/[svn]/linuxsampler/trunk/src/engines/gig/Voice.h
ViewVC logotype

Annotation of /linuxsampler/trunk/src/engines/gig/Voice.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 273 - (hide annotations) (download) (as text)
Fri Oct 8 21:04:51 2004 UTC (19 years, 6 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 17577 byte(s)
forgot to modify include for Pool.h

1 schoenebeck 53 /***************************************************************************
2     * *
3     * LinuxSampler - modular, streaming capable sampler *
4     * *
5 schoenebeck 56 * Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck *
6 schoenebeck 53 * *
7     * This program is free software; you can redistribute it and/or modify *
8     * it under the terms of the GNU General Public License as published by *
9     * the Free Software Foundation; either version 2 of the License, or *
10     * (at your option) any later version. *
11     * *
12     * This program is distributed in the hope that it will be useful, *
13     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15     * GNU General Public License for more details. *
16     * *
17     * You should have received a copy of the GNU General Public License *
18     * along with this program; if not, write to the Free Software *
19     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
20     * MA 02111-1307 USA *
21     ***************************************************************************/
22    
23     #ifndef __LS_GIG_VOICE_H__
24     #define __LS_GIG_VOICE_H__
25    
26     #include "../../common/global.h"
27    
28     #if DEBUG_HEADERS
29     # warning Voice.h included
30     #endif // DEBUG_HEADERS
31    
32     #include "../../common/RTMath.h"
33     #include "../../common/RingBuffer.h"
34 schoenebeck 273 #include "../../common/Pool.h"
35 schoenebeck 203 #include "../../drivers/audio/AudioOutputDevice.h"
36 schoenebeck 53 #include "../../lib/fileloader/libgig/gig.h"
37 schoenebeck 80 #include "../common/BiquadFilter.h"
38 schoenebeck 53 #include "Engine.h"
39     #include "Stream.h"
40     #include "DiskThread.h"
41    
42     #include "EGDecay.h"
43     #include "Filter.h"
44     #include "../common/LFO.h"
45    
46 schoenebeck 80 #define USE_LINEAR_INTERPOLATION 0 ///< set to 0 if you prefer cubic interpolation (slower, better quality)
47     #define ENABLE_FILTER 1 ///< if set to 0 then filter (VCF) code is ignored on compile time
48     #define FILTER_UPDATE_PERIOD 64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution, this value will be aligned to a power of two)
49 schoenebeck 53 #define FORCE_FILTER_USAGE 0 ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one
50     #define FILTER_CUTOFF_MAX 10000.0f ///< maximum cutoff frequency (10kHz)
51     #define FILTER_CUTOFF_MIN 100.0f ///< minimum cutoff frequency (100Hz)
52    
53     // Uncomment following line to override external cutoff controller
54     //#define OVERRIDE_FILTER_CUTOFF_CTRL 1 ///< set to an arbitrary MIDI control change controller (e.g. 1 for 'modulation wheel')
55    
56     // Uncomment following line to override external resonance controller
57     //#define OVERRIDE_FILTER_RES_CTRL 91 ///< set to an arbitrary MIDI control change controller (e.g. 91 for 'effect 1 depth')
58    
59     // Uncomment following line to override filter type
60     //#define OVERRIDE_FILTER_TYPE ::gig::vcf_type_lowpass ///< either ::gig::vcf_type_lowpass, ::gig::vcf_type_bandpass or ::gig::vcf_type_highpass
61    
62     namespace LinuxSampler { namespace gig {
63    
64     class Engine;
65     class EGADSR;
66     class VCAManipulator;
67     class VCFCManipulator;
68     class VCOManipulator;
69    
70     /// Reflects a MIDI controller
71     struct midi_ctrl {
72     uint8_t controller; ///< MIDI control change controller number
73     uint8_t value; ///< Current MIDI controller value
74     float fvalue; ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)
75     };
76    
77     /** Gig Voice
78     *
79     * Renders a voice for the Gigasampler format.
80     */
81     class Voice {
82     public:
83 schoenebeck 242 // Types
84     enum type_t {
85     type_normal,
86     type_release_trigger_required, ///< If the key of this voice will be released, it causes a release triggered voice to be spawned
87     type_release_trigger ///< Release triggered voice which cannot be killed by releasing its key
88     };
89    
90 schoenebeck 53 // Attributes
91 schoenebeck 242 type_t Type; ///< Voice Type
92 schoenebeck 53 int MIDIKey; ///< MIDI key number of the key that triggered the voice
93 schoenebeck 239 uint KeyGroup;
94 schoenebeck 53 DiskThread* pDiskThread; ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again
95    
96     // Methods
97     Voice();
98     ~Voice();
99 schoenebeck 271 void Kill(Pool<Event>::Iterator& itKillEvent);
100 schoenebeck 239 void KillImmediately();
101 schoenebeck 53 void Render(uint Samples);
102     void Reset();
103     void SetOutput(AudioOutputDevice* pAudioOutputDevice);
104     void SetEngine(Engine* pEngine);
105 schoenebeck 271 int Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer = 0, bool ReleaseTriggerVoice = false);
106 schoenebeck 53 inline bool IsActive() { return Active; }
107     private:
108     // Types
109     enum playback_state_t {
110     playback_state_ram,
111     playback_state_disk,
112     playback_state_end
113     };
114    
115     // Attributes
116     gig::Engine* pEngine; ///< Pointer to the sampler engine, to be able to access the event lists.
117     float Volume; ///< Volume level of the voice
118 schoenebeck 245 float PanLeft;
119     float PanRight;
120 schoenebeck 236 float CrossfadeVolume; ///< Current attenuation level caused by a crossfade (only if a crossfade is defined of course)
121 schoenebeck 53 double Pos; ///< Current playback position in sample
122     double PitchBase; ///< Basic pitch depth, stays the same for the whole life time of the voice
123     double PitchBend; ///< Current pitch value of the pitchbend wheel
124     ::gig::Sample* pSample; ///< Pointer to the sample to be played back
125     ::gig::Region* pRegion; ///< Pointer to the articulation information of the respective keyboard region of this voice
126 schoenebeck 236 ::gig::DimensionRegion* pDimRgn; ///< Pointer to the articulation information of current dimension region of this voice
127 schoenebeck 53 bool Active; ///< If this voice object is currently in usage
128     playback_state_t PlaybackState; ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly
129     bool DiskVoice; ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false
130     Stream::reference_t DiskStreamRef; ///< Reference / link to the disk stream
131     unsigned long MaxRAMPos; ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.
132     bool RAMLoop; ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping
133     int LoopCyclesLeft; ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed
134     uint Delay; ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle
135     EGADSR* pEG1; ///< Envelope Generator 1 (Amplification)
136     EGADSR* pEG2; ///< Envelope Generator 2 (Filter cutoff frequency)
137     EGDecay* pEG3; ///< Envelope Generator 3 (Pitch)
138     Filter FilterLeft;
139     Filter FilterRight;
140     midi_ctrl VCFCutoffCtrl;
141     midi_ctrl VCFResonanceCtrl;
142     int FilterUpdateCounter; ///< Used to update filter parameters all FILTER_UPDATE_PERIOD samples
143     static const float FILTER_CUTOFF_COEFF;
144 schoenebeck 80 static const int FILTER_UPDATE_MASK;
145 schoenebeck 53 VCAManipulator* pVCAManipulator;
146     VCFCManipulator* pVCFCManipulator;
147     VCOManipulator* pVCOManipulator;
148     LFO<gig::VCAManipulator>* pLFO1; ///< Low Frequency Oscillator 1 (Amplification)
149     LFO<gig::VCFCManipulator>* pLFO2; ///< Low Frequency Oscillator 2 (Filter cutoff frequency)
150     LFO<gig::VCOManipulator>* pLFO3; ///< Low Frequency Oscillator 3 (Pitch)
151 schoenebeck 271 Pool<Event>::Iterator itTriggerEvent; ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).
152     Pool<Event>::Iterator itKillEvent; ///< Event which caused this voice to be killed
153 schoenebeck 53
154     // Static Methods
155     static float CalculateFilterCutoffCoeff();
156 schoenebeck 80 static int CalculateFilterUpdateMask();
157 schoenebeck 53
158     // Methods
159     void ProcessEvents(uint Samples);
160 schoenebeck 80 #if ENABLE_FILTER
161     void CalculateBiquadParameters(uint Samples);
162     #endif // ENABLE_FILTER
163 schoenebeck 245 void InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip);
164 schoenebeck 53 void InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip);
165 schoenebeck 245
166     inline void InterpolateMono(sample_t* pSrc, int& i) {
167     InterpolateOneStep_Mono(pSrc, i,
168     pEngine->pSynthesisParameters[Event::destination_vca][i] * PanLeft,
169     pEngine->pSynthesisParameters[Event::destination_vca][i] * PanRight,
170     pEngine->pSynthesisParameters[Event::destination_vco][i],
171     pEngine->pBasicFilterParameters[i],
172     pEngine->pMainFilterParameters[i]);
173     }
174    
175     inline void InterpolateStereo(sample_t* pSrc, int& i) {
176     InterpolateOneStep_Stereo(pSrc, i,
177     pEngine->pSynthesisParameters[Event::destination_vca][i] * PanLeft,
178     pEngine->pSynthesisParameters[Event::destination_vca][i] * PanRight,
179     pEngine->pSynthesisParameters[Event::destination_vco][i],
180     pEngine->pBasicFilterParameters[i],
181     pEngine->pMainFilterParameters[i]);
182     }
183    
184     inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float volume_left, float volume_right, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {
185 schoenebeck 53 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
186     float pos_fract = this->Pos - pos_int; // fractional part of position
187     pos_int <<= 1;
188    
189     #if USE_LINEAR_INTERPOLATION
190     #if ENABLE_FILTER
191     // left channel
192 schoenebeck 245 pEngine->pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, volume_left * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])));
193 schoenebeck 53 // right channel
194 schoenebeck 245 pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, volume_right * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])));
195 schoenebeck 53 #else // no filter
196     // left channel
197 schoenebeck 245 pEngine->pOutputLeft[i] += volume_left * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]));
198 schoenebeck 53 // right channel
199 schoenebeck 245 pEngine->pOutputRight[i++] += volume_right * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]));
200 schoenebeck 53 #endif // ENABLE_FILTER
201     #else // polynomial interpolation
202     // calculate left channel
203     float xm1 = pSrc[pos_int];
204     float x0 = pSrc[pos_int+2];
205     float x1 = pSrc[pos_int+4];
206     float x2 = pSrc[pos_int+6];
207 letz 99 float a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
208     float b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
209     float c = (x1 - xm1) * 0.5f;
210 schoenebeck 53 #if ENABLE_FILTER
211 schoenebeck 245 pEngine->pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, volume_left * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
212 schoenebeck 53 #else // no filter
213 schoenebeck 245 pEngine->pOutputLeft[i] += volume_left * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
214 schoenebeck 53 #endif // ENABLE_FILTER
215    
216     //calculate right channel
217     xm1 = pSrc[pos_int+1];
218     x0 = pSrc[pos_int+3];
219     x1 = pSrc[pos_int+5];
220     x2 = pSrc[pos_int+7];
221 letz 99 a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
222     b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
223     c = (x1 - xm1) * 0.5f;
224 schoenebeck 53 #if ENABLE_FILTER
225 schoenebeck 245 pEngine->pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, volume_right * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
226 schoenebeck 53 #else // no filter
227 schoenebeck 245 pEngine->pOutputRight[i++] += volume_right * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
228 schoenebeck 53 #endif // ENABLE_FILTER
229     #endif // USE_LINEAR_INTERPOLATION
230    
231     this->Pos += pitch;
232     }
233 schoenebeck 97
234 schoenebeck 245 inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float volume_left, float volume_right, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {
235 schoenebeck 53 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
236     float pos_fract = this->Pos - pos_int; // fractional part of position
237    
238     #if USE_LINEAR_INTERPOLATION
239 schoenebeck 245 float sample_point = pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]);
240 schoenebeck 53 #else // polynomial interpolation
241     float xm1 = pSrc[pos_int];
242     float x0 = pSrc[pos_int+1];
243     float x1 = pSrc[pos_int+2];
244     float x2 = pSrc[pos_int+3];
245 letz 99 float a = (3.0f * (x0 - x1) - xm1 + x2) * 0.5f;
246     float b = 2.0f * x1 + xm1 - (5.0f * x0 + x2) * 0.5f;
247     float c = (x1 - xm1) * 0.5f;
248 schoenebeck 245 float sample_point = (((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0;
249 schoenebeck 53 #endif // USE_LINEAR_INTERPOLATION
250    
251     #if ENABLE_FILTER
252 schoenebeck 80 sample_point = this->FilterLeft.Apply(&bq_base, &bq_main, sample_point);
253 schoenebeck 53 #endif // ENABLE_FILTER
254    
255 schoenebeck 245 pEngine->pOutputLeft[i] += sample_point * volume_left;
256     pEngine->pOutputRight[i++] += sample_point * volume_right;
257 schoenebeck 53
258     this->Pos += pitch;
259     }
260 schoenebeck 97
261 schoenebeck 236 inline float CrossfadeAttenuation(uint8_t& CrossfadeControllerValue) {
262     return (CrossfadeControllerValue <= pDimRgn->Crossfade.in_start) ? 0.0f
263     : (CrossfadeControllerValue < pDimRgn->Crossfade.in_end) ? float(CrossfadeControllerValue - pDimRgn->Crossfade.in_start) / float(pDimRgn->Crossfade.in_end - pDimRgn->Crossfade.in_start)
264     : (CrossfadeControllerValue <= pDimRgn->Crossfade.out_start) ? 1.0f
265     : (CrossfadeControllerValue < pDimRgn->Crossfade.out_end) ? float(CrossfadeControllerValue - pDimRgn->Crossfade.out_start) / float(pDimRgn->Crossfade.out_end - pDimRgn->Crossfade.out_start)
266     : 0.0f;
267     }
268    
269 schoenebeck 53 inline float Constrain(float ValueToCheck, float Min, float Max) {
270     if (ValueToCheck > Max) ValueToCheck = Max;
271     else if (ValueToCheck < Min) ValueToCheck = Min;
272     return ValueToCheck;
273     }
274     };
275    
276     }} // namespace LinuxSampler::gig
277    
278     #endif // __LS_GIG_VOICE_H__

  ViewVC Help
Powered by ViewVC