InternalDepth;
388 pLFO2->ExtController = 1; // MIDI controller 1
389 bLFO2Enabled = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
390 break;
391 case ::gig::lfo2_ctrl_internal_foot:
392 lfo2_internal_depth = pDimRgn->LFO2InternalDepth;
393 pLFO2->ExtController = 4; // MIDI controller 4
394 bLFO2Enabled = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
395 break;
396 default:
397 lfo2_internal_depth = 0;
398 pLFO2->ExtController = 0; // no external controller
399 bLFO2Enabled = false;
400 }
401 if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,
402 lfo2_internal_depth,
403 pDimRgn->LFO2ControlDepth,
404 pEngineChannel->ControllerTable[pLFO2->ExtController],
405 pDimRgn->LFO2FlipPhase,
406 pEngine->SampleRate,
407 Delay);
408 }
409
410
411 // setup LFO 3 (VCO LFO)
412 {
413 uint16_t lfo3_internal_depth;
414 switch (pDimRgn->LFO3Controller) {
415 case ::gig::lfo3_ctrl_internal:
416 lfo3_internal_depth = pDimRgn->LFO3InternalDepth;
417 pLFO3->ExtController = 0; // no external controller
418 bLFO3Enabled = (lfo3_internal_depth > 0);
419 break;
420 case ::gig::lfo3_ctrl_modwheel:
421 lfo3_internal_depth = 0;
422 pLFO3->ExtController = 1; // MIDI controller 1
423 bLFO3Enabled = (pDimRgn->LFO3ControlDepth > 0);
424 break;
425 case ::gig::lfo3_ctrl_aftertouch:
426 lfo3_internal_depth = 0;
427 pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet
428 bLFO3Enabled = false; // see TODO comment in line above
429 break;
430 case ::gig::lfo3_ctrl_internal_modwheel:
431 lfo3_internal_depth = pDimRgn->LFO3InternalDepth;
432 pLFO3->ExtController = 1; // MIDI controller 1
433 bLFO3Enabled = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
434 break;
435 case ::gig::lfo3_ctrl_internal_aftertouch:
436 lfo3_internal_depth = pDimRgn->LFO3InternalDepth;
437 pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet
438 bLFO3Enabled = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above
439 break;
440 default:
441 lfo3_internal_depth = 0;
442 pLFO3->ExtController = 0; // no external controller
443 bLFO3Enabled = false;
444 }
445 if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,
446 lfo3_internal_depth,
447 pDimRgn->LFO3ControlDepth,
448 pEngineChannel->ControllerTable[pLFO3->ExtController],
449 false,
450 pEngine->SampleRate,
451 Delay);
452 }
453
454
455 #if CONFIG_FORCE_FILTER
456 const bool bUseFilter = true;
457 #else // use filter only if instrument file told so
458 const bool bUseFilter = pDimRgn->VCFEnabled;
459 #endif // CONFIG_FORCE_FILTER
460 SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
461 if (bUseFilter) {
462 #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
463 VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
464 #else // use the one defined in the instrument file
465 switch (pDimRgn->VCFCutoffController) {
466 case ::gig::vcf_cutoff_ctrl_modwheel:
467 VCFCutoffCtrl.controller = 1;
468 break;
469 case ::gig::vcf_cutoff_ctrl_effect1:
470 VCFCutoffCtrl.controller = 12;
471 break;
472 case ::gig::vcf_cutoff_ctrl_effect2:
473 VCFCutoffCtrl.controller = 13;
474 break;
475 case ::gig::vcf_cutoff_ctrl_breath:
476 VCFCutoffCtrl.controller = 2;
477 break;
478 case ::gig::vcf_cutoff_ctrl_foot:
479 VCFCutoffCtrl.controller = 4;
480 break;
481 case ::gig::vcf_cutoff_ctrl_sustainpedal:
482 VCFCutoffCtrl.controller = 64;
483 break;
484 case ::gig::vcf_cutoff_ctrl_softpedal:
485 VCFCutoffCtrl.controller = 67;
486 break;
487 case ::gig::vcf_cutoff_ctrl_genpurpose7:
488 VCFCutoffCtrl.controller = 82;
489 break;
490 case ::gig::vcf_cutoff_ctrl_genpurpose8:
491 VCFCutoffCtrl.controller = 83;
492 break;
493 case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet
494 case ::gig::vcf_cutoff_ctrl_none:
495 default:
496 VCFCutoffCtrl.controller = 0;
497 break;
498 }
499 #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
500
501 #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
502 VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
503 #else // use the one defined in the instrument file
504 switch (pDimRgn->VCFResonanceController) {
505 case ::gig::vcf_res_ctrl_genpurpose3:
506 VCFResonanceCtrl.controller = 18;
507 break;
508 case ::gig::vcf_res_ctrl_genpurpose4:
509 VCFResonanceCtrl.controller = 19;
510 break;
511 case ::gig::vcf_res_ctrl_genpurpose5:
512 VCFResonanceCtrl.controller = 80;
513 break;
514 case ::gig::vcf_res_ctrl_genpurpose6:
515 VCFResonanceCtrl.controller = 81;
516 break;
517 case ::gig::vcf_res_ctrl_none:
518 default:
519 VCFResonanceCtrl.controller = 0;
520 }
521 #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
522
523 #ifndef CONFIG_OVERRIDE_FILTER_TYPE
524 FilterLeft.SetType(pDimRgn->VCFType);
525 FilterRight.SetType(pDimRgn->VCFType);
526 #else // override filter type
527 FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
528 FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
529 #endif // CONFIG_OVERRIDE_FILTER_TYPE
530
531 VCFCutoffCtrl.value = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
532 VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
533
534 // calculate cutoff frequency
535 float cutoff = (!VCFCutoffCtrl.controller)
536 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX
537 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;
538
539 // calculate resonance
540 float resonance = (float) VCFResonanceCtrl.value * 0.00787f; // 0.0..1.0
541 if (pDimRgn->VCFKeyboardTracking) {
542 resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;
543 }
544 Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)
545
546 VCFCutoffCtrl.fvalue = cutoff - CONFIG_FILTER_CUTOFF_MIN;
547 VCFResonanceCtrl.fvalue = resonance;
548
549 FilterUpdateCounter = -1;
550 }
551 else {
552 VCFCutoffCtrl.controller = 0;
553 VCFResonanceCtrl.controller = 0;
554 }
555
556 return 0; // success
557 }
558
559 /**
560 * Renders the audio data for this voice for the current audio fragment.
561 * The sample input data can either come from RAM (cached sample or sample
562 * part) or directly from disk. The output signal will be rendered by
563 * resampling / interpolation. If this voice is a disk streaming voice and
564 * the voice completely played back the cached RAM part of the sample, it
565 * will automatically switch to disk playback for the next RenderAudio()
566 * call.
567 *
568 * @param Samples - number of samples to be rendered in this audio fragment cycle
569 */
570 void Voice::Render(uint Samples) {
571
572 // select default values for synthesis mode bits
573 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);
574 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);
575 SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
576
577 // Reset the synthesis parameter matrix
578
579 #if CONFIG_PROCESS_MUTED_CHANNELS
580 pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume));
581 #else
582 pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);
583 #endif
584 pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);
585 pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);
586 pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);
587
588 // Apply events to the synthesis parameter matrix
589 ProcessEvents(Samples);
590
591 // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment
592 pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);
593 pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);
594 if (pEG3->Process(Samples)) { // if pitch EG is active
595 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
596 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
597 }
598 if (bLFO1Enabled) pLFO1->Process(Samples);
599 if (bLFO2Enabled) pLFO2->Process(Samples);
600 if (bLFO3Enabled) {
601 if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active
602 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
603 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
604 }
605 }
606
607 if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))
608 CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters
609
610 switch (this->PlaybackState) {
611
612 case playback_state_init:
613 this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
614 // no break - continue with playback_state_ram
615
616 case playback_state_ram: {
617 if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
618
619 // render current fragment
620 Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
621
622 if (DiskVoice) {
623 // check if we reached the allowed limit of the sample RAM cache
624 if (Pos > MaxRAMPos) {
625 dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));
626 this->PlaybackState = playback_state_disk;
627 }
628 }
629 else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {
630 this->PlaybackState = playback_state_end;
631 }
632 }
633 break;
634
635 case playback_state_disk: {
636 if (!DiskStreamRef.pStream) {
637 // check if the disk thread created our ordered disk stream in the meantime
638 DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
639 if (!DiskStreamRef.pStream) {
640 std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
641 KillImmediately();
642 return;
643 }
644 DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));
645 Pos -= int(Pos);
646 RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
647 }
648
649 const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
650
651 // add silence sample at the end if we reached the end of the stream (for the interpolator)
652 if (DiskStreamRef.State == Stream::state_end) {
653 const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
654 if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
655 // remember how many sample words there are before any silence has been added
656 if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
657 DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
658 }
659 }
660
661 sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
662
663 // render current audio fragment
664 Synthesize(Samples, ptr, Delay);
665
666 const int iPos = (int) Pos;
667 const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
668 DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
669 Pos -= iPos; // just keep fractional part of Pos
670
671 // change state of voice to 'end' if we really reached the end of the sample data
672 if (RealSampleWordsLeftToRead >= 0) {
673 RealSampleWordsLeftToRead -= readSampleWords;
674 if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
675 }
676 }
677 break;
678
679 case playback_state_end:
680 std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
681 break;
682 }
683
684 // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)
685 pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();
686 pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();
687 pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();
688
689 // Reset delay
690 Delay = 0;
691
692 itTriggerEvent = Pool<Event>::Iterator();
693
694 // If sample stream or release stage finished, kill the voice
695 if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();
696 }
697
698 /**
699 * Resets voice variables. Should only be called if rendering process is
700 * suspended / not running.
701 */
702 void Voice::Reset() {
703 pLFO1->Reset();
704 pLFO2->Reset();
705 pLFO3->Reset();
706 FilterLeft.Reset();
707 FilterRight.Reset();
708 DiskStreamRef.pStream = NULL;
709 DiskStreamRef.hStream = 0;
710 DiskStreamRef.State = Stream::state_unused;
711 DiskStreamRef.OrderID = 0;
712 PlaybackState = playback_state_end;
713 itTriggerEvent = Pool<Event>::Iterator();
714 itKillEvent = Pool<Event>::Iterator();
715 }
716
717 /**
718 * Process the control change event lists of the engine for the current
719 * audio fragment. Event values will be applied to the synthesis parameter
720 * matrix.
721 *
722 * @param Samples - number of samples to be rendered in this audio fragment cycle
723 */
724 void Voice::ProcessEvents(uint Samples) {
725
726 // dispatch control change events
727 RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();
728 if (Delay) { // skip events that happened before this voice was triggered
729 while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;
730 }
731 while (itCCEvent) {
732 if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller
733 if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
734 *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;
735 }
736 if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
737 *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;
738 }
739 if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {
740 pLFO1->SendEvent(itCCEvent);
741 }
742 if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {
743 pLFO2->SendEvent(itCCEvent);
744 }
745 if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {
746 pLFO3->SendEvent(itCCEvent);
747 }
748 if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
749 itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event
750 *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;
751 }
752 }
753
754 ++itCCEvent;
755 }
756
757
758 // process pitch events
759 {
760 RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];
761 RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();
762 if (Delay) { // skip events that happened before this voice was triggered
763 while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;
764 }
765 // apply old pitchbend value until first pitch event occurs
766 if (this->PitchBend != 1.0) {
767 uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;
768 for (uint i = Delay; i < end; i++) {
769 pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;
770 }
771 }
772 float pitch;
773 while (itVCOEvent) {
774 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;
775 ++itNextVCOEvent;
776
777 // calculate the influence length of this event (in sample points)
778 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;
779
780 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
781
782 // apply pitch value to the pitch parameter sequence
783 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {
784 pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;
785 }
786
787 itVCOEvent = itNextVCOEvent;
788 }
789 if (!pVCOEventList->isEmpty()) {
790 this->PitchBend = pitch;
791 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);
792 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);
793 }
794 }
795
796 // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)
797 {
798 RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];
799 RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();
800 if (Delay) { // skip events that happened before this voice was triggered
801 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;
802 }
803 float crossfadevolume;
804 while (itVCAEvent) {
805 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;
806 ++itNextVCAEvent;
807
808 // calculate the influence length of this event (in sample points)
809 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;
810
811 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);
812
813 #if CONFIG_PROCESS_MUTED_CHANNELS
814 float effective_volume = crossfadevolume * this->Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
815 #else
816 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;
817 #endif
818
819 // apply volume value to the volume parameter sequence
820 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {
821 pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;
822 }
823
824 itVCAEvent = itNextVCAEvent;
825 }
826 if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;
827 }
828
829 // process filter cutoff events
830 {
831 RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];
832 RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();
833 if (Delay) { // skip events that happened before this voice was triggered
834 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;
835 }
836 float cutoff;
837 while (itCutoffEvent) {
838 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;
839 ++itNextCutoffEvent;
840
841 // calculate the influence length of this event (in sample points)
842 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;
843
844 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;
845
846 // apply cutoff frequency to the cutoff parameter sequence
847 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {
848 pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;
849 }
850
851 itCutoffEvent = itNextCutoffEvent;
852 }
853 if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time
854 }
855
856 // process filter resonance events
857 {
858 RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];
859 RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();
860 if (Delay) { // skip events that happened before this voice was triggered
861 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;
862 }
863 while (itResonanceEvent) {
864 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;
865 ++itNextResonanceEvent;
866
867 // calculate the influence length of this event (in sample points)
868 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;
869
870 // convert absolute controller value to differential
871 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;
872 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;
873
874 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
875
876 // apply cutoff frequency to the cutoff parameter sequence
877 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {
878 pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;
879 }
880
881 itResonanceEvent = itNextResonanceEvent;
882 }
883 if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time
884 }
885 }
886
887 /**
888 * Calculate all necessary, final biquad filter parameters.
889 *
890 * @param Samples - number of samples to be rendered in this audio fragment cycle
891 */
892 void Voice::CalculateBiquadParameters(uint Samples) {
893 biquad_param_t bqbase;
894 biquad_param_t bqmain;
895 float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];
896 float prev_res = pEngine->pSynthesisParameters[Event::destination_vcfr][0];
897 FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
898 FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
899 pEngine->pBasicFilterParameters[0] = bqbase;
900 pEngine->pMainFilterParameters[0] = bqmain;
901
902 float* bq;
903 for (int i = 1; i < Samples; i++) {
904 // recalculate biquad parameters if cutoff or resonance differ from previous sample point
905 if (!(i & FILTER_UPDATE_MASK)) {
906 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||
907 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)
908 {
909 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];
910 prev_res = pEngine->pSynthesisParameters[Event::destination_vcfr][i];
911 FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
912 FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);
913 }
914 }
915
916 //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'
917 bq = (float*) &pEngine->pBasicFilterParameters[i];
918 bq[0] = bqbase.b0;
919 bq[1] = bqbase.b1;
920 bq[2] = bqbase.b2;
921 bq[3] = bqbase.a1;
922 bq[4] = bqbase.a2;
923
924 // same as 'pEngine->pMainFilterParameters[i] = bqmain;'
925 bq = (float*) &pEngine->pMainFilterParameters[i];
926 bq[0] = bqmain.b0;
927 bq[1] = bqmain.b1;
928 bq[2] = bqmain.b2;
929 bq[3] = bqmain.a1;
930 bq[4] = bqmain.a2;
931 }
932 }
933
934 /**
935 * Synthesizes the current audio fragment for this voice.
936 *
937 * @param Samples - number of sample points to be rendered in this audio
938 * fragment cycle
939 * @param pSrc - pointer to input sample data
940 * @param Skip - number of sample points to skip in output buffer
941 */
942 void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
943 RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);
944 }
945
946 /**
947 * Immediately kill the voice. This method should not be used to kill
948 * a normal, active voice, because it doesn't take care of things like
949 * fading down the volume level to avoid clicks and regular processing
950 * until the kill event actually occured!
951 *
952 * @see Kill()
953 */
954 void Voice::KillImmediately() {
955 if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
956 pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
957 }
958 Reset();
959 }
960
961 /**
962 * Kill the voice in regular sense. Let the voice render audio until
963 * the kill event actually occured and then fade down the volume level
964 * very quickly and let the voice die finally. Unlike a normal release
965 * of a voice, a kill process cannot be cancalled and is therefore
966 * usually used for voice stealing and key group conflicts.
967 *
968 * @param itKillEvent - event which caused the voice to be killed
969 */
970 void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
971 #if CONFIG_DEVMODE
972 if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
973 if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
974 #endif // CONFIG_DEVMODE
975
976 if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
977 this->itKillEvent = itKillEvent;
978 }
979
980 }} // namespace LinuxSampler::gig

  ViewVC Help
Powered by ViewVC