/[svn]/linuxsampler/trunk/src/engines/gig/Voice.h
ViewVC logotype

Annotation of /linuxsampler/trunk/src/engines/gig/Voice.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 225 - (hide annotations) (download) (as text)
Sun Aug 22 14:46:47 2004 UTC (19 years, 8 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 14564 byte(s)
* set default volume to 1.0 in Gigasampler engine (was 0.0)
* implemented "SET CHANNEL AUDIO_OUTPUT_CHANNEL" LSCP command
* fixed "GET ENGINE INFO" LSCP command
* fixed "GET CHANNEL INFO" LSCP command
* src/network/lscp.y: fixed 'stringval' rule (returned string with formal
  apostrophes), fixed 'dotnum' rule (ignored position after decimal point)

1 schoenebeck 53 /***************************************************************************
2     * *
3     * LinuxSampler - modular, streaming capable sampler *
4     * *
5 schoenebeck 56 * Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck *
6 schoenebeck 53 * *
7     * This program is free software; you can redistribute it and/or modify *
8     * it under the terms of the GNU General Public License as published by *
9     * the Free Software Foundation; either version 2 of the License, or *
10     * (at your option) any later version. *
11     * *
12     * This program is distributed in the hope that it will be useful, *
13     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15     * GNU General Public License for more details. *
16     * *
17     * You should have received a copy of the GNU General Public License *
18     * along with this program; if not, write to the Free Software *
19     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
20     * MA 02111-1307 USA *
21     ***************************************************************************/
22    
23     #ifndef __LS_GIG_VOICE_H__
24     #define __LS_GIG_VOICE_H__
25    
26     #include "../../common/global.h"
27    
28     #if DEBUG_HEADERS
29     # warning Voice.h included
30     #endif // DEBUG_HEADERS
31    
32     #include "../../common/RTMath.h"
33     #include "../../common/RingBuffer.h"
34     #include "../../common/RTELMemoryPool.h"
35 schoenebeck 203 #include "../../drivers/audio/AudioOutputDevice.h"
36 schoenebeck 53 #include "../../lib/fileloader/libgig/gig.h"
37 schoenebeck 80 #include "../common/BiquadFilter.h"
38 schoenebeck 53 #include "Engine.h"
39     #include "Stream.h"
40     #include "DiskThread.h"
41    
42     #include "EGDecay.h"
43     #include "Filter.h"
44     #include "../common/LFO.h"
45    
46 schoenebeck 80 #define USE_LINEAR_INTERPOLATION 0 ///< set to 0 if you prefer cubic interpolation (slower, better quality)
47     #define ENABLE_FILTER 1 ///< if set to 0 then filter (VCF) code is ignored on compile time
48     #define FILTER_UPDATE_PERIOD 64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution, this value will be aligned to a power of two)
49 schoenebeck 53 #define FORCE_FILTER_USAGE 0 ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one
50     #define FILTER_CUTOFF_MAX 10000.0f ///< maximum cutoff frequency (10kHz)
51     #define FILTER_CUTOFF_MIN 100.0f ///< minimum cutoff frequency (100Hz)
52    
53     // Uncomment following line to override external cutoff controller
54     //#define OVERRIDE_FILTER_CUTOFF_CTRL 1 ///< set to an arbitrary MIDI control change controller (e.g. 1 for 'modulation wheel')
55    
56     // Uncomment following line to override external resonance controller
57     //#define OVERRIDE_FILTER_RES_CTRL 91 ///< set to an arbitrary MIDI control change controller (e.g. 91 for 'effect 1 depth')
58    
59     // Uncomment following line to override filter type
60     //#define OVERRIDE_FILTER_TYPE ::gig::vcf_type_lowpass ///< either ::gig::vcf_type_lowpass, ::gig::vcf_type_bandpass or ::gig::vcf_type_highpass
61    
62     namespace LinuxSampler { namespace gig {
63    
64     class Engine;
65     class EGADSR;
66     class VCAManipulator;
67     class VCFCManipulator;
68     class VCOManipulator;
69    
70     /// Reflects a MIDI controller
71     struct midi_ctrl {
72     uint8_t controller; ///< MIDI control change controller number
73     uint8_t value; ///< Current MIDI controller value
74     float fvalue; ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)
75     };
76    
77     /** Gig Voice
78     *
79     * Renders a voice for the Gigasampler format.
80     */
81     class Voice {
82     public:
83     // Attributes
84     int MIDIKey; ///< MIDI key number of the key that triggered the voice
85     DiskThread* pDiskThread; ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again
86    
87     // Methods
88     Voice();
89     ~Voice();
90     void Kill();
91     void Render(uint Samples);
92     void Reset();
93     void SetOutput(AudioOutputDevice* pAudioOutputDevice);
94     void SetEngine(Engine* pEngine);
95     int Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument);
96     inline bool IsActive() { return Active; }
97     private:
98     // Types
99     enum playback_state_t {
100     playback_state_ram,
101     playback_state_disk,
102     playback_state_end
103     };
104    
105     // Attributes
106     gig::Engine* pEngine; ///< Pointer to the sampler engine, to be able to access the event lists.
107     float Volume; ///< Volume level of the voice
108     double Pos; ///< Current playback position in sample
109     double PitchBase; ///< Basic pitch depth, stays the same for the whole life time of the voice
110     double PitchBend; ///< Current pitch value of the pitchbend wheel
111     ::gig::Sample* pSample; ///< Pointer to the sample to be played back
112     ::gig::Region* pRegion; ///< Pointer to the articulation information of the respective keyboard region of this voice
113     bool Active; ///< If this voice object is currently in usage
114     playback_state_t PlaybackState; ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly
115     bool DiskVoice; ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false
116     Stream::reference_t DiskStreamRef; ///< Reference / link to the disk stream
117     unsigned long MaxRAMPos; ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.
118     bool RAMLoop; ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping
119     int LoopCyclesLeft; ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed
120     uint Delay; ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle
121     EGADSR* pEG1; ///< Envelope Generator 1 (Amplification)
122     EGADSR* pEG2; ///< Envelope Generator 2 (Filter cutoff frequency)
123     EGDecay* pEG3; ///< Envelope Generator 3 (Pitch)
124     Filter FilterLeft;
125     Filter FilterRight;
126     midi_ctrl VCFCutoffCtrl;
127     midi_ctrl VCFResonanceCtrl;
128     int FilterUpdateCounter; ///< Used to update filter parameters all FILTER_UPDATE_PERIOD samples
129     static const float FILTER_CUTOFF_COEFF;
130 schoenebeck 80 static const int FILTER_UPDATE_MASK;
131 schoenebeck 53 VCAManipulator* pVCAManipulator;
132     VCFCManipulator* pVCFCManipulator;
133     VCOManipulator* pVCOManipulator;
134     LFO<gig::VCAManipulator>* pLFO1; ///< Low Frequency Oscillator 1 (Amplification)
135     LFO<gig::VCFCManipulator>* pLFO2; ///< Low Frequency Oscillator 2 (Filter cutoff frequency)
136     LFO<gig::VCOManipulator>* pLFO3; ///< Low Frequency Oscillator 3 (Pitch)
137     Event* pTriggerEvent; ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).
138    
139     // Static Methods
140     static float CalculateFilterCutoffCoeff();
141 schoenebeck 80 static int CalculateFilterUpdateMask();
142 schoenebeck 53
143     // Methods
144     void ProcessEvents(uint Samples);
145 schoenebeck 80 #if ENABLE_FILTER
146     void CalculateBiquadParameters(uint Samples);
147     #endif // ENABLE_FILTER
148 schoenebeck 53 void Interpolate(uint Samples, sample_t* pSrc, uint Skip);
149     void InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip);
150 schoenebeck 80 inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float& effective_volume, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {
151 schoenebeck 53 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
152     float pos_fract = this->Pos - pos_int; // fractional part of position
153     pos_int <<= 1;
154    
155     #if USE_LINEAR_INTERPOLATION
156     #if ENABLE_FILTER
157     // left channel
158 schoenebeck 225 pEngine->pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])));
159 schoenebeck 53 // right channel
160 schoenebeck 225 pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])));
161 schoenebeck 53 #else // no filter
162     // left channel
163 schoenebeck 225 pEngine->pOutputLeft[i] += effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]));
164 schoenebeck 53 // right channel
165 schoenebeck 225 pEngine->pOutputRight[i++] += effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]));
166 schoenebeck 53 #endif // ENABLE_FILTER
167     #else // polynomial interpolation
168     // calculate left channel
169     float xm1 = pSrc[pos_int];
170     float x0 = pSrc[pos_int+2];
171     float x1 = pSrc[pos_int+4];
172     float x2 = pSrc[pos_int+6];
173 letz 99 float a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
174     float b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
175     float c = (x1 - xm1) * 0.5f;
176 schoenebeck 53 #if ENABLE_FILTER
177 schoenebeck 225 pEngine->pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
178 schoenebeck 53 #else // no filter
179 schoenebeck 225 pEngine->pOutputLeft[i] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
180 schoenebeck 53 #endif // ENABLE_FILTER
181    
182     //calculate right channel
183     xm1 = pSrc[pos_int+1];
184     x0 = pSrc[pos_int+3];
185     x1 = pSrc[pos_int+5];
186     x2 = pSrc[pos_int+7];
187 letz 99 a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
188     b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
189     c = (x1 - xm1) * 0.5f;
190 schoenebeck 53 #if ENABLE_FILTER
191 schoenebeck 225 pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
192 schoenebeck 53 #else // no filter
193 schoenebeck 225 pEngine->pOutputRight[i++] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
194 schoenebeck 53 #endif // ENABLE_FILTER
195     #endif // USE_LINEAR_INTERPOLATION
196    
197     this->Pos += pitch;
198     }
199 schoenebeck 97
200 schoenebeck 80 inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float& effective_volume, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {
201 schoenebeck 53 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
202     float pos_fract = this->Pos - pos_int; // fractional part of position
203    
204     #if USE_LINEAR_INTERPOLATION
205     float sample_point = effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]));
206     #else // polynomial interpolation
207     float xm1 = pSrc[pos_int];
208     float x0 = pSrc[pos_int+1];
209     float x1 = pSrc[pos_int+2];
210     float x2 = pSrc[pos_int+3];
211 letz 99 float a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
212     float b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
213     float c = (x1 - xm1) * 0.5f;
214 schoenebeck 53 float sample_point = effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
215     #endif // USE_LINEAR_INTERPOLATION
216    
217     #if ENABLE_FILTER
218 schoenebeck 80 sample_point = this->FilterLeft.Apply(&bq_base, &bq_main, sample_point);
219 schoenebeck 53 #endif // ENABLE_FILTER
220    
221 schoenebeck 225 pEngine->pOutputLeft[i] += sample_point;
222     pEngine->pOutputRight[i++] += sample_point;
223 schoenebeck 53
224     this->Pos += pitch;
225     }
226 schoenebeck 97
227 schoenebeck 53 inline float Constrain(float ValueToCheck, float Min, float Max) {
228     if (ValueToCheck > Max) ValueToCheck = Max;
229     else if (ValueToCheck < Min) ValueToCheck = Min;
230     return ValueToCheck;
231     }
232     };
233    
234     }} // namespace LinuxSampler::gig
235    
236     #endif // __LS_GIG_VOICE_H__

  ViewVC Help
Powered by ViewVC