/*************************************************************************** * * * LinuxSampler - modular, streaming capable sampler * * * * Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck * * Copyright (C) 2005 Christian Schoenebeck * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the Free Software * * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * * MA 02111-1307 USA * ***************************************************************************/ #include "../../common/Features.h" #include "Synthesizer.h" #include "Voice.h" namespace LinuxSampler { namespace gig { const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff()); float Voice::CalculateFilterCutoffCoeff() { return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN); } Voice::Voice() { pEngine = NULL; pDiskThread = NULL; PlaybackState = playback_state_end; pLFO1 = new LFOUnsigned(1.0f); // amplitude EG (0..1 range) pLFO2 = new LFOUnsigned(1.0f); // filter EG (0..1 range) pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range) KeyGroup = 0; SynthesisMode = 0; // set all mode bits to 0 first // select synthesis implementation (currently either pure C++ or MMX+SSE(1)) #if CONFIG_ASM && ARCH_X86 SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE()); #else SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false); #endif SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true); FilterLeft.Reset(); FilterRight.Reset(); } Voice::~Voice() { if (pLFO1) delete pLFO1; if (pLFO2) delete pLFO2; if (pLFO3) delete pLFO3; } void Voice::SetEngine(Engine* pEngine) { this->pEngine = pEngine; this->pDiskThread = pEngine->pDiskThread; dmsg(6,("Voice::SetEngine()\n")); } /** * Initializes and triggers the voice, a disk stream will be launched if * needed. * * @param pEngineChannel - engine channel on which this voice was ordered * @param itNoteOnEvent - event that caused triggering of this voice * @param PitchBend - MIDI detune factor (-8192 ... +8191) * @param pDimRgn - points to the dimension region which provides sample wave(s) and articulation data * @param VoiceType - type of this voice * @param iKeyGroup - a value > 0 defines a key group in which this voice is member of * @returns 0 on success, a value < 0 if the voice wasn't triggered * (either due to an error or e.g. because no region is * defined for the given key) */ int Voice::Trigger(EngineChannel* pEngineChannel, Pool::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) { this->pEngineChannel = pEngineChannel; this->pDimRgn = pDimRgn; #if CONFIG_DEVMODE if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n")); } #endif // CONFIG_DEVMODE Type = VoiceType; MIDIKey = itNoteOnEvent->Param.Note.Key; PlaybackState = playback_state_init; // mark voice as triggered, but no audio rendered yet Delay = itNoteOnEvent->FragmentPos(); itTriggerEvent = itNoteOnEvent; itKillEvent = Pool::Iterator(); KeyGroup = iKeyGroup; pSample = pDimRgn->pSample; // sample won't change until the voice is finished // calculate volume const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity); Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0) Volume *= pDimRgn->SampleAttenuation; // the volume of release triggered samples depends on note length if (Type == type_release_trigger) { float noteLength = float(pEngine->FrameTime + Delay - pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate; float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength; if (attenuation <= 0) return -1; Volume *= attenuation; } // select channel mode (mono or stereo) SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2); // get starting crossfade volume level switch (pDimRgn->AttenuationController.type) { case ::gig::attenuation_ctrl_t::type_channelaftertouch: CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet break; case ::gig::attenuation_ctrl_t::type_velocity: CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity); break; case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]); break; case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined default: CrossfadeVolume = 1.0f; } PanLeft = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) / 63.0f; PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f; Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points) // Check if the sample needs disk streaming or is too short for that long cachedsamples = pSample->GetCache().Size / pSample->FrameSize; DiskVoice = cachedsamples < pSample->SamplesTotal; if (DiskVoice) { // voice to be streamed from disk MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK) // check if there's a loop defined which completely fits into the cached (RAM) part of the sample if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) { RAMLoop = true; LoopCyclesLeft = pSample->LoopPlayCount; } else RAMLoop = false; if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) { dmsg(1,("Disk stream order failed!\n")); KillImmediately(); return -1; } dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no")); } else { // RAM only voice MaxRAMPos = cachedsamples; if (pSample->Loops) { RAMLoop = true; LoopCyclesLeft = pSample->LoopPlayCount; } else RAMLoop = false; dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no")); } // calculate initial pitch value { double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12]; if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100; this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate)); this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents } // the length of the decay and release curves are dependent on the velocity const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity); // setup EG 1 (VCA EG) { // get current value of EG1 controller double eg1controllervalue; switch (pDimRgn->EG1Controller.type) { case ::gig::eg1_ctrl_t::type_none: // no controller defined eg1controllervalue = 0; break; case ::gig::eg1_ctrl_t::type_channelaftertouch: eg1controllervalue = 0; // TODO: aftertouch not yet supported break; case ::gig::eg1_ctrl_t::type_velocity: eg1controllervalue = itNoteOnEvent->Param.Note.Velocity; break; case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number]; break; } if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue; // calculate influence of EG1 controller on EG1's parameters // (eg1attack is different from the others) double eg1attack = (pDimRgn->EG1ControllerAttackInfluence) ? 1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ? 1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0; double eg1decay = (pDimRgn->EG1ControllerDecayInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence) * eg1controllervalue : 1.0; double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0; EG1.trigger(pDimRgn->EG1PreAttack, pDimRgn->EG1Attack * eg1attack, pDimRgn->EG1Hold, pSample->LoopStart, pDimRgn->EG1Decay1 * eg1decay * velrelease, pDimRgn->EG1Decay2 * eg1decay * velrelease, pDimRgn->EG1InfiniteSustain, pDimRgn->EG1Sustain, pDimRgn->EG1Release * eg1release * velrelease, velocityAttenuation, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE); } // setup EG 2 (VCF Cutoff EG) { // get current value of EG2 controller double eg2controllervalue; switch (pDimRgn->EG2Controller.type) { case ::gig::eg2_ctrl_t::type_none: // no controller defined eg2controllervalue = 0; break; case ::gig::eg2_ctrl_t::type_channelaftertouch: eg2controllervalue = 0; // TODO: aftertouch not yet supported break; case ::gig::eg2_ctrl_t::type_velocity: eg2controllervalue = itNoteOnEvent->Param.Note.Velocity; break; case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number]; break; } if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue; // calculate influence of EG2 controller on EG2's parameters double eg2attack = (pDimRgn->EG2ControllerAttackInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence) * eg2controllervalue : 1.0; double eg2decay = (pDimRgn->EG2ControllerDecayInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence) * eg2controllervalue : 1.0; double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0; EG2.trigger(pDimRgn->EG2PreAttack, pDimRgn->EG2Attack * eg2attack, false, pSample->LoopStart, pDimRgn->EG2Decay1 * eg2decay * velrelease, pDimRgn->EG2Decay2 * eg2decay * velrelease, pDimRgn->EG2InfiniteSustain, pDimRgn->EG2Sustain, pDimRgn->EG2Release * eg2release * velrelease, velocityAttenuation, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE); } // setup EG 3 (VCO EG) { double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth); EG3.trigger(eg3depth, pDimRgn->EG3Attack, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE); } // setup LFO 1 (VCA LFO) { uint16_t lfo1_internal_depth; switch (pDimRgn->LFO1Controller) { case ::gig::lfo1_ctrl_internal: lfo1_internal_depth = pDimRgn->LFO1InternalDepth; pLFO1->ExtController = 0; // no external controller bLFO1Enabled = (lfo1_internal_depth > 0); break; case ::gig::lfo1_ctrl_modwheel: lfo1_internal_depth = 0; pLFO1->ExtController = 1; // MIDI controller 1 bLFO1Enabled = (pDimRgn->LFO1ControlDepth > 0); break; case ::gig::lfo1_ctrl_breath: lfo1_internal_depth = 0; pLFO1->ExtController = 2; // MIDI controller 2 bLFO1Enabled = (pDimRgn->LFO1ControlDepth > 0); break; case ::gig::lfo1_ctrl_internal_modwheel: lfo1_internal_depth = pDimRgn->LFO1InternalDepth; pLFO1->ExtController = 1; // MIDI controller 1 bLFO1Enabled = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0); break; case ::gig::lfo1_ctrl_internal_breath: lfo1_internal_depth = pDimRgn->LFO1InternalDepth; pLFO1->ExtController = 2; // MIDI controller 2 bLFO1Enabled = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0); break; default: lfo1_internal_depth = 0; pLFO1->ExtController = 0; // no external controller bLFO1Enabled = false; } if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency, start_level_max, lfo1_internal_depth, pDimRgn->LFO1ControlDepth, pDimRgn->LFO1FlipPhase, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE); } // setup LFO 2 (VCF Cutoff LFO) { uint16_t lfo2_internal_depth; switch (pDimRgn->LFO2Controller) { case ::gig::lfo2_ctrl_internal: lfo2_internal_depth = pDimRgn->LFO2InternalDepth; pLFO2->ExtController = 0; // no external controller bLFO2Enabled = (lfo2_internal_depth > 0); break; case ::gig::lfo2_ctrl_modwheel: lfo2_internal_depth = 0; pLFO2->ExtController = 1; // MIDI controller 1 bLFO2Enabled = (pDimRgn->LFO2ControlDepth > 0); break; case ::gig::lfo2_ctrl_foot: lfo2_internal_depth = 0; pLFO2->ExtController = 4; // MIDI controller 4 bLFO2Enabled = (pDimRgn->LFO2ControlDepth > 0); break; case ::gig::lfo2_ctrl_internal_modwheel: lfo2_internal_depth = pDimRgn->LFO2InternalDepth; pLFO2->ExtController = 1; // MIDI controller 1 bLFO2Enabled = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0); break; case ::gig::lfo2_ctrl_internal_foot: lfo2_internal_depth = pDimRgn->LFO2InternalDepth; pLFO2->ExtController = 4; // MIDI controller 4 bLFO2Enabled = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0); break; default: lfo2_internal_depth = 0; pLFO2->ExtController = 0; // no external controller bLFO2Enabled = false; } if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency, start_level_max, lfo2_internal_depth, pDimRgn->LFO2ControlDepth, pDimRgn->LFO2FlipPhase, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE); } // setup LFO 3 (VCO LFO) { uint16_t lfo3_internal_depth; switch (pDimRgn->LFO3Controller) { case ::gig::lfo3_ctrl_internal: lfo3_internal_depth = pDimRgn->LFO3InternalDepth; pLFO3->ExtController = 0; // no external controller bLFO3Enabled = (lfo3_internal_depth > 0); break; case ::gig::lfo3_ctrl_modwheel: lfo3_internal_depth = 0; pLFO3->ExtController = 1; // MIDI controller 1 bLFO3Enabled = (pDimRgn->LFO3ControlDepth > 0); break; case ::gig::lfo3_ctrl_aftertouch: lfo3_internal_depth = 0; pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet bLFO3Enabled = false; // see TODO comment in line above break; case ::gig::lfo3_ctrl_internal_modwheel: lfo3_internal_depth = pDimRgn->LFO3InternalDepth; pLFO3->ExtController = 1; // MIDI controller 1 bLFO3Enabled = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0); break; case ::gig::lfo3_ctrl_internal_aftertouch: lfo3_internal_depth = pDimRgn->LFO3InternalDepth; pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet bLFO3Enabled = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above break; default: lfo3_internal_depth = 0; pLFO3->ExtController = 0; // no external controller bLFO3Enabled = false; } if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency, start_level_mid, lfo3_internal_depth, pDimRgn->LFO3ControlDepth, false, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE); } #if CONFIG_FORCE_FILTER const bool bUseFilter = true; #else // use filter only if instrument file told so const bool bUseFilter = pDimRgn->VCFEnabled; #endif // CONFIG_FORCE_FILTER SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter); if (bUseFilter) { #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL; #else // use the one defined in the instrument file switch (pDimRgn->VCFCutoffController) { case ::gig::vcf_cutoff_ctrl_modwheel: VCFCutoffCtrl.controller = 1; break; case ::gig::vcf_cutoff_ctrl_effect1: VCFCutoffCtrl.controller = 12; break; case ::gig::vcf_cutoff_ctrl_effect2: VCFCutoffCtrl.controller = 13; break; case ::gig::vcf_cutoff_ctrl_breath: VCFCutoffCtrl.controller = 2; break; case ::gig::vcf_cutoff_ctrl_foot: VCFCutoffCtrl.controller = 4; break; case ::gig::vcf_cutoff_ctrl_sustainpedal: VCFCutoffCtrl.controller = 64; break; case ::gig::vcf_cutoff_ctrl_softpedal: VCFCutoffCtrl.controller = 67; break; case ::gig::vcf_cutoff_ctrl_genpurpose7: VCFCutoffCtrl.controller = 82; break; case ::gig::vcf_cutoff_ctrl_genpurpose8: VCFCutoffCtrl.controller = 83; break; case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet case ::gig::vcf_cutoff_ctrl_none: default: VCFCutoffCtrl.controller = 0; break; } #endif // CONFIG_OVERRIDE_CUTOFF_CTRL #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL; #else // use the one defined in the instrument file switch (pDimRgn->VCFResonanceController) { case ::gig::vcf_res_ctrl_genpurpose3: VCFResonanceCtrl.controller = 18; break; case ::gig::vcf_res_ctrl_genpurpose4: VCFResonanceCtrl.controller = 19; break; case ::gig::vcf_res_ctrl_genpurpose5: VCFResonanceCtrl.controller = 80; break; case ::gig::vcf_res_ctrl_genpurpose6: VCFResonanceCtrl.controller = 81; break; case ::gig::vcf_res_ctrl_none: default: VCFResonanceCtrl.controller = 0; } #endif // CONFIG_OVERRIDE_RESONANCE_CTRL #ifndef CONFIG_OVERRIDE_FILTER_TYPE FilterLeft.SetType(pDimRgn->VCFType); FilterRight.SetType(pDimRgn->VCFType); #else // override filter type FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE); FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE); #endif // CONFIG_OVERRIDE_FILTER_TYPE VCFCutoffCtrl.value = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller]; VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller]; // calculate cutoff frequency float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity); if (pDimRgn->VCFKeyboardTracking) { cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12) } CutoffBase = cutoff; int cvalue; if (VCFCutoffCtrl.controller) { cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller]; if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue; if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale; } else { cvalue = pDimRgn->VCFCutoff; } cutoff *= float(cvalue) * 0.00787402f; // (1 / 127) if (cutoff > 1.0) cutoff = 1.0; cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN; // calculate resonance float resonance = (float) VCFResonanceCtrl.value * 0.00787f; // 0.0..1.0 if (pDimRgn->VCFKeyboardTracking) { resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f; } Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0) VCFCutoffCtrl.fvalue = cutoff - CONFIG_FILTER_CUTOFF_MIN; VCFResonanceCtrl.fvalue = resonance; } else { VCFCutoffCtrl.controller = 0; VCFResonanceCtrl.controller = 0; } return 0; // success } /** * Renders the audio data for this voice for the current audio fragment. * The sample input data can either come from RAM (cached sample or sample * part) or directly from disk. The output signal will be rendered by * resampling / interpolation. If this voice is a disk streaming voice and * the voice completely played back the cached RAM part of the sample, it * will automatically switch to disk playback for the next RenderAudio() * call. * * @param Samples - number of samples to be rendered in this audio fragment cycle */ void Voice::Render(uint Samples) { // select default values for synthesis mode bits SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false); switch (this->PlaybackState) { case playback_state_init: this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed // no break - continue with playback_state_ram case playback_state_ram: { if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping // render current fragment Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay); if (DiskVoice) { // check if we reached the allowed limit of the sample RAM cache if (Pos > MaxRAMPos) { dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos)); this->PlaybackState = playback_state_disk; } } else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) { this->PlaybackState = playback_state_end; } } break; case playback_state_disk: { if (!DiskStreamRef.pStream) { // check if the disk thread created our ordered disk stream in the meantime DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID); if (!DiskStreamRef.pStream) { std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush; KillImmediately(); return; } DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos)); Pos -= int(Pos); RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet } const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace(); // add silence sample at the end if we reached the end of the stream (for the interpolator) if (DiskStreamRef.State == Stream::state_end) { const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) { // remember how many sample words there are before any silence has been added if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead; DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead); } } sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from // render current audio fragment Synthesize(Samples, ptr, Delay); const int iPos = (int) Pos; const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read DiskStreamRef.pStream->IncrementReadPos(readSampleWords); Pos -= iPos; // just keep fractional part of Pos // change state of voice to 'end' if we really reached the end of the sample data if (RealSampleWordsLeftToRead >= 0) { RealSampleWordsLeftToRead -= readSampleWords; if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end; } } break; case playback_state_end: std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush; break; } // Reset synthesis event lists pEngineChannel->pEvents->clear(); // Reset delay Delay = 0; itTriggerEvent = Pool::Iterator(); // If sample stream or release stage finished, kill the voice if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately(); } /** * Resets voice variables. Should only be called if rendering process is * suspended / not running. */ void Voice::Reset() { FilterLeft.Reset(); FilterRight.Reset(); DiskStreamRef.pStream = NULL; DiskStreamRef.hStream = 0; DiskStreamRef.State = Stream::state_unused; DiskStreamRef.OrderID = 0; PlaybackState = playback_state_end; itTriggerEvent = Pool::Iterator(); itKillEvent = Pool::Iterator(); } /** * Process given list of MIDI note on, note off and sustain pedal events * for the given time. * * @param itEvent - iterator pointing to the next event to be processed * @param End - youngest time stamp where processing should be stopped */ void Voice::processTransitionEvents(RTList::Iterator& itEvent, uint End) { for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) { if (itEvent->Type == Event::type_release) { EG1.update(EGADSR::event_release, this->Pos, fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE); EG2.update(EGADSR::event_release, this->Pos, fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE); } else if (itEvent->Type == Event::type_cancel_release) { EG1.update(EGADSR::event_cancel_release, this->Pos, fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE); EG2.update(EGADSR::event_cancel_release, this->Pos, fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE); } } } /** * Process given list of MIDI control change and pitch bend events for * the given time. * * @param itEvent - iterator pointing to the next event to be processed * @param End - youngest time stamp where processing should be stopped */ void Voice::processCCEvents(RTList::Iterator& itEvent, uint End) { for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) { if (itEvent->Type == Event::type_control_change && itEvent->Param.CC.Controller) { // if (valid) MIDI control change event if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) { processCutoffEvent(itEvent); } if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) { processResonanceEvent(itEvent); } if (itEvent->Param.CC.Controller == pLFO1->ExtController) { pLFO1->update(itEvent->Param.CC.Value); } if (itEvent->Param.CC.Controller == pLFO2->ExtController) { pLFO2->update(itEvent->Param.CC.Value); } if (itEvent->Param.CC.Controller == pLFO3->ExtController) { pLFO3->update(itEvent->Param.CC.Value); } if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange && itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { processCrossFadeEvent(itEvent); } } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event processPitchEvent(itEvent); } } } void Voice::processPitchEvent(RTList::Iterator& itEvent) { const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents fFinalPitch *= pitch; PitchBend = pitch; } void Voice::processCrossFadeEvent(RTList::Iterator& itEvent) { CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value); #if CONFIG_PROCESS_MUTED_CHANNELS const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume); #else const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume; #endif fFinalVolume = effectiveVolume; } void Voice::processCutoffEvent(RTList::Iterator& itEvent) { int ccvalue = itEvent->Param.CC.Value; if (VCFCutoffCtrl.value == ccvalue) return; VCFCutoffCtrl.value == ccvalue; if (pDimRgn->VCFCutoffControllerInvert) ccvalue = 127 - ccvalue; if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale; float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127) if (cutoff > 1.0) cutoff = 1.0; cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN - CONFIG_FILTER_CUTOFF_MIN; VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time fFinalCutoff = cutoff; } void Voice::processResonanceEvent(RTList::Iterator& itEvent) { // convert absolute controller value to differential const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value; VCFResonanceCtrl.value = itEvent->Param.CC.Value; const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0 fFinalResonance += resonancedelta; // needed for initialization of parameter VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f; } /** * Synthesizes the current audio fragment for this voice. * * @param Samples - number of sample points to be rendered in this audio * fragment cycle * @param pSrc - pointer to input sample data * @param Skip - number of sample points to skip in output buffer */ void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) { RTList::Iterator itCCEvent = pEngineChannel->pEvents->first(); RTList::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first(); if (Skip) { // skip events that happened before this voice was triggered while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent; while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent; } uint i = Skip; while (i < Samples) { int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples); // initialize all final synthesis parameters fFinalPitch = PitchBase * PitchBend; #if CONFIG_PROCESS_MUTED_CHANNELS fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume); #else fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume; #endif fFinalCutoff = VCFCutoffCtrl.fvalue; fFinalResonance = VCFResonanceCtrl.fvalue; // process MIDI control change and pitchbend events for this subfragment processCCEvents(itCCEvent, iSubFragmentEnd); // process transition events (note on, note off & sustain pedal) processTransitionEvents(itNoteEvent, iSubFragmentEnd); // process envelope generators switch (EG1.getSegmentType()) { case EGADSR::segment_lin: fFinalVolume *= EG1.processLin(); break; case EGADSR::segment_exp: fFinalVolume *= EG1.processExp(); break; case EGADSR::segment_end: fFinalVolume *= EG1.getLevel(); break; // noop } switch (EG2.getSegmentType()) { case EGADSR::segment_lin: fFinalCutoff *= EG2.processLin(); break; case EGADSR::segment_exp: fFinalCutoff *= EG2.processExp(); break; case EGADSR::segment_end: fFinalCutoff *= EG2.getLevel(); break; // noop } fFinalPitch *= RTMath::CentsToFreqRatio(EG3.render()); // process low frequency oscillators if (bLFO1Enabled) fFinalVolume *= pLFO1->render(); if (bLFO2Enabled) fFinalCutoff *= pLFO2->render(); if (bLFO3Enabled) fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render()); // if filter enabled then update filter coefficients if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) { FilterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate); FilterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate); } // how many steps do we calculate for this next subfragment const int steps = iSubFragmentEnd - i; // select the appropriate synthesis mode SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, fFinalPitch != 1.0f); // render audio for one subfragment RunSynthesisFunction(SynthesisMode, *this, iSubFragmentEnd, pSrc, i); // increment envelopes' positions if (EG1.active()) { EG1.increment(1); if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, this->Pos, fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE); } if (EG2.active()) { EG2.increment(1); if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, this->Pos, fFinalPitch, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE); } EG3.increment(1); if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached i = iSubFragmentEnd; } } /** * Immediately kill the voice. This method should not be used to kill * a normal, active voice, because it doesn't take care of things like * fading down the volume level to avoid clicks and regular processing * until the kill event actually occured! * * @see Kill() */ void Voice::KillImmediately() { if (DiskVoice && DiskStreamRef.State != Stream::state_unused) { pDiskThread->OrderDeletionOfStream(&DiskStreamRef); } Reset(); } /** * Kill the voice in regular sense. Let the voice render audio until * the kill event actually occured and then fade down the volume level * very quickly and let the voice die finally. Unlike a normal release * of a voice, a kill process cannot be cancalled and is therefore * usually used for voice stealing and key group conflicts. * * @param itKillEvent - event which caused the voice to be killed */ void Voice::Kill(Pool::Iterator& itKillEvent) { #if CONFIG_DEVMODE if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n")); if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n")); #endif // CONFIG_DEVMODE if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return; this->itKillEvent = itKillEvent; } }} // namespace LinuxSampler::gig