/[svn]/linuxsampler/trunk/src/engines/gig/Voice.h
ViewVC logotype

Annotation of /linuxsampler/trunk/src/engines/gig/Voice.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 80 - (hide annotations) (download) (as text)
Sun May 23 19:16:33 2004 UTC (19 years, 11 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 15904 byte(s)
* biquad filter parameters are now calculated outside the interpolate
  loop for better performance
* couple of loop unroll optimizations
* filter is now enabled by default
* cubic interpolation is now enabled by default
* reduced debug level to 1 to lower verbosity
* raised default limit for voices to 128
* raised default limit for streams to 150
* added some compiler optimization flags (-ffast-math -march -mcpu)

1 schoenebeck 53 /***************************************************************************
2     * *
3     * LinuxSampler - modular, streaming capable sampler *
4     * *
5 schoenebeck 56 * Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck *
6 schoenebeck 53 * *
7     * This program is free software; you can redistribute it and/or modify *
8     * it under the terms of the GNU General Public License as published by *
9     * the Free Software Foundation; either version 2 of the License, or *
10     * (at your option) any later version. *
11     * *
12     * This program is distributed in the hope that it will be useful, *
13     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15     * GNU General Public License for more details. *
16     * *
17     * You should have received a copy of the GNU General Public License *
18     * along with this program; if not, write to the Free Software *
19     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
20     * MA 02111-1307 USA *
21     ***************************************************************************/
22    
23     #ifndef __LS_GIG_VOICE_H__
24     #define __LS_GIG_VOICE_H__
25    
26     #include "../../common/global.h"
27    
28     #if DEBUG_HEADERS
29     # warning Voice.h included
30     #endif // DEBUG_HEADERS
31    
32     #include "../../common/RTMath.h"
33     #include "../../common/RingBuffer.h"
34     #include "../../common/RTELMemoryPool.h"
35     #include "../../audiodriver/AudioOutputDevice.h"
36     #include "../../lib/fileloader/libgig/gig.h"
37 schoenebeck 80 #include "../common/BiquadFilter.h"
38 schoenebeck 53 #include "Engine.h"
39     #include "Stream.h"
40     #include "DiskThread.h"
41    
42     #include "EGDecay.h"
43     #include "Filter.h"
44     #include "../common/LFO.h"
45    
46 schoenebeck 80 #define USE_LINEAR_INTERPOLATION 0 ///< set to 0 if you prefer cubic interpolation (slower, better quality)
47     #define ENABLE_FILTER 1 ///< if set to 0 then filter (VCF) code is ignored on compile time
48     #define FILTER_UPDATE_PERIOD 64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution, this value will be aligned to a power of two)
49 schoenebeck 53 #define FORCE_FILTER_USAGE 0 ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one
50     #define FILTER_CUTOFF_MAX 10000.0f ///< maximum cutoff frequency (10kHz)
51     #define FILTER_CUTOFF_MIN 100.0f ///< minimum cutoff frequency (100Hz)
52    
53     // Uncomment following line to override external cutoff controller
54     //#define OVERRIDE_FILTER_CUTOFF_CTRL 1 ///< set to an arbitrary MIDI control change controller (e.g. 1 for 'modulation wheel')
55    
56     // Uncomment following line to override external resonance controller
57     //#define OVERRIDE_FILTER_RES_CTRL 91 ///< set to an arbitrary MIDI control change controller (e.g. 91 for 'effect 1 depth')
58    
59     // Uncomment following line to override filter type
60     //#define OVERRIDE_FILTER_TYPE ::gig::vcf_type_lowpass ///< either ::gig::vcf_type_lowpass, ::gig::vcf_type_bandpass or ::gig::vcf_type_highpass
61    
62     namespace LinuxSampler { namespace gig {
63    
64     class Engine;
65     class EGADSR;
66     class VCAManipulator;
67     class VCFCManipulator;
68     class VCOManipulator;
69    
70     /// Reflects a MIDI controller
71     struct midi_ctrl {
72     uint8_t controller; ///< MIDI control change controller number
73     uint8_t value; ///< Current MIDI controller value
74     float fvalue; ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)
75     };
76    
77     /** Gig Voice
78     *
79     * Renders a voice for the Gigasampler format.
80     */
81     class Voice {
82     public:
83     // Attributes
84     int MIDIKey; ///< MIDI key number of the key that triggered the voice
85     DiskThread* pDiskThread; ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again
86    
87     // Methods
88     Voice();
89     ~Voice();
90     void Kill();
91     void Render(uint Samples);
92     void Reset();
93     void SetOutput(AudioOutputDevice* pAudioOutputDevice);
94     void SetEngine(Engine* pEngine);
95     int Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument);
96     inline bool IsActive() { return Active; }
97     private:
98     // Types
99     enum playback_state_t {
100     playback_state_ram,
101     playback_state_disk,
102     playback_state_end
103     };
104    
105     // Attributes
106     gig::Engine* pEngine; ///< Pointer to the sampler engine, to be able to access the event lists.
107     float Volume; ///< Volume level of the voice
108     float* pOutputLeft; ///< Audio output channel buffer (left)
109     float* pOutputRight; ///< Audio output channel buffer (right)
110     uint SampleRate; ///< Sample rate of the engines output audio signal (in Hz)
111     uint MaxSamplesPerCycle; ///< Size of each audio output buffer
112     double Pos; ///< Current playback position in sample
113     double PitchBase; ///< Basic pitch depth, stays the same for the whole life time of the voice
114     double PitchBend; ///< Current pitch value of the pitchbend wheel
115     ::gig::Sample* pSample; ///< Pointer to the sample to be played back
116     ::gig::Region* pRegion; ///< Pointer to the articulation information of the respective keyboard region of this voice
117     bool Active; ///< If this voice object is currently in usage
118     playback_state_t PlaybackState; ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly
119     bool DiskVoice; ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false
120     Stream::reference_t DiskStreamRef; ///< Reference / link to the disk stream
121     unsigned long MaxRAMPos; ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.
122     bool RAMLoop; ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping
123     int LoopCyclesLeft; ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed
124     uint Delay; ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle
125     EGADSR* pEG1; ///< Envelope Generator 1 (Amplification)
126     EGADSR* pEG2; ///< Envelope Generator 2 (Filter cutoff frequency)
127     EGDecay* pEG3; ///< Envelope Generator 3 (Pitch)
128     Filter FilterLeft;
129     Filter FilterRight;
130     midi_ctrl VCFCutoffCtrl;
131     midi_ctrl VCFResonanceCtrl;
132     int FilterUpdateCounter; ///< Used to update filter parameters all FILTER_UPDATE_PERIOD samples
133     static const float FILTER_CUTOFF_COEFF;
134 schoenebeck 80 static const int FILTER_UPDATE_MASK;
135 schoenebeck 53 VCAManipulator* pVCAManipulator;
136     VCFCManipulator* pVCFCManipulator;
137     VCOManipulator* pVCOManipulator;
138     LFO<gig::VCAManipulator>* pLFO1; ///< Low Frequency Oscillator 1 (Amplification)
139     LFO<gig::VCFCManipulator>* pLFO2; ///< Low Frequency Oscillator 2 (Filter cutoff frequency)
140     LFO<gig::VCOManipulator>* pLFO3; ///< Low Frequency Oscillator 3 (Pitch)
141     Event* pTriggerEvent; ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).
142    
143     // Static Methods
144     static float CalculateFilterCutoffCoeff();
145 schoenebeck 80 static int CalculateFilterUpdateMask();
146 schoenebeck 53
147     // Methods
148     void ProcessEvents(uint Samples);
149 schoenebeck 80 #if ENABLE_FILTER
150     void CalculateBiquadParameters(uint Samples);
151     #endif // ENABLE_FILTER
152 schoenebeck 53 void Interpolate(uint Samples, sample_t* pSrc, uint Skip);
153     void InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip);
154 schoenebeck 80 inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float& effective_volume, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {
155 schoenebeck 53 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
156     float pos_fract = this->Pos - pos_int; // fractional part of position
157     pos_int <<= 1;
158    
159 schoenebeck 80 #if 0 //ENABLE_FILTER
160 schoenebeck 53 UpdateFilter_Stereo(cutoff + FILTER_CUTOFF_MIN, resonance);
161     #endif // ENABLE_FILTER
162    
163     #if USE_LINEAR_INTERPOLATION
164     #if ENABLE_FILTER
165     // left channel
166 schoenebeck 80 pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])));
167 schoenebeck 53 // right channel
168 schoenebeck 80 pOutputRight[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])));
169 schoenebeck 53 #else // no filter
170     // left channel
171     pOutputLeft[i] += effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]));
172     // right channel
173     pOutputRight[i++] += effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]));
174     #endif // ENABLE_FILTER
175     #else // polynomial interpolation
176     // calculate left channel
177     float xm1 = pSrc[pos_int];
178     float x0 = pSrc[pos_int+2];
179     float x1 = pSrc[pos_int+4];
180     float x2 = pSrc[pos_int+6];
181     float a = (3 * (x0 - x1) - xm1 + x2) / 2;
182     float b = 2 * x1 + xm1 - (5 * x0 + x2) / 2;
183     float c = (x1 - xm1) / 2;
184     #if ENABLE_FILTER
185 schoenebeck 80 pOutputLeft[i] += this->FilterLeft.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
186 schoenebeck 53 #else // no filter
187     pOutputRight[i] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
188     #endif // ENABLE_FILTER
189    
190     //calculate right channel
191     xm1 = pSrc[pos_int+1];
192     x0 = pSrc[pos_int+3];
193     x1 = pSrc[pos_int+5];
194     x2 = pSrc[pos_int+7];
195     a = (3 * (x0 - x1) - xm1 + x2) / 2;
196     b = 2 * x1 + xm1 - (5 * x0 + x2) / 2;
197     c = (x1 - xm1) / 2;
198     #if ENABLE_FILTER
199 schoenebeck 80 pOutputLeft[i++] += this->FilterRight.Apply(&bq_base, &bq_main, effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
200 schoenebeck 53 #else // no filter
201     pOutputRight[i++] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
202     #endif // ENABLE_FILTER
203     #endif // USE_LINEAR_INTERPOLATION
204    
205     this->Pos += pitch;
206     }
207 schoenebeck 80 inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float& effective_volume, float& pitch, biquad_param_t& bq_base, biquad_param_t& bq_main) {
208 schoenebeck 53 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
209     float pos_fract = this->Pos - pos_int; // fractional part of position
210    
211 schoenebeck 80 #if 0 //ENABLE_FILTER
212 schoenebeck 53 UpdateFilter_Mono(cutoff + FILTER_CUTOFF_MIN, resonance);
213     #endif // ENABLE_FILTER
214    
215     #if USE_LINEAR_INTERPOLATION
216     float sample_point = effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]));
217     #else // polynomial interpolation
218     float xm1 = pSrc[pos_int];
219     float x0 = pSrc[pos_int+1];
220     float x1 = pSrc[pos_int+2];
221     float x2 = pSrc[pos_int+3];
222     float a = (3 * (x0 - x1) - xm1 + x2) / 2;
223     float b = 2 * x1 + xm1 - (5 * x0 + x2) / 2;
224     float c = (x1 - xm1) / 2;
225     float sample_point = effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
226     #endif // USE_LINEAR_INTERPOLATION
227    
228     #if ENABLE_FILTER
229 schoenebeck 80 sample_point = this->FilterLeft.Apply(&bq_base, &bq_main, sample_point);
230 schoenebeck 53 #endif // ENABLE_FILTER
231    
232     pOutputLeft[i] += sample_point;
233     pOutputRight[i++] += sample_point;
234    
235     this->Pos += pitch;
236     }
237 schoenebeck 80 #if 0
238 schoenebeck 53 inline void UpdateFilter_Stereo(float cutoff, float& resonance) {
239     if (!(++FilterUpdateCounter % FILTER_UPDATE_PERIOD) && (cutoff != FilterLeft.Cutoff() || resonance != FilterLeft.Resonance())) {
240     FilterLeft.SetParameters(cutoff, resonance, SampleRate);
241     FilterRight.SetParameters(cutoff, resonance, SampleRate);
242     }
243     }
244     inline void UpdateFilter_Mono(float cutoff, float& resonance) {
245     if (!(++FilterUpdateCounter % FILTER_UPDATE_PERIOD) && (cutoff != FilterLeft.Cutoff() || resonance != FilterLeft.Resonance())) {
246     FilterLeft.SetParameters(cutoff, resonance, SampleRate);
247     }
248     }
249 schoenebeck 80 #endif
250 schoenebeck 53 inline float Constrain(float ValueToCheck, float Min, float Max) {
251     if (ValueToCheck > Max) ValueToCheck = Max;
252     else if (ValueToCheck < Min) ValueToCheck = Min;
253     return ValueToCheck;
254     }
255     };
256    
257     }} // namespace LinuxSampler::gig
258    
259     #endif // __LS_GIG_VOICE_H__

  ViewVC Help
Powered by ViewVC